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Summary 

Typical responses of cortical neurons to identical sensory stimuli are highly variable. It has thus 
been proposed that the cortex primarily uses a rate code. However, other reports show spike-time 
coding under certain conditions. The potential role of spike-time coding is constrained by the 
variability arising directly from noise sources within local cortical circuits. Here, we quantified 
this internally generated variability using a detailed model of rat neocortical microcircuitry with 
biologically realistic noise sources. We found stochastic neurotransmitter release to be a critical 
component of this variability, which, amplified by recurrent connectivity, causes rapid chaotic 
divergence with a time constant on the order of 10-20 milliseconds. Surprisingly, however, 
relatively weak thalamocortical stimuli can transiently overcome the chaos, and induce reliable 
spike times with millisecond precision. We show that this effect relies on recurrent cortical 
connectivity and is not a simple result of feed-forward thalamocortical input. We conclude that 
recurrent cortical architecture simultaneously supports both chaotic network dynamics and 
millisecond spike-time reliability. 
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Introduction 

The typical electrical activity of cortical neurons is highly variable, in the sense that membrane 
potentials, spike times and interspike intervals vary during spontaneous activity as well as across 
trials with identical sensory stimuli (Mohajerani et al., 2013; Shadlen and Newsome, 1998; Stern 
et al., 1997; Tolhurst et al., 1983). A substantial part of this cortical variability is probably due to 
hidden variables such as unobserved stimuli, environmental parameters, or brain state (Pachitariu 
et al., 2015; Renart and Machens, 2014). For instance, it has been shown that, in the visual 
cortex, the act of running modulates responses of neurons to identical stimuli (Niell and Stryker, 
2010). Furthermore, it has also been demonstrated that neocortical neurons respond reliably to 
somatic current injections in vitro (Mainen and Sejnowski, 1995). Moreover, while most cortical 
neurons display variable activity, some neurons in sensory cortices can encode sensory input 
with high spike-time precision (Hires et al., 2015; Kayser et al., 2010; Petersen et al., 2001). 
Taken together, these findings suggest that the variability simply encodes hidden or unobserved 
variables, and that cortical activity is essentially deterministic (Masquelier, 2013). However, 
there are two important reasons to believe that a large part of cortical variability is due to 
internally generated noise that carries no signal. 

First, all cortical neurons are affected by well-established cellular noise sources, such as 
stochastic synaptic transmission and ion-channel noise (Faisal et al., 2008).  These cellular noise 
sources ultimately originate from proteins susceptible to thermodynamic fluctuations, and are 
therefore intrinsic sources of noise (Faisal et al., 2008; Renart and Machens, 2014). In particular, 
synaptic transmission is based on a sequence of stochastic molecular events, where the low 
numbers of molecules involved do not allow stochastic properties to average out (Ribrault et al., 
2011). In fact, in tightly controlled slice environments, the probability of vesicle release upon 
action potential arrival at a single cortical synapse is low (~50% between thick tufted layer 5 
pyramidal  neurons, see Markram et al., 1997), and estimated to be substantially lower in vivo 
(Borst, 2010) (~10% between same  neurons, see Markram et al., 2015). The universal presence 
of synaptic noise suggests that cortical neurons respond far less reliably to presynaptic inputs 
than to current injections. It has been shown, moreover, that a simplified cortical network model 
with stochastic synapses can provide a sufficient explanation for variable spiking (Moreno-Bote, 
2014). Furthermore, in vitro, some types of inhibitory neurons respond irregularly even to 
constant somatic current injections (Petilla Interneuron Nomenclature Group et al., 2008), unlike 
excitatory neurons which respond reliably (Mainen and Sejnowski, 1995). This is due to ion-
channel noise that is amplified during action potential initiation (Mendonça et al., 2016). 
Moreover, even activity in regular firing excitatory neurons could be subject to ion-channel 
noise, for example during action potential propagation in thin axons (Faisal and Laughlin, 2007). 

Second, models suggest (van Vreeswijk and Sompolinsky, 1996, 1998) and experiments show 
(London et al., 2010) that cortical networks have chaotic dynamics. This implies, by definition, 
that small perturbations, such as those due to intrinsic cellular noise, are amplified. Thus, extra or 
missing spikes in the network, for example, due to failed synaptic transmission, could change the 
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trajectories of electrical activity for all recurrently connected neurons in the network, and even 
the global firing rate. This could lead, in turn, to large steady-state fluctuations. 

In spite of their potential importance, the separate and combined impacts of network dynamics 
and cellular noise sources on cortical neuronal variability remain largely unexplored. 
Nonetheless, there are several reasons why understanding what proportion of cortical neuronal 
variability is generated internally and how this variability arises is crucial for understanding the 
neural code. 

First, strong internally generated variability due to chaotic network dynamics could prevent 
coding based on spike timing past the sensory periphery, and favor theories of firing rate coding 
(London et al., 2010). To test the feasibility of models of cortical coding that rely on spike timing 
(Gütig and Sompolinsky, 2006; Luczak et al., 2015; Thorpe et al., 2001), we need to understand 
internal variability and how it arises. 

Second, variability could carry information and encode signals itself, for example perceptual 
uncertainty (Orbán et al., 2016). It is thus essential to understand how to separate intrinsically 
generated variability that is bona fide noise from variability that encodes an additional signal or 
brain state. 

Third, and more generally, optimal coding strategies for neural circuit models depend on where 
noise enters the circuit (Brinkman et al., 2016).  To infer detailed information about the neural 
code, we need to understand the mechanisms responsible for internally generated variability. 
Currently, it is impossible to measure all external inputs to a local population of cortical neurons 
in vivo. As a result, we are still unable to quantify how much of the observed variability is 
generated internally by the local circuitry, and how much is generated externally. 

We therefore sought to address these questions using a detailed, biologically constrained model 
of a prototypical neocortical microcircuit in rat somatosensory cortex (the NMC-model; 
Markram et al., 2015). The NMC-model, which reproduces a range of in vivo experiments, 
incorporates several sources of noise, including stochastic synaptic transmission and ion channel 
noise.  Each of these noise sources is constrained to replicate experimentally observed 
variability. This bottom-up modeling approach provides full control over all noise sources 
present in the model as well as its external inputs and internal states. 

Our approach is fundamentally different from previous theoretical and computational studies on 
neural variability in cortical networks. While the effects of cellular noise sources on variability 
have already been studied in isolated biophysical Hodgkin-Huxley type neuron models (Diba et 
al., 2006; Mendonça et al., 2016; Singh and Levy, 2017; Wang et al., 2010), network models of 
large populations of cortical neurons tend to make many ad hoc assumptions about the relevant 
level of biological detail  (Balaguer-Ballester, 2017). In contrast, the NMC-model is far more 
detailed than these models and more tightly constrained by the experimental data. In particular, 
connectivity is established by integrating anatomical data, such as layer-dependent cell type 
densities, morphologies and bouton densities, to generate a wiring diagram (Reimann et al., 
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2015) with highly heterogeneous connectivity (Gal et al., 2017; Reimann et al., 2017a, 2017b). 
Other features of the model include morphologically-detailed Hodgkin-Huxley type neuron 
models fitted to electrophysiological data (Van Geit et al., 2016), and probabilistic synapses 
featuring short-term depression and facilitation. Synaptic parameters are constrained by 
experimentally determined inter-trial variability, synaptic failure and spontaneous release rates, 
and corrected to reflect in vivo levels of calcium. Additionally, some of the irregular spiking 
neurons include stochastic ion-channel models, making it possible to account for the known 
stochastic firing types in cortex (Petilla Interneuron Nomenclature Group et al., 2008). Finally, 
the model exhibits a naturally emerging structural and functional balance between excitation and 
inhibition (Gal et al., 2017), without relying on assumptions about the exact level of coupling 
between excitatory and inhibitory currents. 

To quantify internal variability in the NMC-model, we compared the probabilistic evolution of 
membrane potentials between simulation trials with identical initial conditions. We observed that 
membrane potentials for each neuron diverged with a time constant on the order of 10-20 
milliseconds, which we found to be robust across dynamical states, and nearly saturated at the 
scale of the microcircuit. In fully innervated neurons, input from surrounding tissue made little 
difference to their observed variability.  

To characterize how this variability arises, we designed a series of simulation experiments in 
which we selectively switched noise sources and recurrent network dynamics on and off. These 
experiments confirmed that the recurrent network dynamics were chaotic, in the sense that any 
perturbation caused divergence of membrane potentials, as predicted by simplified network 
models (van Vreeswijk and Sompolinsky, 1996, 1998) and in vivo observations (London et al., 
2010).  However, the rate by which membrane potentials diverged was determined by the 
interplay of synaptic noise and recurrent network dynamics. Hence, synaptic noise does not 
average out, but is a critical component of cortical network dynamics that drives internal 
variability. 

Surprisingly, we found that weak thalamocortical inputs can overcome chaotic network 
dynamics to produce reliable spike timing. We showed that these reliable responses depend on 
the recurrent cortical circuitry, with feed-forward thalamocortical input having a much weaker 
effect at the single cell level. We conclude that recurrent cortical architecture both supports 
chaotic network dynamics, and allows relatively weak inputs to be transformed into reliable 
patterns of activity, with millisecond spike timing precision amid the noise and chaos. 

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304121doi: bioRxiv preprint 

https://doi.org/10.1101/304121


	 5	

  

 
Figure 1: Rapid Divergence of Spontaneous Activity 
(A) Morphologically-detailed model of a neocortical microcircuit (NMC); depicted are 100 randomly 
selected neurons, out of 31’346 in total (~0.3%). Neurons are colored according to their layer. (B) 
Examples of simulated noise sources in the NMC-model: stochastic synaptic transmission, including (a) 
vesicle release failure and (b) spontaneous vesicle release (‘miniature PSPs’) at all 36 million synapses; 
(c) probabilistic opening and closing of voltage-gated potassium channels in irregularly spiking inhibitory 
neurons (1’137 out of 31’346 neurons); (d) a constant depolarizing current with a weak white noise 
component (𝜎"# ≪ 𝜇") injected into the somata of all neurons. (C) The membrane potential of four 
sample neurons (and population mean of all 31’346 neurons) during a network simulation of in vivo-like 
spontaneous activity. At 𝑡', the state of the microcircuit is saved, and then resumed twice with identical 
initial conditions, but with different random seeds for all noise sources. (D) Root-mean square deviation 
(𝑅𝑀𝑆𝐷,(𝑡)) and correlation (𝑟,(𝑡)) of the somatic membrane potentials between pairs of resumed 
simulations diverging from identical initial conditions (mean of all neurons and 40 saved base states ± 
95% confidence interval). The dashed lines depict the steady-state 𝑅𝑀𝑆𝐷, and 𝑟,	between independent 
simulations (i.e. resumed from different base states). (E) Time evolution of distributions of mean 
𝑅𝑀𝑆𝐷,	and 𝑟, values for individual neurons. (F) The similarity of the system (𝑠2345	and 𝑠6) defined as 
the difference between the diverging and steady-state 𝑅𝑀𝑆𝐷,	and 𝑟,, normalized to lie between 1 
(identical) and 0 (fully diverged) (mean ± 95% confidence interval). Exponential fit of  𝑠2345	and 𝑠6  for t < 
40 ms (estimated time constant ± 68% confidence interval of fit). 
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Results 

Rapid Divergence of Spontaneous Activity 

Using the NMC-model of rat somatosensory cortex (31’346 neurons, ~8 million connections, 
and ~36 million synapses), we simulated in vivo-like spontaneous neuronal activity (Figure 1A). 
The NMC-model contains three types of biological noise sources, all of which are required to 
accurately replicate neuronal responses to paired recordings and current injections in vitro 
(Figure 1B). Each of the 36 million synapses in the model incorporates stochastic models of 
vesicle release, which display both failure of vesicle release (a) and spontaneous release (b). In 
this way, overall synaptic variability is biologically constrained. The irregular firing electrical 
neuron types (e-types) (1’137 neurons) also contain models of stochastic potassium channels (c), 
which induce irregular firing in response to constant current injections in vitro. A fourth tunable 
noise source consisted of a noisy current (d) injected into the soma of each of the 31’346 neurons 
in the model, making it possible to depolarize neurons to in vivo-like levels (see Methods, 
Markram et al., 2015) (Figure 1B). In our initial experiments, we maintained the magnitude of 
this generic noise far below the magnitude of experimentally-constrained noise sources, using it 
later for sensitivity analysis. Realizations of the stochastic processes underlying these noise 
sources were determined by sequences of random numbers. By generating the sequences with 
different random seeds, we were able to obtain different, but equally valid probabilistic 
simulation trials. 

Independent trials of electrical activity were simulated up to a time 𝑡', at which point we saved 
the full dynamical state of the simulation (base state). We then resumed the simulation two times 
from the base state, i.e. we used identical initial conditions and histories in each case, but with 
different sequences of random numbers. This allowed us to obtain two equally valid probabilistic 
network trajectories for 𝑡 > 𝑡' for each base state. We observed that somatic membrane 
potentials (𝑉9) for individual neurons, and the mean potentials for the population both diverged 
rapidly between the two simulations (Figure 1C). 

To quantify the time course of the divergence for each neuron n, we calculated the root-mean-
square deviation of its somatic membrane potential in time bins of size ∆𝑡 starting from 𝑡': 

𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) = 	 [𝑉9,A(𝑛, 𝑘; 𝑡B) − 𝑉9,#(𝑛, 𝑘; 𝑡B)]#𝑑𝑡B/∆𝑡
GH∆G/#
GI∆G/# , (1) 

where 𝑉9,A 𝑛, 𝑘; 𝑡  and  𝑉9,#(𝑛, 𝑘; 𝑡) denote the time series of somatic membrane potentials of 
neuron n in two trials resuming from the same base state k. We consequently defined the mean 
root-mean-square deviation of the microcircuit 𝑅𝑀𝑆𝐷, 𝑡  as the mean of 𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) over 
all base states (K=40) and neurons (N=31’346). We observed that 𝑅𝑀𝑆𝐷,(𝑡) diverged rapidly 
from zero and eventually converged towards a steady-state value 𝑅𝑀𝑆𝐷J, equal to the 𝑅𝑀𝑆𝐷, 
of independent trials that did not share the same base state (Figure 1D, solid black and solid grey 
lines). The divergence was fast, with 𝑅𝑀𝑆𝐷,(𝑡) reaching more than 50% of its steady-state 
value within 20 ms. 
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While the 𝑅𝑀𝑆𝐷,(𝑡) of the circuit allowed us to accurately track the overall divergence of the 
whole circuit, 𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) for individual neurons and trials were too noisy for in-depth 
analysis (Figures 1E1 and S1A). We note that while 𝑅𝑀𝑆𝐷,(𝑡) quantifies the absolute distance 
between membrane potentials, potentials can still be correlated independent of this distance. To 
this end, we also computed the linear correlation for each neuron for each base state, again for 
time bins of size ∆𝑡: 

𝑟,(𝑛, 𝑘; 𝑡) =
KLM ,N,O P,Q;GR ,			,N,S P,Q;GR

T ,N,O P,Q;GR ∙T ,N,S P,Q;GR
 , 𝑡 − ∆G

#
< 𝑡B 	≤ 	𝑡 + ∆G

#
 (2) 

We found that the mean correlation 𝑟, 𝑡  diverged faster than the absolute distance as measured 
by 𝑅𝑀𝑆𝐷,(𝑡) (Figure 1D, dashed blue line), again with a broad distribution across individual 
neurons (Figures 1E2, and S1A). 

To better evaluate the difference between 𝑟,(𝑡) and 𝑅𝑀𝑆𝐷,(𝑡), we computed the similarity 
𝑠2345(𝑡) of the microcircuit activity as the normalized difference between diverging and steady-
state  𝑅𝑀𝑆𝐷, 𝑡  (and similarly 𝑠6(𝑡) for 𝑟,(𝑡)). When similarity 𝑠2345 𝑡 = 1, membrane 
potential traces are identical; when 𝑠2345 𝑡 = 0 membrane potentials have reached their 
steady-state distance 𝑅𝑀𝑆𝐷J. Similarly, when 𝑠6 𝑡 = 	1, membrane potentials have a perfect 
linear relationship; when 𝑠6 𝑡 = 0, they reached their steady-state correlation 𝑟J. Comparing 
𝑠6(𝑡) and 𝑠2345(𝑡), we observed that 𝑟, 𝑡  diverged approximately twice as fast as 𝑅𝑀𝑆𝐷,(𝑡) 
(Figures 1F1 vs. 1F2). More precisely, an exponential fit to the first 40 milliseconds revealed 
divergence time constants of 𝜏2345 = 22.7	 ± 0.5 ms and 𝜏6 = 11.5	 ± 0.2 ms (± 68% 
confidence interval of fit). These were conserved for different bins sizes ∆𝑡, with similar values 
for bin sizes ranging from 1 ms to 50 ms (Figures S1C1 and S1C2). We observe, however, that 
simple exponential decay does not provide an adequate description of the whole time-course of 
the similarity, as the time constant changes continuously, especially in the first several 
milliseconds (Figure S1B). While the initial divergence is rapid, a small, but statistically 
significant difference (p < 0.025) between diverging and independent activity persists for around 
400 ms for  𝑅𝑀𝑆𝐷, (Figure S1D1) and around 200 ms for 𝑟, (Figure S1D2). 

Such rapid time-scales of divergence in the absence of any external input suggest that noise in 
the NMC-model does not average out. Instead, activity is inherently probabilistic, with a high 
internally generated variability. Throughout the remainder of this study, we will continue to 
quantify internally generated variability by the divergence of activity from identical initial 
conditions.  
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Figure 2: Robust Rapid Divergence Across Dynamical States and Microcircuit Scale 
(A1) Population raster plot and population peristimulus time histogram (PSTH) for all 31’346 neurons in 
the microcircuit, during in vivo-like spontaneous activity. Neurons are ordered according to cortical 
depth, with deep layers at the bottom and upper layers at the top. Each row represents the spikes of 
one neuron. For visibility, raster lines extend over dozens of rows for each neuron. For 𝑡 < 	 𝑡', the top 
and bottom raster plots show the same simulation, whereas for 𝑡 > 	 𝑡', the raster plots depict two 
simulations resuming from identical initial conditions at 𝑡', but using different random number seeds. 
(A2) Same as A, but for supercritical activity. (A3) 𝑅𝑀𝑆𝐷,	and 𝑟,  across dynamic regimes (20 saved 
base states, mean ± 95% confidence interval; same as Figure 1D for in vivo-like regime ([𝐶𝑎#H]L =
1.25	𝑚𝑀). (B1) The microcircuit (center, blue), surrounded by 6 other microcircuits (grey), forming a 
continuous mesocircuit of ~220’000 neurons, with no boundary effects between the circuits. (B2) 𝑟,  for 
the center microcircuit when simulated without surrounding circuits (black), and of the center 
microcircuit when simulated as a mesocircuit (orange) (microcircuit: 40 saved base states; mesocircuit: 
20 saved base states; mean ± 95% confidence interval). (B3) Quantifying edge effects. Difference of 𝑟,  
between the same neurons in the microcircuit and the mesocircuit at 10-20 ms, plotted according to 
distance from horizontal center (mean ± 95% confidence interval). (C) Similarity 𝑠6  for subsets of 
neurons grouped by in-degree (bin size: 50; mean ± 95% confidence interval). 
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Single Cell and Shared Variability is Robust Across Dynamical States 

Global fluctuations in spiking activity (Figure 2A1) and the population firing rate (Figure S2) 
both diverged rapidly for 𝑡 > 𝑡'. These global fluctuations indicate substantial shared variability 
between individual neurons.  Thus, internally generated variability is high at both the 
microscopic and the macroscopic scales. However, cortical network dynamics depend on the 
balance between excitatory and inhibitory currents (EI-balance) (Brunel, 2000). In the NMC-
model, EI-balance is modulated through the effects of extracellular calcium concentration 
( 𝐶𝑎#H L) on vesicle release probabilities (Borst, 2010; Markram et al., 2015). As the 
dependence on 𝐶𝑎#H L is stronger for excitatory than for inhibitory synapses, increases in the 
concentration of 𝐶𝑎#H L lead to stronger relative excitation and a sharp transition from 
asynchronous states (subcritical) to more correlated activity (Markram et al., 2015) that is 
regenerative and synchronous (supercritical; Figure 2A2). In the in vivo-like state analyzed here 
( 𝐶𝑎#H L= 1.25 mM), the microcircuit is in a just subcritical (Priesemann et al., 2014) state of 
asynchronous spontaneous activity, where it reproduces several findings from in vivo 
experiments (Markram et al., 2015). While this asynchronous state might be important for 
efficient coding (Beggs and Plenz, 2003; Denève and Machens, 2016), the exact EI-balance in 
vivo is difficult to determine, and is likely to reconfigure dynamically as a function of the state of 
arousal and attentiveness of the animal (Constantinople and Bruno, 2011). We therefore 
investigated the relationship between the time course of divergence and different dynamic 
regimes. We observed that the rapid divergence of electrical activity was approximately 
conserved across these different dynamic states (Figure 2A3). While steady-state electrical 
activity was slightly more de-correlated in the in vivo-like state, the time course of divergence 
was remarkably similar. We also found that the synchronous state still displayed high shared 
variability, with unpredictable timing of population bursts (Figure 2A2, 𝑡 > 𝑡'). In our model, 
therefore, intrinsic variability, as quantified by the time course of divergence, is conserved across 
a spectrum of dynamic states and does not depend on the exact EI-balance. 

 

Variability is Nearly Saturated at the Scale of the Microcircuit 

It is possible that the amount of internally generated variability depends not just on the dynamic 
state of the model circuit but also on its size. We have previously shown that in models of the 
size used in the simulations just described, dynamic states stabilize (Markram et al., 2015). At 
this size, dendritic trees and thus the afferent connections of neurons in the horizontal center of 
the microcircuit are fully located within the microcircuit. However, a large fraction of their 
recurrent connections with neurons in the surrounding tissue are with neurons at the periphery of 
the microcircuit. Since these were not included in the simulations, large portions of synaptic 
input to peripheral neurons were missing. To quantify the effect of this additional input on 
variability in the microcircuit, we surrounded the original microcircuit with six additional 
microcircuits, simulating a much larger mesocircuit, which provided missing synaptic input to 
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the neurons at the periphery of the microcircuit (Figure 2B1, blue and grey). Connectivity in this 
mesocircuit was homogeneous, both within and between the individual microcircuits. 

When we compared the divergence of membrane potentials between micro- and mesocircuit 
simulations, we found that membrane potentials diverged slightly faster in the mesocircuit, 
although the time courses of divergence followed similar trends (Figure 2B2). The mean 
difference in 𝑟,(𝑡) was always below 0.06, and the steady state difference below 0.03. We next 
focused on the difference at 10-20 ms, which we found to be a good predictor of the relative 
order of differences at any time. We found that 𝑠6,A'I#'	9" was directly related to distance from 
the horizontal center, with the largest differences in neurons at the periphery of the microcircuit 
(Figure 2B3). At the periphery, the increase in variability between meso- and microcircuit 
simulations was above 0.08, decreasing toward the center and converging just below 0.03 for 
neurons within 100	𝜇𝑚 of the center. This suggests that direct additional synaptic input onto a 
neuron increases variability, but that this additional synaptic input has a weak effect on indirectly 
connected neurons whose inputs are already saturated. Thus, at the scale of the microcircuit, the 
amount of internally generated variability is nearly saturated, while variability for neurons at the 
periphery is underestimated. 

 

Highly Connected Neurons Diverge Faster 

To directly quantify the dependence of the time course of divergence on the amount of the 
synaptic input, we examined the relationship between the similarity 𝑠6 𝑡  of a given neuron and 
the number of connections it receives from within the microcircuit (in-degree). Once more, we 
found that the time course of divergence was faster, the more synaptic inputs a neuron received, 
as summarized by 𝑠6 𝑡  at 10-20 ms (Figure 2C). Thus, it appears that neurons which are more 
strongly coupled to the local population (Okun et al., 2015) are also more likely to diverge 
quickly.  Repetition of the analysis using 𝑅𝑀𝑆𝐷,(𝑡) instead of 𝑟, 𝑡  gave qualitatively similar 
results (data not shown). We note that 𝑅𝑀𝑆𝐷,(𝑡) and 𝑟, 𝑡  are generally highly correlated 
(Figure S3A, abcd). In what follows, we hence present the divergence in terms of 𝑟,(𝑡) except 
when there is a qualitative difference. 
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Figure 3: Noise Amplified by Chaos Determines Internally Generated Variability 
(A1) Time course of correlation 𝑟,  after resuming at t0 from identical conditions with different forms of 
perturbation. Full cellular noise as before, solid line (abcd); no cellular noise, but perturbing with a single 
extra spike in one neuron, dashed line (f); a miniscule step pulse perturbation in all neurons, dotted line 
(e). (abcd: 40 saved base states; e, f: 20 saved base states; mean ± 95% confidence interval) (A2) Steady-
state root-mean square deviation 𝑅𝑀𝑆𝐷∞ and correlation 𝑟∞ for stochastic (abcd) and deterministic 
simulations (e, f) as defined in A1 (mean ± 95% confidence interval). (B1) As in A2, but for decoupled, 
replayed simulations. (B2) Similarity 𝑠2345 and 𝑠6  at 10-20 ms with all noise sources enabled, for network 
and decoupled simulations (mean ± 95% confidence interval). (C1) Decoupled replay paradigm. 
Presynaptic spike trains from a network simulation are saved and then replayed to the synapses of each 
neuron in a decoupled simulation, thereby removing variability due to feedback network dynamics. (C2) 
Overview of sources of noise and perturbations. (D) Decoupled replay simulations (see C1) for a 
representative L4 PC neuron, with somatic membrane potential differences between the two trials only due 
to cellular noise sources (ab[c]d), a single extra presynaptic spike (f) or a miniscule step-pulse perturbation 
(e). [c] indicates that for some neuron types in the NMC-model, such as L4 PCs, no stochastic ion-
channels are present. 
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Noise Amplified by Chaos Determines Internally Generated Variability 

Thus far, we have demonstrated a high level of variability which is robust across dynamical 
states and nearly saturated at the scale of the microcircuit. We have also shown that divergence is 
faster for neurons that are more tightly coupled to the local population (Figure 2C). This suggests 
that the variability of individual neuron activity is driven by the variability of local population 
activity, or that additional synaptic input simply adds more synaptic noise, or that the noise is 
determined by some combination of the two effects. In other words, while cellular noise is the 
only original source of variability in the NMC-model, the question remains to what degree this 
noise is amplified by recurrent network connectivity. 

To address this question, and more generally, to study the interaction of noise sources and 
recurrent network dynamics, we performed two complementary sets of simulation experiments. 
In the first set, we sought insights into the role of network dynamics without noise sources, 
probing the sensitivity of a completely deterministic version of the model to a weak, momentary 
perturbation. In the second, we studied the opposite case of variability due to stochastic noise 
sources without amplification by the network. 

To implement the first set of simulations, we disabled stochasticity of cellular noise sources, 
including synaptic transmission, by using a fixed sequence of random numbers, which made the 
random outcome deterministic (or alternatively by completely replacing the stochastic model 
with a deterministic one, see below). This enabled us to observe amplification of perturbations 
through the network without the effect of continuously varying cellular noise sources. As the 
sole source of perturbation, we injected a single extra spike into one of the neurons in the 
microcircuit (see Methods). We observed that the network diverged rapidly (Figure 3A1, dashed 
line), though more slowly than with noise sources enabled (Figure 3A1, solid line). In fact, even 
a miniscule current injection, which shifted the majority of spike times by less than 0.05 ms (see 
Methods), eventually led to a divergence of membrane potentials similar to the divergence 
observed in the full model with noise sources (Figure 3A1, dotted line). The slightly higher 
steady-state correlation 𝑟J in the deterministic simulation was due to identical spontaneous 
release of neurotransmitter, identical ion-channel opening probabilities, and the small, but 
identical, noisy component of the depolarizing current injection. However, the relative difference 
in 𝑅𝑀𝑆𝐷J was much smaller than the difference between the deterministic and the stochastic 
simulations (Figure 3A2, top, vs. Figure 3A2, bottom). That is, any perturbation to the system 
eventually led to a similarly large steady-state divergence. We conclude that the underlying 
dynamics of the circuit are chaotic, in the sense that small perturbations, such as one injected 
spike, lead to completely different, unpredictable activity. 

It is important to note that when using a fixed random seed to make the stochastic version of the 
Tsodyks-Markram synapse model deterministic (Markram et al., 2015; Tsodyks and Markram, 
1997),  any extra or missing presynaptic spike can change the outcome for the next spike by 
advancing the sequence of random numbers. To avoid this difficulty, we ran equivalent 
simulations using the deterministic version of the Tsodyks-Markram synapse model (see 
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Methods). In these simulations, extra spikes and small perturbations produced qualitatively 
similar divergence time courses (Figure S4, A vs. B, dark green and pink lines). 

We had shown that the network amplifies extra spikes or even small perturbations of membrane 
potentials. This leads to chaotic divergence of activity with similar steady-state variability, but 
different time courses. It remained to be seen whether this high level of variability requires 
network amplification or whether it could be generated directly by the noise sources alone. 

To address this question, we implemented a second set of simulations to study the case of 
ongoing noise sources without network propagation. In these decoupled replay simulations, in 
contrast to regular network simulations, synaptic mechanisms were activated by spikes at fixed 
times, recorded in an earlier simulation experiment (Figure 3C1). In this way, the network was 
no longer able to amplify neuronal variability and neuronal variability was entirely due either to 
cellular noise sources or perturbations (Figure 3D). We found with all noise sources turned on, 
somatic membrane potentials still diverged rapidly, as quantified by 𝑠6,A'I#'	9" (Figure 3B2) (as 
mentioned above, we found 𝑠6 at 10-20 ms to be a good predictor of the relative order of 𝑠6 at 
any time). However, steady-state 𝑟J was higher and 𝑅𝑀𝑆𝐷J was lower than in the network 
simulations (Figure 3B1 vs 3A2). When the decoupled replay paradigm was used with the 
deterministic version of the model, single extra spikes and brief current injections only evoked 
small, transient perturbations (Figure 3C2, 3C3). It follows that the high level of variability 
observed in network simulations was due to chaotic network dynamics which amplified rapid 
perturbations of activity from cellular noise sources. 
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Figure 4: Synaptic Noise Dominates Variability 
(A1) Time course of correlation 𝑟,	after resuming at t0 from identical conditions with different noise 
sources enabled (abcd: 40 bases states; a, ab, c, d: 20 base states; mean ± 95% confidence interval). 
(A2) Steady-state root-mean square deviation 𝑅𝑀𝑆𝐷∞ (cyan) and correlation 𝑟∞ (purple) with different 
noise sources enabled. (A3) Similarity 𝑠2345 at 10-20 ms with different noise sources enabled, for all 
neurons (cyan) and irregular e-types (orange). (B) Steady-state root-mean square deviation for 
decoupled simulations, 𝑅𝑀𝑆𝐷∞,efK, for all neurons (cyan) and irregular e-types (orange). Only irregular 
e-types in (c), 1,137 out of 31,346 neurons. (C) Decoupled replay simulations for a representative L6 
NBC neuron, with somatic membrane potential differences between the two trials only due to synaptic 
noise (ab), ion-channel noise (c) or a noisy current injection (d). (D1) The effect of changing random 
seeds for the noisy depolarization only, for different noise strengths in a decoupled simulation. x: white 
noise variance as percentage of mean injected current (D2) The decoupled steady-state membrane 
potential fluctuations 𝑅𝑀𝑆𝐷∞,efK

e evoked by different magnitudes of white noise without network 
dynamics, versus the similarity 𝑠2345 at 10-20 ms during network simulations when either turning on 
only the white noise depolarization (d) or all noise sources (abcd). Similarly, in purple, 𝑅𝑀𝑆𝐷∞,efK

gh 	for 
synaptic noise versus the similarity at 10-20 ms when only turning on synaptic noise (ab). All error bars 
and shaded areas indicate 95% confidence intervals. Means for D2 are based on ten base states. 
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Synaptic Noise Dominates Variability 

To understand the contribution of individual noise sources in this interplay of noise and recurrent 
network dynamics, we designed a series of simulation experiments where we selectively disabled 
specific subsets of noise sources, instead of all of them as in the deterministic version above. We 
observed that disabling all noise sources except synaptic failure produced a time course for 
𝑟,(𝑡)	and steady-state divergence 𝑟J which was very similar to observations with all noise 
sources combined (Figure 4A1, black and green lines). On the other hand, disabling all but ion 
channel noise or all but the noisy current injection led to much slower divergence (Figure 4A1, 
orange and purple lines). As before, we quantified the speed of divergence by the similarity 𝑠6	at 
10-20 ms after 𝑡' (𝑠6,A'I#'	9") (Figure 4A3, cyan). Our results suggest that simulations with 
synaptic failure give rise to rapid divergence, whereas steady-state 𝑟J and 𝑅𝑀𝑆𝐷J depend on 
noise sources only weakly (Figure 4A2). We conclude that in the NMC-model, the time course 
of divergence depends on synaptic noise, a combination of synaptic failure and spontaneous 
release, and that other noise sources add little to no additional variability. 

 

Ion-Channel Noise in Irregular Firing Neurons Overshadowed by Synaptic Noise 

Synaptic noise in the NMC-model is modeled at every single synapse, while ion-channel noise is 
limited to irregular firing e-types (see Markram et al., 2015; Petilla Interneuron Nomenclature 
Group et al., 2008). Irregular e-types are defined by high intrinsic spike-time variability in 
response to constant current injections in vitro, even in the absence of synaptic noise. In the 
NMC-model, irregular spiking is modeled with a subset of stochastic ion-channels, in accordance 
with in vitro findings on the source of the irregular spiking patterns observed in cortical 
interneurons (Mendonça et al., 2016). In contrast, regular firing e-types do not require noisy ion-
channels to replicate in vitro spiking behavior. To better understand the interplay of ion-channel 
noise and synaptic noise, we focused our next analysis solely on irregular firing e-types. We 
observed that irregular firing e-types diverged significantly faster than the whole population 
(Figure 4A3, orange vs. cyan). However, synaptic noise still dominated over ion-channel noise. 
Enabling ion-channel noise in addition to synaptic noise led to only marginal gains in divergence 
rate; when ion-channel noise was enabled on its own, divergence was significantly slower 
(Figure 4A3, orange, ab vs. abcd and c). This suggests that in in vivo conditions, noise from 
stochastic ion-channels is probably overshadowed by synaptic noise.  This contrasts with in vitro 
conditions, where channel noise is the only major noise source. 

 

Synaptic Noise Acts as Threshold for Other Noise Sources 

There are in reality many smaller noise sources that are not included in our model (see 
Discussion). To understand how additional noise sources of various magnitudes could influence 
divergence, we analyzed the magnitude of the previously analyzed cellular noise combinations in 
a decoupled replay, with network propagation removed (𝑅𝑀𝑆𝐷J,efK) (Figure 4B; see Figure 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304121doi: bioRxiv preprint 

https://doi.org/10.1101/304121


	 16	

4C1-3 for representative examples). We found that this magnitude inversely relates to the speed 
of divergence, 𝑠2345,A'I#'	9" (Figure 4A3). That is, a larger 𝑅𝑀𝑆𝐷J,efK  leads to a faster 
divergence (as measured by a smaller 𝑠2345,A'I#'	9") (see also Figure S5 for an extensive 
comparison of noise sources across simulation paradigms). In the NMC-model, synaptic noise 
has the largest 𝑅𝑀𝑆𝐷J,efK and determines the rate of divergence.  But how strong would any 
other noise source have to be to generate network variability that is detectable beyond synaptic 
noise? To answer this question, we studied how the magnitude of an unknown noise source 
affects the time course of divergence. As a proxy for unknown noise sources, we increased the 
variance 𝜎"# of the injected white noise depolarizing current. Previously, the variance had been 
set to 0.001% of the firing threshold for each neuron – a level far lower than other sources of 
noise. When we increased the variance to values from 0.01% up to 10%, and disabled all other 
noise sources, we observed that increasing 𝜎"# led to more rapidly diverging network dynamics 
(Figure S6A). However, when other noise sources were also enabled, the noisy current injection 
only affected network dynamics beyond a certain threshold (Figure S6B). 

To characterize this threshold, we first measured 𝑅𝑀𝑆𝐷J,efKe , that is, the steady-state divergence 
of membrane potential fluctuations evoked by noisy current injection alone in a decoupled 
replay, for various levels of 𝜎"# (Figure 4D1). We then compared 𝑅𝑀𝑆𝐷J,efKe  to the time course 
of divergence in the corresponding network simulations with the same noise conditions (i.e. only 
noisy depolarization (d); Figure 4D2, dashed line). We found that the rate of divergence as 
measured by 𝑠6,A'I#'	9" was strongly dependent on  𝑅𝑀𝑆𝐷J,efKe , with larger values leading to 
faster divergence. In contrast, when we repeated the analysis with all noise sources enabled 
(Figure 4D2, solid line), the dependence on 𝑅𝑀𝑆𝐷J,efKe  was weaker, indicating a smaller impact 
of 𝜎"# on 𝑠6,A'I#'	9". Indeed, 𝜎"# only had a meaningful influence when it was beyond a threshold 
in the range 0.1% -0.5%. At this threshold, the steady-state divergence in decoupled replays 
(𝑅𝑀𝑆𝐷J,efKe ) evoked by the noisy current alone was just above 1 mV, approximately half of the 
value for synaptic noise sources (𝑅𝑀𝑆𝐷J,efKgh , Figure 4D2, vertical purple line “ab”). When 𝜎"# is 
increased even more, the curves for 𝑠6,A'I#'	9" with noisy current alone and with all noise 
sources eventually began to converge. Thus, when 𝑅𝑀𝑆𝐷J,efKe  was larger than 𝑅𝑀𝑆𝐷J,efKgh  the 
noisy current injection dominated other noise sources. This suggests that the strongest source of 
cellular noise dominates over other sources, unless they are of a comparable magnitude. Under 
biological conditions, we predict that synaptic noise dominates. This prediction matches previous 
findings that cortical neurons respond very reliably to current injections in vitro (no synaptic 
noise) (Mainen and Sejnowski, 1995). However, it also suggests an entirely different picture of 
the reliability of neuronal responses to presynaptic inputs in vivo, with synaptic noise 
contributing to variability. 
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Figure 5: Low Trial-by-Trial Spike-Timing Reliability During Spontaneous Activity 
(A) Somatic membrane potentials (𝑉9) of three representative neurons. Top: during six independent trials 
of spontaneous activity. Bottom: five decoupled replay trials (green) with the same presynaptic input as 
during the original network simulation trial (red), but with different random seeds. (B) Top: Raster plot of 
spike times for the same example neurons as in A, during 30 independent trials of spontaneous activity. 
Bottom: 5 decoupled replay trials (green) of the same input received during 5 of the 30 original trials 
(dark red). (C1) Mean somatic membrane potential correlation 𝑟,  of the 1666 (ab: 1670) most central 
(and spiking) pyramidal neurons from layers 4, 5, and 6 between independent network simulations, and 
between decoupled replay simulations with identical presynaptic inputs. (C2) Mean spike-timing reliability 
𝑟"ijQf	of the same neurons. Decoupled and decoupled (ab) are overlapping. (C3) Change in correlation,  
Δ𝑟, , versus change in spike-timing reliability, Δ𝑟"ijQf , for each neuron for decoupled replay simulations 
relative to network simulations (linear fit with 68% confidence interval on slope m, red line). Triangles 
indicate values of representative neurons in panel B. (D) Comparison of variance of spike count between 
network and decoupled replay simulations (same neurons as in C-E; linear fit as in C3, red line; identity 
line, black dashed line). 
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Low Trial-by-Trial Spike-Timing Reliability During Spontaneous Activity 

Neurons transmit signals to postsynaptic partners only in the form of spikes. Their timing is 
determined by a non-linear transformation of the somatic membrane potential (𝑉9) we analyzed 
so far. We therefore next characterized the role of the spike generation mechanism in influencing 
the reliability of neural responses, and compared both the variability of membrane potentials and 
spike times between independent network simulations of spontaneous activity over 30 
independent trials with different initial conditions. We found that membrane potentials (Figure 
5A, top) and the corresponding spike trains (Figure 5B, top) were both highly variable. We then 
used the spike times recorded from each of these network trials in five decoupled replay 
simulations per trial. As before, we observed that membrane potentials were less variable and 
more correlated in decoupled simulations (Figure 5A, bottom). Indeed, the distributions of 𝑟, in 
decoupled and network simulations were almost completely disjoint (Figure 5C1), with 
decoupled replay simulations exhibiting much more correlated membrane potentials overall. 
However, considering just the spike times, we found no clear difference in variability between 
the network (Figure 5B, top) and the decoupled replay simulations (Figure 5B, bottom). In stark 
contrast to the results for membrane potentials, quantification of spike time variability using a 
correlation-based measure, 𝑟"ijQf  (Schreiber et al., 2003), showed a large overlap in the 
distributions for decoupled and network simulations (Figure 5C2, red area vs. solid black line; 
𝜎"ijQf = 5 ms), in stark contrast to the case for membrane potentials. This suggests that the spike 
initiation mechanisms cannot transform the increased reliability of 𝑉9 into reliable spike trains 
during spontaneous activity. Indeed, we found that an increase in the magnitude of 𝑟, did not 
predict a corresponding increase in 𝑟"ijQf (Figure 5C3). On the contrary, the two measures 
displayed a weak inverse correlation. We note that we found no decrease in variability when 
other sources of noise besides synaptic noise were disabled (Figure 5C2, dashed brown line), as 
expected in light of our previous result that synaptic noise accounts for a large proportion of 
variability. 

It is possible of course that spike time reliability within tens of milliseconds could be too 
restrictive a measure of spiking reliability. Therefore, we also compared the variability of spike 
counts across the entire 0.5 s window analyzed. Use of identical presynaptic inputs produced 
only a marginal reduction in the variance of spike counts (Figure 5D). In brief, the reliability of 
spike generation across time-scales is directly, and severely constrained by synaptic noise, even 
without amplification through network dynamics. 
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Figure 6: Rapid Divergence of Evoked, Reliable Activity 
 (A1) Population raster plot and population peristimulus time histogram (PSTH) for all 31’346 neurons in the 
microcircuit, during evoked activity with a thalamic (VPM) stimulus. Neurons are ordered according to 
cortical depth, with deep layers at the bottom and upper layers at the top, and each row representing the 
spikes of one neuron. For visibility, raster lines extend over dozens of rows for each neuron. (A2) Mean 
somatic membrane potential correlation 𝑟,  between independent simulations of the same VPM stimulus 
(mean ± 95% confidence interval). (A3) Schematic of the VPM stimulus. Top: Raster plot spike times for the 
first 250 ms of the thalamic stimulus. Bottom: 310 VPM fiber centers are assigned 30 colors, and those with 
identical colors are provided with duplicate spike trains.  The synapse density profile across layers for each 
fiber is shown to the right. (B) For t < 100, the top and bottom raster plots show the same simulation, 
whereas for t > 100, the raster plots depict two resumed simulations starting from the same saved state at t0 
= 100, using different random number seeds. (C1) Resuming from identical initial conditions at different 
times: during (top), at onset (middle), or before the stimulus (bottom). Mean 𝑟,  between independent 
simulations (blue, as in A2), and mean 𝑟, between simulations starting from the same base state (red; mean 
± 95% confidence interval). (C2) The similarity, 𝑠6 ,defined as the difference between the 𝑟,  of diverging and 
independent trials, normalized to lie between 1 (identical) and 0 (fully diverged) (mean ± 95% confidence 
interval). Means are based on 20 base states, no stimulus (spontaneous activity) on 40 as before. 
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Rapid Divergence of Evoked, Reliable Activity 

In the NMC-model, thalamic inputs can evoke responses with varying degrees of reliability 
among trials (Markram et al., 2015; Reimann et al., 2017a). What then are the roles of synaptic 
noise and chaotic network dynamics during these evoked responses? To answer this question, we 
simulated electrical activity in response to a naturalistic thalamocortical stimulus (Figure 6A1), 
consisting of spike trains recorded in the ventral posteromedial nucleus (VPM) during 
sandpaper-induced whisker deflection in vivo (Bale et al., 2015). These spike trains were then 
applied to different feed-forward VPM fibers in the model to achieve a biologically-inspired, 
time-varying synchronicity among inputs (Figure 6A3; see Methods; Reimann et al., 2017b).  To 
avoid introducing external variability on top of the intrinsically generated microcircuit 
variability, presynaptic inputs were kept identical across trials, but with thalamocortical synapses 
subject to the same synaptic noise as cortical synapses. The thalamocortical presynaptic inputs 
were not subject to recurrent network dynamics. Since this condition excludes variability in the 
system up to and including the thalamus, it can be considered an intermediate stage between the 
decoupled replay and regular network simulations.  The simulations allowed us to identify an 
upper bound on the reliability of thalamocortical responses. Mean 𝑟,(𝑡) during evoked activity 
was stronger than during spontaneous activity, moving between ~0.1 and ~0.4 (Figure 6A2), 
confirming that that the responses of neuron membrane potentials to the stimulus were relatively 
more reliable across trials. 

To characterize the nature of chaotic network dynamics during this evoked, reliable activity, we 
again resumed from identical initial conditions, with 𝑡' at various times relative to the stimulus 
onset at t = 0 ms (Figure 6B, for 𝑡'	= 100 ms). The population spiking activity across pairs of 
trials after resuming appeared almost identical, even for time intervals much larger than the 
divergence time characterized above (Figure 6B). At first glance, it would appear that the input 
had fully overcome the chaotic divergence. However, quantification of variability by time course 
of divergence of membrane potentials,  𝑟, 𝑡 , showed that it dropped rapidly towards the 
independent trial average (Figure 6C1, top).  When we resumed from identical initial conditions 
at different times, for example at the onset of evoked activity (Figure 6C1, middle) or before 
onset (Figure 6C1, bottom), 𝑟, 𝑡  dropped in the same way, subsequently converging to the 
average for independent trials. Indeed,  𝑠6(𝑡), the normalized difference between the resumed 
and independent 𝑟, 𝑡  showed a pattern of divergence remarkably similar to the divergence 
observed in simulations of spontaneous activity (Figure 6C2). Resuming from a base state at the 
peak of evoked activity, 𝑠2345(𝑡) drops even faster (Figure S7A). A simpler stimulus, designed 
to imitate a whisker flick-type experiment (Markram et al., 2015), yielded comparable results 
(Figure S7B, S7C).  Hence, any neuronal activity, whether spontaneous and unpredictable, or 
evoked and reliable, is ultimately constrained by similar chaotic network dynamics. 
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Figure 7: Spike-Timing Reliability Amid Noise and Chaos 

(A1) Mean somatic membrane potential correlation, 𝑟, , between independent simulations, and between 
decoupled replays of those simulations (network simulation identical to Figure 7A2). (A2) Difference in 𝑟, for 
decoupled and network simulations. (A3) Schematic of network and decoupled replay simulation paradigms, 
including thalamic input. (B) Somatic membrane potentials (𝑉9) of three representative neurons for the time 
interval highlighted by the red box in A. Top: during six independent trials. Bottom: five decoupled replay 
trials (green) with the same presynaptic input as during the original network simulation trial (red), but with 
different random seeds. (C) Network and decoupled 𝑟,  as in A, but only for the three sample neurons in B. 
(D) Top: Raster plot of spike times of the same three example neurons as in B, during 30 independent trials 
of evoked activity. Bottom: Decoupled replay trials (green) of the same input received during 5 of the 30 
original trials (dark red).  (E1) Mean spike-timing reliability 𝑟"ijQf	of 2024 pyramidal neurons from layers 4, 5, 
and 6 between independent network simulations, and between decoupled replay simulations with identical 
presynaptic inputs. (E2) Difference between 𝑟4ijQf of decoupled and replayed simulations. (E3) Difference 
between 𝑟"ijQf of decoupled and replayed simulations versus position of somata across layers 4,5 and 6 of 
microcircuit (1675 neurons). 
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Spike-Timing Reliability Amid Noise and Chaos 

At first glance, our observations of reliable population spike responses and chaotic divergence of 
membrane potentials seem to be mutually contradictory. Could it be that membrane potential 
reliability is simply not correlated with spike-timing reliability, as we observed for the case of 
spontaneous activity? To answer this question, we again compared network simulations with 
decoupled replay simulations with no network dynamics (Figure A3). As before, 𝑟, 𝑡  was much 
larger in the decoupled simulations (Figure 7A1, black) than in the network simulations (Figure 
7A1, red; same as Figure 6A2). However, the difference between the two was always smaller 
during evoked activity (Figure 7A2, after 0 ms) than during spontaneous activity (Figure 7A2, 
before 0 ms). This suggests that network dynamics play a reduced role in generating variability 
during evoked activity. When we focus on individual neurons (Figure 7B), we can see that that 
the difference between network and decoupled 𝑟, 𝑡  at times collapses to zero (Figure 7C). In 
other words, variability due to network dynamics can intermittently be completely overcome for 
a sub-population of neurons in the network. Looking at the corresponding membrane potential 
traces, we observe that these moments occur during periods of reliable spiking (Figure 7B). This 
shows that in evoked activity, in contrast to spontaneous activity, moments of reliable membrane 
potentials can translate into reliable spiking at least for some neurons.  

To get an idea of this effect at the population level, we compared spike time reliability 𝑟"ijQf with 
and without network dynamics (Figure 7D). We observed that removing network dynamics only 
moderately increased spike-timing reliability (Figure 7E1, red vs solid black line). In fact, 
increases in reliability were small for all neurons (Figure 7E2, solid black line). In stark contrast 
to the spontaneous case, a small population of neurons in the network simulations achieved spike 
reliabilities near unity (Figure 7E1).  As expected, most of the noise effects could be explained 
by synaptic noise alone (Figure 7E1, 7E2, dotted black line). We conclude that external stimuli 
can sparsely and transiently overcome chaotic network dynamics for sub-populations of neurons, 
though with a substantial residual variability caused by synaptic noise (albeit much smaller than 
during spontaneous activity). 
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Figure 8: High Reliability Requires Recurrent Cortical Connectivity  
(A1) Overview of three simulation paradigms: spontaneous activity, network evoked activity (with network 
propagation intact and VPM input), and mixed replay (with network propagation replaced by replays of 
spontaneous activity spike trains, and VPM input) (A2) Examples of population spiking activity during the 
three simulation paradigms. (B1) Spike-timing reliability, 𝑟"ijQf, during spontaneous (blue) and evoked 
(purple) activity for 1675 excitatory neurons in the center of layers 4, 5 and 6. (B2) Spike-timing reliability, 
𝑟"ijQf, during a mixed replay with VPM input but with network propagation disabled for the same neurons 
as in B1. (C) Difference in 𝑟"ijQf between evoked activity with and without network propagation for 1892 
excitatory neurons in the center of layers 4, 5 and 6 (same for D1-3). (D1) The number of presynaptic 
VPM fibers from which each neuron receives input versus 𝑟"ijQf  in evoked simulations with (network) and 
without (mixed replay) network propagation. 
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High Reliability Requires Recurrent Cortical Connectivity 

It is conceivable that the spike-timing reliability we observed could simply be a result of direct 
and feed-forward input from VPN (Wang et al., 2010). Indeed, when we look at changes in 
reliability without network dynamics, the strongest increase in reliability is in neurons at the 
bottom of layer six that receive comparatively little direct VPM input (Figure 7E3). To test 
whether the intermittent suppression of chaotic dynamics is simply an effect of the feed-forward 
input, we designed a new simulation paradigm similar to our previous decoupled replay, where 
each neuron received a combination of replayed presynaptic inputs from a simulation of 
spontaneous activity and from the direct feed-forward VPM input it received in the evoked 
network simulations (Figure 8A1). That is, each neuron receives input as in a spontaneous 
activity trial through its recurrent synaptic contacts, and input as in an evoked trial through its 
feed-forward synaptic contacts. 

In this mixed replay paradigm, the population response was much weaker (Figure 8A2). While in 
simulations of evoked activity all neurons showed higher reliability than in simulations of 
spontaneous activity (Figure 8B1), in the mixed replay, the only cells that showed increased 
reliability were those close to the VPM synapses (Figure 8B2). Furthermore, the only neurons to 
display similar reliability, with and without recurrent network propagation, were a small group in 
layer 4 (Figure 8C). Taken together, these findings suggest that feed-forward VPM input alone is 
not enough to make the majority of neurons spike reliably. 

To test this hypothesis, we compared the reliability between the two simulation paradigms to the 
number of presynaptic VPM fibers innervating each neuron (Figure 8D1-3). We can see that 
neurons in layer 4 that receive little direct VPM input responded more reliably with the network 
than neurons that receive a lot of VPM input with no network effect (Figure 8D1). Similarly, 
neurons in layers 5 and 6 were more reliable in mixed replay when they had more presynaptic 
VPM connections. However, this reliability increases drastically when network dynamics are 
enabled (Figure 8D2-3). We conclude that the reliable spiking observed in response to VPM 
inputs is enabled and propagated by recurrent cortical connectivity, and that this is true both for 
neurons that receive large direct VPM input, and for neurons that receive little or no such input. 
In brief, in spontaneous activity, recurrent connectivity amplifies variability; in the evoked state 
it amplifies reliability. 
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Discussion 

This study provides a first estimate of the internally generated variability that arises directly from 
local neocortical circuitry, and the constraints this places on the reliability of signal encoding. 
Our simulation-based approach was enabled by the NMC-model, a biophysical model of 
neocortical microcircuitry in the somatosensory cortex of the two-week old rat, with biological 
noise sources calibrated to experimental data. Internally generated variability during spontaneous 
activity was quantified by the rate at which somatic membrane potentials probabilistically 
diverged from identical initial conditions, showing rapidly diverging activity, with a time 
constant on the order of 10-20 milliseconds (Figure 1). The time constant was approximately 
conserved across a range of dynamical states, from asynchronous to synchronous and 
regenerative (Figure 2). This suggests that all dynamical states have similar chaotic properties. 
Furthermore, internally generated variability was nearly saturated at the scale of the microcircuit, 
whose radial size just accommodates the full dendritic trees of the neurons at its center (Figure 
2). Taken together these findings show that the cortex is in a constant state of perturbation due to 
intrinsic noise sources, and thus that cortical coding schemes need to be robust to such 
perturbations (London et al., 2010).  

Our simulations show that the observed variability arises predominantly due to a combination of 
synaptic noise sources that are amplified by chaotic network dynamics (Figure 4). Thus, synaptic 
noise does not average out. On the contrary, it is a defining component of cortical network 
dynamics. Any network model studying variability, response reliability and coding must 
therefore take into account the role of synaptic noise. We predict that synaptic noise likely 
dominates over other cellular noise sources (Figure 4). This result is consistent with in vitro 
recordings of cortical neurons showing reliable responses to somatic current injections (Mainen 
and Sejnowski, 1995). However, it also shows that assessments of response reliability need to 
consider the impact of synaptic noise. Our results show, not only that synaptic noise drives 
chaotic network dynamics, but also that it causes high variability in spike times, even when 
network dynamics are disabled (Figure 5). However, we also found that a relatively weak 
thalamic stimulus can evoke reliable responses amid the noise and chaos (Figure 6) and that 
chaotic network dynamics are fully overcome during intermittent periods of reliable spiking 
(Figure 7). This last finding confirms predictions from previous computational and theoretical 
studies with simplified network models (Lajoie et al., 2013, 2016; Rajan et al., 2010). We 
observe, however, that synaptic noise always causes residual spike-timing variability.  
Interestingly, under external drive, a small fraction of neurons approach near perfect average 
reliability (Figure 7E1). This suggests that thalamocortical input can produce sustained reliability 
in a few select neurons. 

There is strong experimental and theoretical evidence that cortical circuitry is both chaotic and 
sensitive to perturbations (London et al., 2010; van Vreeswijk and Sompolinsky, 1996). On the 
other hand, there are also many observations of cortical neurons responding with millisecond 
precision to repeated sensory inputs (Hires et al., 2015; Kayser et al., 2010). Some authors have 
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conjectured that this is simply an effect of direct input from the sensory periphery, for example 
the thalamus (Wang et al., 2010). We show, however, that these reliable events are not a simple 
consequence of feed-forward thalamic input suppressing recurrent activity, and that they require 
recurrent cortical connections (Figure 8). In fact, previous estimates of how many synchronous 
thalamic inputs are needed to achieve reliable responses in neurons in cat visual cortex (Wang et 
al., 2010) may well overestimate synaptic reliability: synaptic release probability is lower in vivo 
than in vitro, both in general (Borst, 2010) and in this specific pathway (Sedigh-Sarvestani et al., 
2017). Thus, the same recurrent cortical architecture that produces chaotic dynamics also 
provides mechanisms to overcome chaos in response to the right stimuli. This result matches 
previous findings that patterns of activity generated by cortical circuitry in response to sensory 
stimuli have millisecond spike-timing precision (Luczak et al., 2015; Sato et al., 2012). We 
conclude that chaos and reliability are not mutually exclusive, but may, in fact be generated by 
the same underlying cortical architecture. 

 

The Biological Details Matter 

A wide range of cortical network models have been used to study variability, often with 
substantial differences in terms of modeling detail (Balaguer-Ballester, 2017). While these 
models can predict that a specific kind of network architecture leads to activity that resembles in 
vivo cortical activity, it is impossible to know whether the architecture is implemented in real 
neuronal circuitry. For example, cortical network models with dense, homogeneous connectivity 
exhibit asynchronous activity and negligible spike correlations due to their tightly coupled EI-
balance (Renart et al., 2010). A more biologically accurate, heterogeneous pattern of 
connectivity breaks these dynamics.  Including additional biological details such as spike-
frequency adaptation can recover the original dynamics (Landau et al., 2016). Similarly, taking 
account of other biological details, such as distance dependent connectivity (Rosenbaum et al., 
2017), strength of feedback inhibition (Stringer et al., 2016) or differences in synaptic time 
scales (Huang et al., 2017), can produce emergent, internally generated variability that is shared 
across neurons. 

These findings suggest mechanisms that could generate variability. However, they also suggest 
that adding more detail or changing parameters would fundamentally alter the dynamics. In 
contrast, the details included in the NMC-model are constrained by experimental data. Thus, the 
NMC-model contains cellular noise sources, which are typically ignored by studies with 
simplified models. While it has already been suggested that stochastic vesicle release generates 
high neural variability in postsynaptic neurons (Moreno-Bote, 2014; Reich and Rosenbaum, 
2013), and that synaptic noise can reduce neural correlations (Doiron et al., 2016; Rosenbaum et 
al., 2013), this study provides the first direct evidence that synaptic noise is a crucial component 
in shaping internally generated neural variability in cortex, both at the single neuron and the 
population level. We conclude that mechanistically understanding cortical variability requires a 
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holistic approach: leaving out biological details can lead to activity that matches in vivo activity, 
but which could, in reality, be generated by other mechanisms. 

 

Missing Noise Sources Could Moderately Increase Internally Generated Variability 

While the NMC-model is one of the most detailed and rigorously data-constrained models of 
neocortical circuitry to date, there are at least several potentially important features missing. 
First, while synaptic noise is modeled at every synapse, other noise sources intrinsic to the local 
circuitry are incomplete or absent. The most important neglected noise source is ion-channel 
noise, with other electrical noise sources, such as thermal noise, likely orders of magnitude 
smaller (Faisal et al., 2008). We showed that ion-channel noise in irregular firing neurons, which 
facilitates irregular spike-timing in response to constant current injections in vitro (Mendonça et 
al., 2016), is still overshadowed by synaptic noise under vivo-like conditions.  Moreover, regular 
firing pyramidal cells respond very regularly to current injections in vitro (Mainen and 
Sejnowski, 1995), with irregular behavior only emerging in response to variable presynaptic 
inputs in vivo. We therefore conclude that ion-channel noise is overshadowed by synaptic noise 
in relation to the timing of action potential (AP) initiation. 

What is the impact of ion-channel noise in axons and dendrites? In dendrites, ion-channel noise 
is thought to evoke little to no variability in isolated back propagating action potentials (Diba et 
al., 2006). Thus, mean ion-channel models are likely sufficient to accurately represent their 
electrical behavior. In axons, there is evidence that APs generated by neocortical pyramidal 
neurons reliably invade axonal arbors without failures (Cox et al., 2000).  As they propagate 
along axons, however, the timing of APs becomes increasingly variable. In fact, simulations 
predict that ion-channel noise affects AP timing in all axons with a diameter below 0.05 µm, 
with the standard deviation of AP variability predicted to increase by 0.6 ms per 2 mm in 0.02 
µm axons (Faisal and Laughlin, 2007). In the NMC-model, axons have a mean axonal diameter 
of around 0.03 µm and are modeled deterministically. Potentially, therefore, some longer axons 
could cause increases in variability of up to several milliseconds. 

Another unknown noise source is local neuromodulation. Some cholinergic neurons in cortex 
directly modulate the firing rates of local neurons by increasing spontaneous vesicle release  
(Engelhardt et al., 2007). Little is known about whether this leads to an increase or a decrease in 
internally generated variability. However, the time scale for variability generated in this way is 
probably much slower than for synaptic noise. In Figure 4, we showed that any additional noise 
sources would have to increase variability beyond 1 mV to be relevant. We therefore predict that, 
if at all, missing intrinsic cellular noise sources could only moderately increase the divergence 
rate beyond synaptic noise. 
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More Reliable Synapses Could Moderately Decrease Internally Generated Variability 

What about synaptic noise? The reliability of synaptic transmission increases with the number of 
readily releasable vesicles (Rudolph et al., 2015). While some cortical connection types are 
probably univesicular (Silver et al., 2003), others could have up to ten releasable vesicles per 
synapse (Loebel et al., 2009). The current version of the NMC-model assumes one readily 
releasable vesicle per synapse, thus potentially underestimating synaptic reliability. To estimate 
the potential impact, we repeated the simulation experiments with an increasing number of 
readily releasable vesicles (𝑛66i) at all synapses (Figure S8). As expected, the time course of 
divergence slowed down with increasing 𝑛66i. Nonetheless, for realistic mean 𝑛66i values 
(𝑛66i = 2 − 3; data not shown), it was still dominated by synaptic noise.  More importantly, 
𝑛66i would likely vary across synapses, with small (𝑛66i = 1) numbers of vesicles for some 
synapses and larger numbers for others. However, the exact effect of biologically-realistic 𝑛66i 
distributions remains to be studied. The robustness of divergence to synapse reliability is also 
evidenced by the robustness to extracellular calcium concentrations modulating release 
probabilities across the different dynamical states. 

Gap junctions, another type of intercellular connection that is not included in the NMC-model, 
could also change the electrical behavior of inhibitory cells, for example by causing them to 
synchronize their irregular firing (Amsalem et al., 2016; Mendonça et al., 2016). However, gap 
junctions are predominantly formed between certain types of inhibitory neurons, and their effects 
would likely tend to turn individual variability into shared variability, rather than remove it. 

  

Reliable Coding Amid Synaptically Driven Chaos 

We have demonstrated that chaotic network dynamics, and reliable encoding and propagation of 
signals with millisecond spike-timing precision can both be supported by the same cortical 
architecture and are not mutually exclusive. We have also shown that packets of reliable activity 
(Luczak et al., 2015) rely on amplification by the same cortical circuitry that also induces chaotic 
network dynamics. In the mouse visual cortex, neurons that receive input from the same 
thalamocortical axons are also more likely to be connected to each other (Morgenstern et al., 
2016). This provides a possible mechanism for generating packets, which the intrinsic properties 
of synapses, neurons and connectivity allow to propagate, changing amplification of noise into 
amplification of reliability. The exact mechanism for this reversal, and the means by which 
signals are reliably propagated through the circuitry remains a subject for future investigation. 
One possible explanation is that certain connectivity motifs could amplify reliability through 
redundant connectivity.  Candidate motifs have already been identified in the NMC-model, such 
as common neighbor motifs (Perin et al., 2011) and high-dimensional cliques (Reimann et al., 
2017a). Dendritic nonlinearities, such as N-Methyl-D-aspartate (NMDA)-mediated plateau 
potentials evoked by clustered synaptic inputs onto the dendritic tree could further play an 
important role (Wilson et al., 2016). 
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This study provides, for the first time, a conceptual framework to quantify these transitions 
between variable and reliable responses, and thereby a solid foundation on which biological 
theories of cortical coding can be evaluated. 

 

Methods 

Simulation 

Model of Neocortical Microcircuitry (NMC) 

Simulations of electrical activity were performed on a previously published model of a 
neocortical microcircuit in two-week old rat. Reconstruction and simulation methods are 
described extensively in Markram et al. (2015).  In our study, we used a microcircuit consisting 
of 31,346 biophysical Hodgkin-Huxley NEURON models and around 7.8 million connections 
forming roughly 36.4 million synapses. Synaptic connectivity between 55 distinct morphological 
types of neurons (m-types) was predicted algorithmically and constrained by experimental data 
(Reimann et al., 2015). The densities of ion-channels on morphologically-detailed neuron models 
were optimized to reproduce the  behavior of different electrical neuron types (e-types) as 
recorded in vitro (Van Geit et al., 2016).  We also used a larger mesocircuit comprising seven 
microcircuits (mean of 36.5 million synapses per circuit), with no boundaries between the 
peripheral circuits and the original microcircuit in the center (only shown in Figure 2B). 
Simulations were run on a BlueGene/Q supercomputer (BlueBrain IV). NEURON models and 
the connectome are available online at bbp.epfl.ch/nmc-portal (Ramaswamy et al., 2015). 

 

Simulation of In Vivo-Like Spontaneous Activity 

In the in vivo-like state, release probabilities for all synapses were modulated according to the 
extracellular calcium concentration found in vivo, leading to substantially lower reliability than 
in vitro (Borst, 2010). As described in Markram et al. (2015), the 𝑢4n	parameter for synaptic 
transmission was modulated differentially as a function of  extracellular calcium concentration 
( 𝐶𝑎#H o), allowing transitions from in vitro to in vivo-like dynamics. Neurons were depolarized 
with a somatic current injection, with currents expressed as a percent of first spike threshold for 
each neuron, to mimic, for example, the effect of depolarization due to missing neuromodulators. 
Apart from a small white-noise component (with a variance of 0.001% of the mean injected 
current per neuron, unless stated otherwise), the current injection was constant. With mean 
injected currents at around 100% of first spike threshold and 𝐶𝑎#H o at 1.25 mM, the 
microcircuit exhibits in vivo-like spontaneous activity (Markram et al., 2015). 

 

Simulation of Evoked Activity 

The microcircuit is innervated by 310 (virtual) thalamic fibers (Markram et al., 2015). In vivo 
spike train recordings from 30 VPM neurons were randomly assigned to the 310 fibers, to 
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achieve varying degrees of naturalistic synchronous thalamic inputs. Spike trains were recorded 
during replayed texture-induced whisker motion in anesthetized rats (Bale et al., 2015). Full 
methods are described in (Reimann et al., 2017a). The second stimulus consisted of synchronous 
spikes at the 60 central thalamic fibers, with all 60 virtual thalamic neurons firing 
simultaneously, to approximate a whisker ‘flick’ (see Markram et al., 2015). 

 

Save-Resume 

After running a simulation for some amount of biological time, the final states of all variables in 
the system were written to disk using NEURON’s SaveState class.  For large-scale simulations, 
this required the various processes to coordinate how much data each needed to write, so that 
each rank could then seek the appropriate file offset and together write in parallel without 
interfering with the others.  After restoring a simulation, the user could specify new random 
seeds (see below). 

 

Random Numbers 

In our simulations, we used random number generators (RNGs) to model all stochastic 
processes: noisy current injection, stochastic ion channels, probabilistic release of 
neurotransmitters and generation of spontaneous release events. Each synapse had two RNGs. 
One was used to determine vesicle release on the arrival of an action potential. The other 
determined the spontaneous release signal. Similarly, each stochastic 𝐾H-channel model had a 
RNG determining voltage-dependent opening and closing times. Finally, the white noise process 
underlying the noisy depolarization was determined by one RNG per neuron. By using different 
random seeds to initialize the RNGs, we obtained different sequences of random numbers, and 
consequently different but equally valid simulation outcomes. In earlier versions of the 
NEURON microcircuit simulation software, the user was given only a single random seed 
parameter with which to alter the random number streams generated by all RNGs.  We added the 
option to separately change random seeds for RNGs for a specific type of stochastic component.  
For example, "IonChannelSeed <value>" allows the specification of a seed which is only given 
to the RNGs used by ion channel instances. 

 

Stochastic Ion-Channels 

In some interneuron models, a potassium channel type with a stochastic implementation was 
added using methods described in (Diba et al., 2006) and (Mendonça et al., 2016). This made it 
possible to model ion channel noise. Instead of a mean field model, the equations used explicitly 
track the number of channels in a certain state and allow these numbers to evolve stochastically. 
When the seed of the random process changes, the small fluctuation caused by the channel noise 
change with it, but the mean behavior of the ion channel remains the same. 
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Stochastic Synapses 

The synapse models are described in full detail by Markram et al. (2015). Each synapse has one 
RNG to determine vesicle release upon action potential arrival at the synapse. A second RNG is 
used to determine the signal for spontaneous miniature post synaptic potentials. When the 
synapse receives the signal for a spontaneous release event, it is treated as a presynaptic action 
potential. Therefore, changing the random seed for the minis will eventually change the random 
number stream for vesicle release for presynaptic spikes, and therefore lead to a “pseudo-
deterministic” synapse. 

 

Multivesicular Release 

The synapse model used in this study (see Markram et al., 2015) supports multivesicular release 
(MVR): each release event activates a fraction of the maximal postsynaptic conductance (𝑔9gr) 
proportional to the size of the readily-releasable pool of vesicles (𝑛66i). In the univesicular case 
(𝑛66i = 1), the release of one vesicle is sufficient to completely activate the postsynaptic 
conductance. However, when 𝑛66i > 1, full activation requires the release of all available 
presynaptic resources. This allowed us to independently control the mean postsynaptic response 
to synapse activation (which depends on  𝑔9gr, but not 𝑛66i) and its instantaneous profile 
(where 𝑛66i matters). 

 

Deterministic Synapse Model 

In the deterministic synapse model, the 𝑢4n variable is interpreted as the fraction of consumed 
resources, rather than a release probability. That is, each release event activates a fraction of 
postsynaptic conductance proportional to 𝑢4n. For this reason, DetAMPANMDA and 
DetGABAAB are identical to their stochastic (multivesicular) counterparts in the limit as 𝑛66i →
	∞. 

 

Single Spike Injection 

We injected single spikes in twenty different layer 4 pyramidal neurons (and twenty random 
neurons across the circuit, data not shown) by replaying (see below) an additional spike event in 
one neuron per simulation. Thus, there were no shifted or missing spikes, as may occur when 
injecting a spike in vivo. The spike was injected 0.1 ms after resuming the simulation from 
identical initial conditions. 
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Step-Pulse Perturbation 

We applied a microscopic current step-pulse to all neurons at their soma 0.1 ms after resuming 
the simulation (duration: 0.1 ms, amplitude: 1 pA,). The current was chosen to have an almost 
negligible effect on individual neurons, and was near the limit of the NEURON integrator. On 
average, 108 ± 8 neurons out of 31,346 neurons had any changes in their spike times (mean of 19 
trials ± STD). The majority of the shifted spikes were shifted by less than 0.05 ms (59.1%: < 0.05; 
33.1%: < 1 ms.; 5.5%: < 20 ms; 1.8%: < 100 s; 0.5%: < 1 s). Finally, 3 ± 2 neurons had extra or 
missing spikes. The median first occurrence of an extra or missing spike was at 257 ms (min: 11 
ms, max: 946 ms after resuming). 

 

Decoupled Replay 

When resuming a simulation at 𝑡', we decoupled all connections by setting the connection 
weights to zero, ensuring that APs would be delivered to the synapses of postsynaptic neurons. 
At the same time, we started replaying AP times from a previous resumed simulation, activating 
the synapses of postsynaptic neurons as if the presynaptic neuron had fired an AP, but actually 
replaying presynaptic APs from the previous simulation. For computational reasons, spikes that 
had not been delivered at the save time 𝑡' were not delivered in the decoupled replay (meaning 
that a couple of presynaptic spikes per neuron may have been lost). 

 

Analysis 

RMSD and Correlation 

All analysis was performed using custom scripts written in Python 2.7 using the NumPy, 
matplolib and SciPy libraries. Scripts were executed on a Linux cluster connected to the same 
IBM GPFS file system that the simulation output was written to. Root-mean-square deviation 
𝑅𝑀𝑆𝐷, and correlation 𝑟, as defined in Equations 1 and 2 were implemented with NumPy. 

 

Similarity 

The similarity measure 𝑠(𝑡) was defined as the normalized difference between diverging  𝑟, 𝑡  
(or 𝑅𝑀𝑆𝐷,(𝑡)), and steady-state 𝑟, 𝑡  (or 𝑅𝑀𝑆𝐷,(𝑡)). The steady-state value was defined, as 
the continuous 𝑟,,"tuvvwf 𝑡 	computed by shuffling the soma voltages between simulation trials, 
so that instead of 40 deviating pairs of trajectories, we compared 40 independent pairs of 
trajectories. As an alternative, we defined it as the mean stationary, fully deviated 𝑟J	for t > 1000 
ms after resuming from identical initial conditions. 
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Firing Rate 

Firing rate was defined as the average number of spikes in a time interval of size ∆𝑡, divided by 
∆𝑡 (∆𝑡 = 10	𝑚𝑠, unless stated otherwise). 

 

Neuron Selection 

We selected all excitatory neurons in layers 4, 5 and 6 that belonged to the 30 minicolumns (out 
310 in total) in the center of microcircuit (n = 2024). The analysis was restricted to neurons that 
spiked at least once in each of the compared simulation paradigms. 

 

Spike-Timing Reliability 

Spike-timing reliability was measured using a correlation-based measure first proposed by 
Schreiber et al. (2003). Briefly, the spike times of each neuron in each trial were convolved with 
a Gaussian kernel of width 𝜎" = 5	𝑚𝑠 to yield filtered signals 𝑠 𝑛, 𝑘; 𝑡  for each neuron n and 
each trial k (∆𝑡" = 1	𝑚𝑠).  The spike-timing reliability for each neuron was then defined as the 
mean inner product between pairs of signals divided by their magnitude: 𝑟"ijQf(𝑛) =

#
x(xIA)

" P,Q;G ∙"(P,w;G)
|"(P,Q;G)|∙|"(P,w;G)|Qzw , (K = 30; independent trials). Decoupled replay: there are M=5 

replays of each of the K=30 trials, and thus 	𝑟"ijQf(𝑛) =
#

x3(3IA)
"N P,Q;G ∙"N(P,w;G)
|"N(P,Q;G)|∙|"N(P,w;G)|Qzw9 . 

 

Errors and Statistical Tests 

Error bars and shared areas indicate 95%-confidence intervals (CI), unless stated otherwise. t-
based CIs (n = 20; or n = 40 if stated) were computed using scipy.stats.sem and scipy.stats.t.ppf 
to compute P-values from the CIs. Errors for fit parameters, obtained with 
scipy.optimize.curve_fit, are given as the square-root of the variance of the parameter estimate. 
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Supplementary Figures (S1 –S8) 
 

 

 

 
 

Figure S1: Quantifying the Rapid Divergence of Electrical Activity 
(A1) Root-mean square deviation (𝑅𝑀𝑆𝐷,) and correlation (𝑟,) of the somatic membrane potentials 
between pairs of resumed simulations diverging from identical conditions, for five different base states 
(faded colors) and the mean of 40 saved base states (red), with ∆𝑡 = 10	𝑚𝑠. Same neurons as in Figure 
1C. (A2) Same as A1, but with ∆𝑡 = 1𝑚𝑠.  (B) Mean divergence in the first 10 ms, with ∆𝑡, = 0.1	𝑚𝑠 
(mean of all neurons and 40 saved base states ± standard deviation). (C) 𝑅𝑀𝑆𝐷, and 𝑟, for different 
analysis bin sizes ∆𝑡. The time step for the soma voltage is ∆𝑡, = 0.1	𝑚𝑠. (D) The similarity (𝑠2345	and 𝑠6) 
(mean ± 95% confidence interval). Dots signal where 𝑠2345 and 𝑠6 are larger than 0, by a 95% confidence 
interval (p < 0.025). 
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Figure S2: Rapid Divergence of Population Firing Rate 
Mean population firing rate difference (∆𝑡 = 5	𝑚𝑠)	between pairs of simulations 
diverging from identical initial conditions (mean of all neurons and of 40 saved 
base states ± 95% confidence interval). 
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Figure S3: Linear Relationship between 𝑹𝑴𝑺𝑫𝑽 and 𝒓𝑽 

Root-mean square deviation (𝑅𝑀𝑆𝐷,) and correlation (𝑟,) of the somatic membrane potentials between 
pairs of simulations diverging from identical initial conditions (mean of all neurons and saved base states). 
(A) Changing random seeds for subsets of noise sources with the standard stochastic release model. (B) 
Changing random seeds for subsets of noise sources with a mean release model. (C) Standard 
stochastic release model for decoupled, replayed simulations. 
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Figure S4: Mean Synaptic Release Model 
(A) Correlation 𝑟, (as in Figure 4 and Figure S5), with pseudo-deterministic synaptic release 
by not changing the random seeds for vesicle release (but with a change in ‘mini’ signals for 
b). (B) As in A, but with deterministic synaptic release (mean release model), apart from 
abcd which has the fully stochastic model. 
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Figure S5: Unravelling Noise Sources 
(A) Correlation 𝑟,	from identical initial conditions with different cellular noise sources turned on, and when 
turning of cellular noise, but perturbing the system by a single extra spike (in one neuron) or a miniscule 
perturbation in all neurons. (B) Steady-state membrane potential fluctuations (𝑅𝑀𝑆𝐷J) and correlations 
(𝑟J) for network simulations (B1) and decoupled, replayed simulations (B2) for different noise sources. (C) 
Similarity 𝑠6/2345 at 10-20 ms for network simulations (C1) and decoupled, replayed simulations (C2) for 
different noise sources. (D-E) Same as B-C, but only for the subset of neurons that have stochastic ion-
channels (irregularly firing e-types, 1’137 out of 31’346 neurons). All error bars indicate 95% confidence 
intervals, based on 20 pairs of simulations (40 for abcd).  
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Figure S6: Predicting Impact of Other Noise Sources 
(A) Correlation 𝑟, when only changing random seeds for noisy depolarization, but with 
different magnitudes of noise. (B) As in A, but with all noise sources enabled by changing 
random seeds. 
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Figure S7: Divergence of Evoked Activity 
(A) The similarity 𝑠2345 defined as the difference between the 𝑅𝑀𝑆𝐷, of diverging and 
independent trials, normalized to lie between 1 (identical) and 0 (fully diverged) (mean ± 95% 
confidence interval), for the thalamic stimulus.  (B) Population raster plot and population 
peristimulus time histogram (PSTH) of all 31’346 neurons in the microcircuit, during evoked 
activity with a simplified “whisker flick” stimulus (60 VPM neurons are firing at the same time, 
one spike). (C1) As A, but for the “whisker flick” stimulus. (C2) As C1, but for 𝑠6 instead of 
𝑠2345. 
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Figure S8: Multivesicular Release 
Change in divergence time course depending on the size of the pool of readily releasable 
vesicles (nrrp). Quantified by similarity of the somatic membrane potentials diverging from 
identical initial conditions: (A) 𝑠2345	and (B) 𝑠6. (mean of all neurons and n base states ± 
95% confidence interval). (UVR: n = 40; all others: n = 20). 
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