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Typical responses of cortical neurons to identical sensory stimuli are highly variable. It has thus 
been proposed that the cortex primarily uses a rate code. However, other studies have argued for 
spike-time coding under certain conditions. The potential role of spike-time coding is 
constrained by the intrinsic variability of cortical circuits, which remains largely unexplored. 
Here, we quantified this intrinsic variability using a biophysical model of rat neocortical 
microcircuitry with biologically realistic noise sources. We found that stochastic 
neurotransmitter release is a critical component of this variability, which, amplified by recurrent 
connectivity, causes rapid chaotic divergence with a time constant on the order of 10-20 
milliseconds. Surprisingly, weak thalamocortical stimuli can transiently overcome the chaos, and 
induce reliable spike times with millisecond precision. We show that this effect relies on 
recurrent cortical connectivity, and is not a simple effect of feed-forward thalamocortical input. 
We conclude that recurrent cortical architecture supports millisecond spike-time reliability amid 
noise and chaotic network dynamics, resolving a long-standing debate.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/304121doi: bioRxiv preprint 

https://doi.org/10.1101/304121


	 2	

Introduction 

The typical electrical activity of cortical neurons is highly variable, in the sense that membrane 
potentials, spike times and interspike intervals vary during spontaneous activity as well as across 
trials with identical sensory stimuli1–4. While part of this variability could be due to intrinsic 
noise sources, a substantial part could also be due to hidden variables such as unknown input 
from other parts of the brain, environmental parameters, or brain state5,6. For instance, it has been 
shown that, in the visual cortex, the act of running modulates responses of neurons to identical 
stimuli7. Moreover, some neurons in sensory cortices can encode sensory input with high spike-
time precision8–10.  Taken together, it is compelling to assume that intrinsic noise plays a 
negligible role, and that cortical variability is essentially deterministic11, encoding hidden or 
unobserved variables. This view is also supported by the fact that neocortical neurons respond to 
somatic current injections in vitro with high reliability12. However, there are two important 
reasons to believe that a large part of cortical variability is due to internally generated noise that 
carries no signal. 

First, all cortical neurons are subject to well-established cellular noise sources, such as stochastic 
synaptic transmission and ion-channel noise13.  These noise sources ultimately originate from 
proteins susceptible to thermodynamic fluctuations, and are therefore indeed truly intrinsic 
sources of noise6,13. In particular, synaptic transmission is based on a sequence of stochastic 
molecular events, where the low numbers of molecules involved do not allow stochastic 
properties to average out14. In fact, in tightly controlled slice environments in vitro, the 
probability of vesicle release upon action potential arrival at a single cortical synapse is low 
(~50% between thick tufted layer 5 pyramidal  neurons15), and estimated to be substantially 
lower in vivo16 (~10% between same  neurons17). The universal presence of synaptic noise 
suggests that cortical neurons respond far less reliably to presynaptic inputs than to current 
injections. It has been shown, moreover, that a simplified cortical network model with stochastic 
synapses can provide a sufficient explanation for variable spiking18. Furthermore, in vitro, some 
types of inhibitory neurons exhibit stochastic firing types. That is, they respond highly 
irregularly to constant somatic current injections19. This is due to ion-channel noise that is 
amplified during  action potential initiation20. Even activity in regular firing excitatory neurons 
can be subject to ion-channel noise, for example during  action potential propagation in thin 
axons21. 

Second, models suggest22,23 and experiments show24 that cortical networks have chaotic 
dynamics. This implies, by definition, that small perturbations, such as those due to intrinsic 
cellular noise, are amplified. Thus, extra or missing spikes in the network, for example due to 
failed synaptic transmission, could fundamentally alter the trajectories of spiking activity in the 
network, leading in turn to large steady-state fluctuations. 

In spite of their potential importance, the separate and combined impacts of network dynamics 
and cellular noise sources on cortical neuronal variability remain largely unexplored. There are 
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several reasons why understanding what proportion of cortical neuronal variability is generated 
internally—and how this variability arises—is crucial for understanding the neural code. 

First, strong internally generated variability due to chaotic network dynamics could prevent 
coding based on spike timing past the sensory periphery, and favor theories of firing rate 
coding24. To test the feasibility of models of cortical coding that rely on spike timing25–27, we 
need to understand internal variability and how it arises. 

Second, variability could carry information and encode signals itself, for example perceptual 
uncertainty28. It is thus essential to understand how to separate intrinsically generated variability 
that is bona fide noise from variability that encodes an additional signal or brain state. 

Third, and more generally, optimal coding strategies for neural circuits depend on where noise 
enters the circuit29.  That is, to understand the neural code, we need to understand the 
mechanisms responsible for internally generated variability. Currently, it is impossible to 
measure all external inputs to a local population of cortical neurons in vivo. As a result, we are 
still unable to quantify how much of the experimentally observed variability is generated 
internally by the local circuitry, and how much is generated externally. 

In this study, we addressed these questions with a recently developed simulation-based approach, 
namely a biologically constrained model of a prototypical neocortical microcircuit in rat 
somatosensory cortex (the NMC-model; see Markram et al.17). The NMC-model, which 
reproduces a range of in vivo experiments, incorporates several prominent sources of noise, 
including stochastic synaptic transmission and ion channel noise. Each of these noise sources is 
constrained to replicate experimentally observed variability. This bottom-up modeling approach 
provides control over all noise sources, as well as external inputs and internal states. 

Through a series of simulation experiments, in which we selectively enabled noise sources and 
recurrent network dynamics, we characterized intrinsic cortical variability and how it arises.  We 
confirmed that recurrent cortical dynamics are chaotic, but we found that an interplay of 
stochastic synaptic transmission and network dynamics determined the rate by which membrane 
potentials diverged. Surprisingly, the recurrent cortical circuitry can transiently overcome these 
chaotic network dynamics in response to weak thalamocortical inputs, and produce reliable spike 
timing. Thus, recurrent cortical architecture can transform relatively weak inputs into reliable 
patterns of activity amid high cellular noise and chaotic network dynamics.  
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Figure 1: Rapid divergence of spontaneous activity 
(a) Morphologically-detailed model of a neocortical microcircuit (NMC); depicted are 100 randomly 
selected neurons, out of 31’346 in total (~0.3%). Neurons are colored according to their layer. (b) 
Examples of simulated noise sources in the NMC-model: stochastic synaptic transmission, including (a) 
vesicle release failure and (b) spontaneous vesicle release (‘miniature PSPs’) at all 36 million synapses; 
(c) probabilistic opening and closing of voltage-gated potassium channels in irregularly spiking inhibitory 
neurons (1’137 out of 31’346 neurons); (d) a constant depolarizing current with a weak white noise 
component (𝜎"# ≪ 𝜇") injected into the somata of all neurons. (c) The membrane potential of four 
sample neurons (and population mean of all 31’346 neurons) during a network simulation of in vivo-like 
spontaneous activity. At 𝑡', the state of the microcircuit is saved, and then resumed twice with identical 
initial conditions, but with different random seeds for all noise sources. (d) Root-mean square deviation 
(𝑅𝑀𝑆𝐷,(𝑡)) and correlation (𝑟,(𝑡)) of the somatic membrane potentials between pairs of resumed 
simulations diverging from identical initial conditions (mean of all neurons and 40 saved base states ± 
95% confidence interval). The dashed lines depict the steady-state 𝑅𝑀𝑆𝐷, and 𝑟,	between independent 
simulations (i.e. resumed from different base states). (e) Time evolution of distributions of mean 
𝑅𝑀𝑆𝐷,	and 𝑟, values for individual neurons. (f) The similarity of the system (𝑠2345	and 𝑠6) defined as 
the difference between the diverging and steady-state 𝑅𝑀𝑆𝐷,	and 𝑟,, normalized to lie between 1 
(identical) and 0 (fully diverged) (mean ± 95% confidence interval). Exponential fit of  𝑠2345	and 𝑠6  
for	𝑡 − 𝑡' < 40 ms (estimated time constant ± 68% confidence interval of fit). 
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Results 

Rapid divergence of spontaneous activity 

Using the NMC-model of rat somatosensory cortex (31’346 neurons, ~8 million connections, 
and ~36 million synapses; see Figure 1a), we simulated in vivo-like spontaneous neuronal 
activity. The NMC-model contains three types of biological noise sources, all of which are 
required to replicate neuronal responses to paired recordings and current injections in vitro (Fig. 
1b). Each of the 36 million synapses in the model incorporates stochastic models of vesicle 
release, which display both failure of vesicle release (a) and spontaneous release (b). In this 
way, synaptic variability is biologically constrained. The irregular firing electrical neuron types 
(e-types) (1’137 neurons) also contain models of stochastic potassium channels (c), which 
induce irregular firing in response to constant current injections in vitro. A fourth, tunable noise 
source consisted of a noisy current (d) injected into the soma of each of the 31’346 neurons in 
the model, making it possible to depolarize neurons to in vivo-like levels (see Methods, Markram 
et al.17) (Fig. 1b). In our initial experiments, we maintained the magnitude of this generic noise 
far below the magnitude of the experimentally-constrained noise sources, using it later for 
sensitivity analysis. Realizations of the stochastic processes underlying these noise sources were 
determined by sequences of random numbers. By generating the sequences with different 
random seeds, we were able to obtain different, but equally valid probabilistic simulation trials. 

Independent trials of electrical activity were simulated up to a time 𝑡', at which point we saved 
the full dynamical state of the simulation (base state). We then resumed the simulation two times 
from the base state, i.e. we used identical initial conditions and histories in each case, but with 
different sequences of random numbers. This allowed us to obtain two equally valid probabilistic 
network trajectories for 𝑡 > 𝑡' for each base state. We observed that somatic membrane 
potentials (𝑉=) for individual neurons, and the mean potentials for the population both diverged 
rapidly between the two simulations (Fig. 1c). 

To quantify the time course of the divergence for each neuron n, we calculated the root-mean-
square deviation of its somatic membrane potential in two trials in time bins of size ∆𝑡 starting 
from 𝑡': 

𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) = 	 [𝑉=,E(𝑛, 𝑘; 𝑡F) − 𝑉=,#(𝑛, 𝑘; 𝑡F)]#𝑑𝑡F/∆𝑡
JK∆J/#
JL∆J/# , (1) 

where 𝑉=,E 𝑛, 𝑘; 𝑡  and  𝑉=,#(𝑛, 𝑘; 𝑡) denote the time series of somatic membrane potentials of 
neuron n in two trials resuming from the same base state k. We consequently defined the mean 
root-mean-square deviation of the microcircuit 𝑅𝑀𝑆𝐷, 𝑡  as the mean of 𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) over 
all base states (K=40) and neurons (N=31’346). We observed that 𝑅𝑀𝑆𝐷,(𝑡) diverged rapidly 
from zero and eventually converged towards a steady-state value 𝑅𝑀𝑆𝐷M, equal to the 𝑅𝑀𝑆𝐷, 
of independent trials that did not share the same base state (Fig. 1d, solid black and solid grey 
lines). The divergence was fast, with 𝑅𝑀𝑆𝐷,(𝑡) reaching more than 50% of its steady-state 
value within 20 ms. 
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While the 𝑅𝑀𝑆𝐷,(𝑡) of the circuit allowed us to accurately track the overall divergence of the 
whole circuit, 𝑅𝑀𝑆𝐷,(𝑛, 𝑘; 𝑡) for individual neurons and trials were too noisy for in-depth 
analysis (Fig. 1e1 and Supplementary Fig. 1a). We note that while 𝑅𝑀𝑆𝐷,(𝑡) quantifies the 
absolute distance between membrane potentials, potentials can still be correlated independent of 
this distance. To this end, we also computed the linear correlation for each neuron for each base 
state, again for time bins of size ∆𝑡: 

𝑟,(𝑛, 𝑘; 𝑡) =
NOP ,Q,R S,T;JU ,			,Q,V S,T;JU

W ,Q,R S,T;JU ∙W ,Q,V S,T;JU
 , 𝑡 − ∆J

#
< 𝑡F 	≤ 	𝑡 + ∆J

#
 (2) 

We found that the mean correlation 𝑟, 𝑡  diverged faster than the absolute distance as measured 
by 𝑅𝑀𝑆𝐷,(𝑡) (Fig. 1d, dashed blue line), again with a broad distribution across individual 
neurons (Fig. 1e2 and Supplementary Fig. 1a). 

To better evaluate the difference between 𝑟,(𝑡) and 𝑅𝑀𝑆𝐷,(𝑡), we computed the similarity 
𝑠2345(𝑡) of the microcircuit activity as the normalized difference between diverging and steady-
state  𝑅𝑀𝑆𝐷, 𝑡  (and similarly 𝑠6(𝑡) for 𝑟,(𝑡)). When similarity 𝑠2345 𝑡 = 1, membrane 
potential traces are identical; when 𝑠2345 𝑡 = 0 membrane potentials have reached their 
steady-state distance 𝑅𝑀𝑆𝐷M. Similarly, when 𝑠6 𝑡 = 	1, membrane potentials have a perfect 
linear relationship; when 𝑠6 𝑡 = 0, they reached their steady-state correlation 𝑟M. Comparing 
𝑠6(𝑡) and 𝑠2345(𝑡), we observed that 𝑟, 𝑡  diverged approximately twice as fast as 𝑅𝑀𝑆𝐷,(𝑡) 
(Fig. 1f1 vs. Fig. 1f2). More precisely, an exponential fit to the first 40 milliseconds revealed 
divergence time constants of 𝜏2345 = 22.7	 ± 0.5 ms and 𝜏6 = 11.5	 ± 0.2 ms (± 68% 
confidence interval of fit). These were conserved for different bins sizes ∆𝑡, with similar values 
for bin sizes ranging from 1 ms to 50 ms (Supplementary Fig. 1c1,2). We observe, however, 
that simple exponential decay does not provide an adequate description of the whole time-course 
of the similarity, as the time constant changes continuously, especially in the first several 
milliseconds (Supplementary Fig. 1b). While the initial divergence is rapid, a small, but 
statistically significant difference (p < 0.025) between diverging and independent activity 
persists for around 400 ms for  𝑅𝑀𝑆𝐷, (Supplementary Fig. 1d1) and around 200 ms for 𝑟, 
(Supplementary Fig. 1d2). 

Such rapid time-scales of divergence in the absence of any external input suggest that noise in 
the NMC-model does not average out. Instead, activity is inherently probabilistic, with a high 
internally generated variability. Throughout the remainder of this study, we will continue to 
quantify internally generated variability by the divergence of activity from identical initial 
conditions.  
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Figure 2: Robust rapid divergence across dynamical states and microcircuit scale 
(a1) Population raster plot and population peristimulus time histogram (PSTH) for all 31’346 neurons in 
the microcircuit, during in vivo-like spontaneous activity. Neurons are ordered according to cortical 
depth, with deep layers at the bottom and upper layers at the top. Each row represents the spikes of 
one neuron. For visibility, raster lines extend over dozens of rows for each neuron. For 𝑡 < 	 𝑡', the top 
and bottom raster plots show the same simulation, whereas for 𝑡 > 	 𝑡', the raster plots depict two 
simulations resuming from identical initial conditions at 𝑡', but using different random number seeds. 
(a2) Same as a, but for supercritical activity. (a3) 𝑅𝑀𝑆𝐷,	and 𝑟,  across dynamic regimes (20 saved 
base states, mean ± 95% confidence interval; same as Figure 1d for in vivo-like regime ([𝐶𝑎#K]O =
1.25	𝑚𝑀). (b1) The microcircuit (center, blue), surrounded by 6 other microcircuits (grey), forming a 
continuous mesocircuit of ~220’000 neurons, with no boundary effects between the circuits. (b2) 𝑟,  for 
the center microcircuit when simulated without surrounding circuits (black), and of the center 
microcircuit when simulated as a mesocircuit (orange) (microcircuit: 40 saved base states; mesocircuit: 
20 saved base states; mean ± 95% confidence interval). (b3) Quantifying edge effects. Difference of 𝑟,  
between the same neurons in the microcircuit and the mesocircuit at 10-20 ms, plotted according to 
distance from horizontal center (mean ± 95% confidence interval). (c) Similarity 𝑠6  for subsets of 
neurons grouped by in-degree (bin size: 50; mean ± 95% confidence interval). 
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Variability is robust across dynamical states 

In addition to the microscopic divergence of individual somatic membrane voltages, 
macroscopic fluctuations in population spiking activity (Fig. 2a1) and population firing rate 
(Supplementary Fig. 2) also diverged rapidly for 𝑡 > 𝑡'. These global fluctuations indicate 
substantial shared variability between individual neurons. However, the nature of these global 
fluctuations depends on the balance between excitatory and inhibitory currents (EI-balance) in 
the network30. 

In the NMC-model, the EI-balance is modulated through the effects of extracellular calcium 
concentration ( 𝐶𝑎#K O) on vesicle release probabilities16,17. As the dependence on 𝐶𝑎#K O is 
stronger for excitatory than for inhibitory synapses, increases in the concentration of 𝐶𝑎#K O 
lead to stronger relative excitation and a sharp transition from asynchronous states (subcritical) 
to more correlated activity17, which is regenerative and synchronous (supercritical; Fig. 2a2). 

In the in vivo-like state analyzed here ( 𝐶𝑎#K O= 1.25 mM), the microcircuit is in a just 
subcritical31 state of asynchronous spontaneous activity, where it reproduces several findings 
from in vivo experiments17. While this asynchronous state might be important for efficient 
coding32,33, the exact EI-balance in vivo is difficult to determine, and is likely to reconfigure 
dynamically as a function of the state of arousal and attentiveness of the animal34. We therefore 
investigated the relationship between the time course of divergence and different dynamic 
regimes. We observed that the rapid divergence of electrical activity was approximately 
conserved across these different dynamic states (Fig. 2a3). While steady-state electrical activity 
was slightly more de-correlated in the in vivo-like state, the time course of divergence was 
remarkably similar. We also found that the synchronous state still displayed high shared 
variability, with unpredictable timing of population bursts (Fig. 2a2, 𝑡 > 𝑡'). In our model, 
therefore, intrinsic variability, as quantified by the time course of divergence, is conserved across 
a spectrum of dynamic states and does not depend on the exact EI-balance. 

 

Variability is nearly saturated at the scale of the microcircuit 

It is possible that the amount of internally generated variability depends not just on the dynamic 
state of the model circuit but also on its size. We have previously shown that in models of the 
size used in the simulations just described, dynamic states stabilize17. At this size, dendritic trees 
and thus the afferent connections of neurons in the horizontal center of the microcircuit are fully 
located within the microcircuit. However, a large fraction of their recurrent connections with 
neurons in the surrounding tissue are with neurons at the periphery of the microcircuit. Since 
these were not included in the simulations, large portions of synaptic input to peripheral neurons 
were missing. To quantify the effect of this additional input on variability in the microcircuit, we 
surrounded the original microcircuit with six additional microcircuits, simulating a much larger 
mesocircuit, which provided missing synaptic input to the neurons at the periphery of the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/304121doi: bioRxiv preprint 

https://doi.org/10.1101/304121


	 9	

microcircuit (Fig. 2b1, blue and grey). Connectivity in this mesocircuit was homogeneous, both 
within and between the individual microcircuits. 

When we compared the divergence of membrane potentials between micro- and mesocircuit 
simulations, we found that membrane potentials diverged slightly faster in the mesocircuit, 
although the time courses of divergence followed similar trends (Fig. 2b2). The mean difference 
in 𝑟,(𝑡) was always below 0.06, and the steady state difference below 0.03. We next focused on 
the difference at 10-20 ms, which we found to be a good predictor of the relative order of 
differences at any time. We found that 𝑠6,E'L#'	=" was directly related to distance from the 
horizontal center, with the largest differences in neurons at the periphery of the microcircuit (Fig. 
2b3). At the periphery, the increase in variability between meso- and microcircuit simulations 
was above 0.08, decreasing toward the center and converging just below 0.03 for neurons within 
100	𝜇𝑚 of the center. This suggests that direct additional synaptic input onto a neuron increases 
variability, but that this additional synaptic input has a weak effect on indirectly connected 
neurons whose inputs are already saturated. Thus, at the scale of the microcircuit, the amount of 
internally generated variability is nearly saturated, while variability for neurons at the periphery 
is underestimated. 

 

Highly connected neurons diverge faster 

To directly quantify the dependence of the time course of divergence on the amount of the 
synaptic input, we examined the relationship between the similarity 𝑠6 𝑡  of a given neuron and 
the number of connections it receives from within the microcircuit (in-degree). Once more, we 
found that the time course of divergence was faster, the more synaptic inputs a neuron received, 
as summarized by 𝑠6 𝑡  at 10-20 ms (Fig. 2c). Thus, it appears that neurons which are more 
strongly coupled to the local population35 are also more likely to diverge quickly.  Repetition of 
the analysis using 𝑅𝑀𝑆𝐷,(𝑡) instead of 𝑟, 𝑡  gave qualitatively similar results (data not shown). 
We note that 𝑅𝑀𝑆𝐷,(𝑡) and 𝑟, 𝑡  are generally highly correlated (Supplementary Fig. 3a, 
abcd). In what follows, we hence present the divergence in terms of 𝑟,(𝑡), except when there is a 
qualitative difference.  
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Figure 3: Noise amplified by chaos determines internally generated variability 
(a1) Time course of correlation 𝑟,  after resuming at t0 from identical conditions with different forms of 
perturbation. Full cellular noise as before, solid line (abcd); no cellular noise, but perturbing with a single 
extra spike in one neuron, dashed line (f); a miniscule step pulse perturbation in all neurons, dotted line 
(e). (abcd: 40 saved base states; e, f: 20 saved base states; mean ± 95% confidence interval) (a2) Steady-
state root-mean square deviation 𝑅𝑀𝑆𝐷∞ and correlation 𝑟∞ for stochastic (abcd) and deterministic 
simulations (e, f) as defined in a1 (mean ± 95% confidence interval). (b1) As in a2, but for decoupled, 
replayed simulations. (b2) Similarity 𝑠2345 and 𝑠6  at 10-20 ms with all noise sources enabled, for network 
and decoupled simulations (mean ± 95% confidence interval). (c1) Decoupled replay paradigm. 
Presynaptic spike trains from a network simulation are saved and then replayed to the synapses of each 
neuron in a decoupled simulation, thereby removing variability due to feedback network dynamics. (c2) 
Overview of sources of noise and perturbations. (d) Decoupled replay simulations (see c1) for a 
representative L4 PC neuron, with somatic membrane potential differences between the two trials only due 
to cellular noise sources (ab[c]d), a single extra presynaptic spike (f) or a miniscule step-pulse perturbation 
(e). [c] indicates that for some neuron types in the NMC-model, such as L4 PCs, no stochastic ion-
channels are present. 
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Noise amplified by chaos determines internally generated variability 

Thus far, we have demonstrated a high level of variability which is robust across dynamical 
states and nearly saturated at the scale of the microcircuit. We have also shown that divergence is 
faster for neurons that are more tightly coupled to the local population (Fig. 2c). This suggests 
that the variability of individual neuron activity is driven by the variability of local population 
activity, or that additional synaptic input simply adds more synaptic noise, or that the noise is 
determined by some combination of the two effects. In other words, while cellular noise is the 
only original source of variability in the NMC-model, the question remains to what degree this 
noise is amplified by recurrent network connectivity. 

To address this question, and more generally, to study the interaction of noise sources and 
recurrent network dynamics, we performed two complementary sets of simulation experiments. 
In the first set, we sought insights into the role of network dynamics without noise sources, 
probing the sensitivity of a completely deterministic version of the model to a weak, momentary 
perturbation. In the second, we studied the opposite case of variability due to stochastic noise 
sources without amplification by the network. 

To implement the first set of simulations, we disabled stochasticity of cellular noise sources, 
including synaptic transmission, by using a fixed sequence of random numbers, which made the 
random outcome deterministic (or alternatively by completely replacing the stochastic model 
with a deterministic one, see below). This enabled us to observe amplification of perturbations 
through the network without the effect of continuously varying cellular noise sources. As the 
sole source of perturbation, we injected a single extra spike into one of the neurons in the 
microcircuit (see Methods). We observed that the network diverged rapidly (Fig. 3a1, dashed 
line), though more slowly than with noise sources enabled (Fig. 3a1, solid line). In fact, even a 
miniscule current injection, which shifted the majority of spike times by less than 0.05 ms (see 
Methods), eventually led to a divergence of membrane potentials similar to the divergence 
observed in the full model with noise sources (Fig. 3a1, dotted line). The slightly higher steady-
state correlation 𝑟M in the deterministic simulation was due to identical spontaneous release of 
neurotransmitter, identical ion-channel opening probabilities, and the small, but identical, noisy 
component of the depolarizing current injection. However, the relative difference in 𝑅𝑀𝑆𝐷M was 
much smaller than the difference between the deterministic and the stochastic simulations (Fig. 
3a2, top vs. bottom). That is, any perturbation to the system eventually led to a similarly large 
steady-state divergence. We conclude that the underlying dynamics of the circuit are chaotic, in 
the sense that small perturbations, such as one injected spike, lead to completely different, 
unpredictable activity. 

It is important to note that when using a fixed random seed to make the stochastic version of the 
Tsodyks-Markram synapse model deterministic17,36,  any extra or missing presynaptic spike can 
change the outcome for the next spike by advancing the sequence of random numbers. To avoid 
this difficulty, we ran equivalent simulations using the deterministic version of the Tsodyks-
Markram synapse model (see Methods). In these simulations, extra spikes and small 
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perturbations produced qualitatively similar divergence time courses (Supplementary Fig. 4a 
vs. 4b, dark green and pink lines). 

We had shown that the network amplifies extra spikes or even small perturbations of membrane 
potentials. This leads to chaotic divergence of activity with similar steady-state variability, but 
different time courses. It remained to be seen whether this high level of variability requires 
network amplification or whether it could be generated by the noise sources alone. 

To address this question, we implemented a second set of simulations to study the case of 
ongoing noise sources without network propagation. In these decoupled replay simulations, in 
contrast to regular network simulations, synaptic mechanisms were activated by spikes at fixed 
times, recorded in an earlier simulation experiment (Fig. 3c1). In this way, the network was no 
longer able to amplify neuronal variability and neuronal variability was entirely due either to 
cellular noise sources or perturbations (Fig. 3d). We found with all noise sources turned on, 
somatic membrane potentials still diverged rapidly, as quantified by 𝑠6,E'L#'	=" (Fig. 3b2) (as 
mentioned above, we found 𝑠6 at 10-20 ms to be a good predictor of the relative order of 𝑠6 at 
any time). However, steady-state 𝑟M was higher and 𝑅𝑀𝑆𝐷M was lower than in the network 
simulations (Fig. 3b1 vs Fig. 3a2). When the decoupled replay paradigm was used with the 
deterministic version of the model, single extra spikes and brief current injections only evoked 
small, transient perturbations (Fig. 3d2,3). It follows that the high level of variability observed in 
network simulations was due to chaotic network dynamics which amplified rapid perturbations 
of activity from cellular noise sources. 
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Figure 4: Synaptic noise dominates variability 
(a1) Time course of correlation 𝑟,	after resuming at t0 from identical conditions with different noise 
sources enabled (abcd: 40 bases states; a, ab, c, d: 20 base states; mean ± 95% confidence interval). 
(a2) Steady-state root-mean square deviation 𝑅𝑀𝑆𝐷∞ (cyan) and correlation 𝑟∞ (purple) with different 
noise sources enabled. (a3) Similarity 𝑠2345 at 10-20 ms with different noise sources enabled, for all 
neurons (cyan) and irregular e-types (orange). (b) Steady-state root-mean square deviation for 
decoupled simulations, 𝑅𝑀𝑆𝐷∞,fgN, for all neurons (cyan) and irregular e-types (orange). Only irregular 
e-types in (c), 1,137 out of 31,346 neurons. (c) Decoupled replay simulations for a representative L6 
NBC neuron, with somatic membrane potential differences between the two trials only due to synaptic 
noise (ab), ion-channel noise (c) or a noisy current injection (d). (d1) The effect of changing random 
seeds for the noisy depolarization only, for different noise strengths in a decoupled simulation. x: white 
noise variance as percentage of mean injected current (d2) The decoupled steady-state membrane 
potential fluctuations 𝑅𝑀𝑆𝐷∞,fgN

f evoked by different magnitudes of white noise without network 
dynamics, versus the similarity 𝑠2345 at 10-20 ms during network simulations when either turning on 
only the white noise depolarization (d) or all noise sources (abcd). Similarly, in purple, 𝑅𝑀𝑆𝐷∞,fgN

hi 	for 
synaptic noise versus the similarity at 10-20 ms when only turning on synaptic noise (ab). All error bars 
and shaded areas indicate 95% confidence intervals. Means for d2 are based on ten base states. 
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Synaptic noise dominates variability 

To understand the contribution of individual noise sources in this interplay of noise and recurrent 
network dynamics, we designed a series of simulation experiments where we selectively disabled 
specific subsets of noise sources, instead of all of them as in the deterministic version above. We 
observed that disabling all noise sources except synaptic failure produced a time course for 
𝑟,(𝑡)	and steady-state divergence 𝑟M which was very similar to observations with all noise 
sources combined (Fig. 4a1, black and green lines). On the other hand, disabling all but ion 
channel noise or all but the noisy current injection led to much slower divergence (Fig. 4a1, 
orange and purple lines). As before, we quantified the speed of divergence by the similarity 𝑠6	at 
10-20 ms after 𝑡' (𝑠6,E'L#'	=") (Fig. 4a3, cyan). Our results suggest that simulations with 
synaptic failure give rise to rapid divergence, whereas steady-state 𝑟M and 𝑅𝑀𝑆𝐷M depend on 
noise sources only weakly (Fig. 4a2). We conclude that in the NMC-model, the time course of 
divergence depends on synaptic noise, a combination of synaptic failure and spontaneous release, 
and that other noise sources add little to no additional variability. 

 

Ion-channel noise in irregular firing neurons is overshadowed by synaptic noise 

Synaptic noise in the NMC-model is modeled at every single synapse, while ion-channel noise is 
limited to irregular firing e-types17,19. Irregular e-types are defined by high intrinsic spike-time 
variability in response to constant current injections in vitro, even in the absence of synaptic 
noise. In the NMC-model, irregular spiking is modeled with a subset of stochastic ion-channels, 
in accordance with in vitro findings on the source of the irregular spiking patterns observed in 
cortical interneurons20. In contrast, regular firing e-types do not require noisy ion-channels to 
replicate in vitro spiking behavior. To better understand the interplay of ion-channel noise and 
synaptic noise, we focused our next analysis solely on irregular firing e-types. We observed that 
irregular firing e-types diverged significantly faster than the whole population (Fig. 4a3, orange 
vs. cyan). However, synaptic noise still dominated over ion-channel noise. Enabling ion-channel 
noise in addition to synaptic noise led to only marginal gains in divergence rate; when ion-
channel noise was enabled on its own, divergence was significantly slower (Fig. 4a3, orange, ab 
vs. abcd and c). This suggests that in in vivo conditions, noise from stochastic ion-channels is 
probably overshadowed by synaptic noise.  This contrasts with in vitro conditions, where 
channel noise is the only major noise source. 

 

Synaptic noise acts as threshold for other noise sources 

There are in reality many smaller noise sources that are not included in our model (see 
Discussion). To understand how additional noise sources of various magnitudes could influence 
divergence, we analyzed the magnitude of the previously analyzed cellular noise combinations in 
a decoupled replay, with network propagation removed (𝑅𝑀𝑆𝐷M,fgN) (Fig. 4b; see Figure 4c1-3 
for representative examples). We found that this magnitude inversely relates to the rate of 
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divergence, 𝑠2345,E'L#'	=" (Fig. 4a3). That is, a larger 𝑅𝑀𝑆𝐷M,fgN  leads to a faster divergence 
(as measured by a smaller 𝑠2345,E'L#'	=") (see also Supplementary Fig. 5 for an extensive 
comparison of noise sources across simulation paradigms). In the NMC-model, synaptic noise 
has the largest 𝑅𝑀𝑆𝐷M,fgN and determines the rate of divergence.  But how strong would any 
other noise source have to be to generate network variability that is detectable beyond synaptic 
noise? To answer this question, we studied how the magnitude of an unknown noise source 
affects the time course of divergence. As a proxy for unknown noise sources, we increased the 
variance 𝜎"# of the injected white noise depolarizing current. Previously, the variance had been 
set to 0.001% of the firing threshold for each neuron—a level far lower than other sources of 
noise. When we increased the variance to values from 0.01% up to 10%, and disabled all other 
noise sources, we observed that increasing 𝜎"# led to more rapidly diverging network dynamics 
(Supplementary Fig. 6a). However, when other noise sources were also enabled, the noisy 
current injection only affected network dynamics beyond a certain threshold (Supplementary 
Fig. 6b). 

To characterize this threshold, we first measured 𝑅𝑀𝑆𝐷M,fgNf , that is, the steady-state divergence 
of membrane potential fluctuations evoked by noisy current injection alone in a decoupled 
replay, for various levels of 𝜎"# (Fig. 4d1). We then compared 𝑅𝑀𝑆𝐷M,fgNf  to the time course of 
divergence in the corresponding network simulations with the same noise conditions (i.e. only 
noisy depolarization (d); Fig. 4d2, dashed line). We found that the rate of divergence as 
measured by 𝑠6,E'L#'	=" was strongly dependent on  𝑅𝑀𝑆𝐷M,fgNf , with larger values leading to 
faster divergence. In contrast, when we repeated the analysis with all noise sources enabled (Fig. 
4d2, solid line), the dependence on 𝑅𝑀𝑆𝐷M,fgNf  was weaker, indicating a smaller impact of 𝜎"# on 
𝑠6,E'L#'	=". Indeed, 𝜎"# only had a meaningful influence when it was beyond a threshold in the 
range 0.1% -0.5%. At this threshold, the steady-state divergence in decoupled replays 
(𝑅𝑀𝑆𝐷M,fgNf ) evoked by the noisy current alone was just above 1 mV, approximately half of the 
value for synaptic noise sources (𝑅𝑀𝑆𝐷M,fgNhi , Fig. 4d2, vertical purple line “ab”). When 𝜎"# is 
increased even more, the curves for 𝑠6,E'L#'	=" with noisy current alone and with all noise 
sources eventually began to converge. Thus, when 𝑅𝑀𝑆𝐷M,fgNf  was larger than 𝑅𝑀𝑆𝐷M,fgNhi  the 
noisy current injection dominated other noise sources. This suggests that the strongest source of 
cellular noise dominates over other sources, unless they are of a comparable magnitude. Under 
biological conditions, we predict that synaptic noise dominates. This prediction matches previous 
findings that cortical neurons respond very reliably to current injections in vitro (no synaptic 
noise)12. However, it also suggests an entirely different picture of the reliability of neuronal 
responses to presynaptic inputs in vivo, with synaptic noise contributing to variability.  
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Figure 5: Low trial-by-trial spike-timing reliability during spontaneous activity 
(a) Somatic membrane potentials (𝑉=) of three representative neurons. Top: during six independent trials 
of spontaneous activity. Bottom: five decoupled replay trials (green) with the same presynaptic input as 
during the original network simulation trial (red), but with different random seeds. (b) Top: Raster plot of 
spike times for the same example neurons as in A, during 30 independent trials of spontaneous activity. 
Bottom: 5 decoupled replay trials (green) of the same input received during 5 of the 30 original trials 
(dark red). (c1) Mean somatic membrane potential correlation 𝑟, of the 1666 (ab: 1670) most central (and 
spiking) pyramidal neurons from layers 4, 5, and 6 between independent network simulations, and 
between decoupled replay simulations with identical presynaptic inputs. (c2) Mean spike-timing reliability 
𝑟"jkTg	of the same neurons. Decoupled and decoupled (ab) are overlapping. (c3) Change in correlation,  
Δ𝑟, , versus change in spike-timing reliability, Δ𝑟"jkTg , for each neuron for decoupled replay simulations 
relative to network simulations (linear fit with 68% confidence interval on slope m, red line). Triangles 
indicate values of representative neurons in panel B. (d) Comparison of variance of spike count between 
network and decoupled replay simulations (same neurons as in c-e; linear fit as in c3, red line; identity 
line, black dashed line). 
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Low trial-by-trial spike-timing reliability during spontaneous activity 

Neurons transmit signals to postsynaptic partners only in the form of spikes. Their timing is 
determined by a non-linear transformation of the somatic membrane potential (𝑉=) we analyzed 
so far. We therefore next characterized the role of the spike generation mechanism in influencing 
the reliability of neural responses, and compared both the variability of membrane potentials and 
spike times between independent network simulations of spontaneous activity over 30 
independent trials with different initial conditions. We found that membrane potentials (Fig. 5a, 
top) and the corresponding spike trains (Fig. 5b, top) were both highly variable. We then used 
the spike times recorded from each of these network trials in five decoupled replay simulations 
per trial. As before, we observed that membrane potentials were less variable and more 
correlated in decoupled simulations (Fig. 5a, bottom). Indeed, the distributions of 𝑟, in 
decoupled and network simulations were almost completely disjoint (Fig. 5c1), with decoupled 
replay simulations exhibiting much more correlated membrane potentials overall. However, 
considering just the spike times, we found no clear difference in variability between the network 
(Fig. 5b, top) and the decoupled replay simulations (Fig. 5b, bottom). In stark contrast to the 
results for membrane potentials, quantification of spike time variability using a correlation-based 
measure, 𝑟"jkTg37, showed a large overlap in the distributions for decoupled and network 
simulations (Fig. 5c2, red area vs. solid black line; 𝜎"jkTg = 5 ms), in stark contrast to the case 
for membrane potentials. This suggests that the spike initiation mechanisms cannot transform the 
increased reliability of 𝑉= into reliable spike trains during spontaneous activity. Indeed, we 
found that an increase in the magnitude of 𝑟, did not predict a corresponding increase in 𝑟"jkTg 
(Fig. 5c3). On the contrary, the two measures displayed a weak inverse correlation. We note that 
we found no decrease in variability when other sources of noise besides synaptic noise were 
disabled (Fig. 5c2, dashed brown line), as expected in light of our previous result that synaptic 
noise accounts for a large proportion of variability. 

It is possible of course that spike time reliability within tens of milliseconds could be too 
restrictive a measure of spiking reliability. Therefore, we also compared the variability of spike 
counts across the entire 0.5 s window analyzed. Use of identical presynaptic inputs produced 
only a marginal reduction in the variance of spike counts (Fig. 5d). In brief, the reliability of 
spike generation across time-scales is directly, and severely constrained by synaptic noise, even 
without amplification through network dynamics.  
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Figure 6: Rapid divergence of evoked, reliable activity 
 (a1) Population raster plot and population peristimulus time histogram (PSTH) for all 31’346 neurons in 
the microcircuit, during evoked activity with a thalamic (VPM) stimulus. Neurons are ordered according to 
cortical depth, with deep layers at the bottom and upper layers at the top, and each row representing the 
spikes of one neuron. For visibility, raster lines extend over dozens of rows for each neuron. (a2) Mean 
somatic membrane potential correlation 𝑟,  between independent simulations of the same VPM stimulus 
(mean ± 95% confidence interval). (a3) Schematic of the VPM stimulus. Top: Raster plot spike times for 
the first 250 ms of the thalamic stimulus. Bottom: 310 VPM fiber centers are assigned 30 colors, and those 
with identical colors are provided with duplicate spike trains.  The synapse density profile across layers for 
each fiber is shown to the right. (b) For t < 100, the top and bottom raster plots show the same simulation, 
whereas for t > 100, the raster plots depict two resumed simulations starting from the same saved state at 
t0 = 100, using different random number seeds. (c1) Resuming from identical initial conditions at different 
times: during (top), at onset (middle), or before the stimulus (bottom). Mean 𝑟,  between independent 
simulations (blue, as in a2), and mean 𝑟,  between simulations starting from the same base state (red; 
mean ± 95% confidence interval). (c2) The similarity, 𝑠6 ,defined as the difference between the 𝑟,  of 
diverging and independent trials, normalized to lie between 1 (identical) and 0 (fully diverged) (mean ± 
95% confidence interval). Means are based on 20 base states, no stimulus (spontaneous activity) on 40 as 
before. 
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Rapid divergence of evoked, reliable activity 

In the NMC-model, thalamic inputs can evoke responses with varying degrees of reliability 
among trials17,38. What then are the roles of synaptic noise and chaotic network dynamics during 
these evoked responses? To answer this question, we simulated electrical activity in response to 
a naturalistic thalamocortical stimulus (Fig. 6a1), consisting of spike trains recorded in the 
ventral posteromedial nucleus (VPM) during sandpaper-induced whisker deflection in vivo39. 
These spike trains were then applied to different feed-forward VPM fibers in the model to 
achieve a biologically-inspired, time-varying synchronicity among inputs (Fig. 6a3; see 
Methods; see Reimann et al.38). To avoid introducing external variability on top of the 
intrinsically generated microcircuit variability, presynaptic inputs were kept identical across 
trials, but with thalamocortical synapses subject to the same synaptic noise as cortical synapses. 
The thalamocortical presynaptic inputs were not subject to recurrent network dynamics. Since 
this condition excludes variability in the system up to and including the thalamus, it can be 
considered an intermediate stage between the decoupled replay and regular network simulations.  
The simulations allowed us to identify an upper bound on the reliability of thalamocortical 
responses. Mean 𝑟,(𝑡) during evoked activity was stronger than during spontaneous activity, 
moving between ~0.1 and ~0.4 (Fig. 6a2), confirming that that the responses of neuron 
membrane potentials to the stimulus were relatively more reliable across trials. 

To characterize the nature of chaotic network dynamics during this evoked, reliable activity, we 
again resumed from identical initial conditions, with 𝑡' at various times relative to the stimulus 
onset at t = 0 ms (Fig. 6b, for 𝑡'	= 100 ms). The population spiking activity across pairs of trials 
after resuming appeared almost identical, even for time intervals much larger than the divergence 
time characterized above (Fig. 6b). At first glance, it would appear that the input had fully 
overcome the chaotic divergence. However, quantification of variability by time course of 
divergence of membrane potentials,  𝑟, 𝑡 , showed that it dropped rapidly towards the 
independent trial average (Fig. 6c1, top).  When we resumed from identical initial conditions at 
different times, for example at the onset of evoked activity (Fig. 6c1, middle) or before onset 
(Fig. 6c1, bottom), 𝑟, 𝑡  dropped in the same way, subsequently converging to the average for 
independent trials. Indeed,  𝑠6(𝑡), the normalized difference between the resumed and 
independent 𝑟, 𝑡  showed a pattern of divergence remarkably similar to the divergence observed 
in simulations of spontaneous activity (Fig. 6c2). Resuming from a base state at the peak of 
evoked activity, 𝑠2345(𝑡) drops even faster (Supplementary Fig. 7a). A simpler stimulus, 
designed to imitate a whisker flick-type experiment17, yielded comparable results 
(Supplementary Fig. 7b,c).  Hence, any neuronal activity, whether spontaneous and 
unpredictable, or evoked and reliable, is ultimately constrained by similar chaotic network 
dynamics.  
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Figure 7: Spike-timing reliability amid noise and chaos 

(a1) Mean somatic membrane potential correlation, 𝑟, , between independent simulations, and between 
decoupled replays of those simulations (network simulation identical to Figure 7A2). (a2) Difference in 𝑟,  for 
decoupled and network simulations. (a3) Schematic of network and decoupled replay simulation paradigms, 
including thalamic input. (b) Somatic membrane potentials (𝑉=) of three representative neurons for the time 
interval highlighted by the red box in a. Top: during six independent trials. Bottom: five decoupled replay 
trials (green) with the same presynaptic input as during the original network simulation trial (red), but with 
different random seeds. (c) Network and decoupled 𝑟,  as in a, but only for the three sample neurons in b. 
(d) Top: Raster plot of spike times of the same three example neurons as in b, during 30 independent trials 
of evoked activity. Bottom: Decoupled replay trials (green) of the same input received during 5 of the 30 
original trials (dark red).  (e1) Mean spike-timing reliability 𝑟"jkTg	of 2024 pyramidal neurons from layers 4, 5, 
and 6 between independent network simulations, and between decoupled replay simulations with identical 
presynaptic inputs. (e2) Difference between 𝑟4jkTg of decoupled and replayed simulations. (e3) Difference 
between 𝑟"jkTg of decoupled and replayed simulations versus position of somata across layers 4,5 and 6 of 
microcircuit (1675 neurons). 
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Spike-timing reliability amid noise and chaos 

At first glance, our observations of reliable population spike responses and chaotic divergence of 
membrane potentials seem to be mutually exclusive. Could it be that membrane potential 
reliability is simply not correlated with spike-timing reliability, as we observed for the case of 
spontaneous activity? To answer this question, we again compared network simulations with 
decoupled replay simulations, which have no network propagation of activity (Fig. 7a3). As 
before, 𝑟, 𝑡  was much larger in the decoupled simulations (Fig. 7a1, black) than in the network 
simulations (Fig. 7a1, red; same as Figure 6a2). However, the difference between the two was 
always smaller during evoked activity (Fig. 7a2, after 0 ms) than during spontaneous activity 
(Fig. 7a2, before 0 ms). This suggests that network dynamics play a reduced role in generating 
variability during evoked activity. When we focus on individual neurons (Fig. 7b), we can see 
that that the difference between network and decoupled 𝑟, 𝑡  at times collapses to zero (Fig. 7c). 
In other words, variability due to network dynamics can intermittently be completely overcome 
for a sub-population of neurons in the network. Looking at the corresponding membrane 
potential traces, we observe that these moments occur during periods of reliable spiking (Fig. 
7b). During evoked activity, in contrast to spontaneous activity, moments of reliable membrane 
potentials can translate into reliable spiking, at least for some neurons. 

To get an idea of this effect at the population level, we compared spike time reliability 𝑟"jkTg with 
and without network dynamics (Fig. 7d). We observed that removing network dynamics only 
moderately increased spike-timing reliability (Fig. 7e1, red vs solid black line). In fact, increases 
in reliability were small for all neurons (Fig. 7e2, solid black line). In stark contrast to the 
spontaneous case, a small population of neurons in the network simulations achieved close to 
perfect spike reliabilities (Fig. 7e1).  As expected, most of the noise effects could be explained 
by synaptic noise alone (Fig. 7e1,2, dotted black line). We conclude that external stimuli can 
sparsely and transiently overcome chaotic network dynamics for sub-populations of neurons, 
though with a substantial residual variability caused by synaptic noise (albeit much smaller than 
during spontaneous activity).  
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Figure 8: High reliability requires recurrent cortical connectivity  
(a1) Overview of three simulation paradigms: spontaneous activity, network evoked activity (with network 
propagation intact and VPM input), and mixed replay (with network propagation replaced by replays of 
spontaneous activity spike trains, and VPM input) (a2) Examples of population spiking activity during the three 
simulation paradigms. (b1) Spike-timing reliability, 𝑟"jkTg, during spontaneous (blue) and evoked (purple) activity 
for 1675 excitatory neurons in the center of layers 4, 5 and 6. (b2) Spike-timing reliability, 𝑟"jkTg, during a mixed 
replay with VPM input but with network propagation disabled for the same neurons as in b1. (c) Difference in 
𝑟"jkTg between evoked activity with and without network propagation for 1892 excitatory neurons in the center of 
layers 4, 5 and 6 (same for d1-3). (d1) The number of presynaptic VPM fibers from which each neuron receives 
input versus 𝑟"jkTg in evoked simulations with (network) and without (mixed replay) network propagation. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/304121doi: bioRxiv preprint 

https://doi.org/10.1101/304121


	 23	

High reliability requires recurrent cortical connectivity 

It is conceivable that the spike-timing reliability we observed could simply be a result of direct 
and feed-forward input from VPN40. Indeed, when we look at changes in reliability without 
network dynamics, the strongest increase in reliability is in neurons at the bottom of layer six 
that receive comparatively little direct VPM input (Fig. 7e3). On the other hand, the VPM input 
was weak compared to the recurrent connectivity, making up only 7% of the connections onto 
neurons in layer 4, 4% for layer 5, and less than 3% for layer 6. To test whether the intermittent 
suppression of chaotic dynamics is simply an effect of the feed-forward input, we designed a 
new simulation paradigm similar to our previous decoupled replay, where each neuron received a 
combination of replayed presynaptic inputs from a simulation of spontaneous activity and from 
the direct feed-forward VPM input it received in the evoked network simulations (Fig. 8a1). 
That is, each neuron receives input as in a spontaneous activity trial through its recurrent 
synaptic contacts, and input as in an evoked trial through its feed-forward synaptic contacts. 

In this mixed replay paradigm, the population response was much weaker (Fig. 8a2). While in 
simulations of evoked activity all neurons showed higher reliability than in simulations of 
spontaneous activity (Fig. 8b1), in the mixed replay, the only cells that showed increased 
reliability were those close to the VPM synapses (Fig. 8b2). Furthermore, the only neurons to 
display similar reliability, with and without recurrent network propagation, were a small group in 
layer 4 (Fig. 8c). Taken together, these findings suggest that feed-forward VPM input alone is 
not enough to make the majority of neurons spike reliably. 

To test this hypothesis, we compared the reliability between the two simulation paradigms to the 
number of presynaptic VPM fibers innervating each neuron (Fig. 8d1-3). We can see that 
neurons in layer 4 that receive little direct VPM input responded more reliably with the network 
enabled than neurons that receive a lot of VPM input with no network effect (Fig. 8d1). 
Similarly, neurons in layers 5 and 6 were more reliable in mixed replay when they had more 
presynaptic VPM connections. However, this reliability increases drastically when network 
dynamics are enabled (Fig. 8d2,3). We conclude that the reliable spiking observed in response to 
VPM inputs is enabled and propagated by recurrent cortical connectivity, and that this is true 
both for neurons that receive large direct VPM input, and for neurons that receive little or no 
such input. In brief, in spontaneous activity, recurrent connectivity amplifies variability; in the 
evoked state, it amplifies reliability.  
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Discussion 

In the present study, we used a biologically constrained model of a prototypical neocortical 
microcircuit17 to estimate the intrinsic variability of local neocortical activity (Figs. 1-5) and 
explore the implications for reliable stimulus encoding (Figs. 6-8). We found that cortical 
circuitry supports millisecond-precision spike-time reliability amid highly variable, chaotic 
network activity. This resolves a long-standing question: Is the cortex too noisy for the precise 
timing of a spike to matter8,12,22,24? Put simply, if spiking is unreliable, information must be 
coded by firing rates estimated in populations of neurons22,24, whereas if it is reliable, precise 
spike timing of single neurons could contain significant information8,12. Here, we demonstrated 
cortical circuitry naturally supports both regimes. 

This debate has raged on for decades, because the experimental manipulations required to 
untangle the noise sources in the brain, and evaluate their impact on spike reliability, are 
impossible to perform in vitro or in vivo. Using the NMC-model, we were able to perform a 
series of simulation-based manipulations where we systematically added and removed noise 
sources to quantify their impacts. These manipulations yielded several novel insights. 

First, we found that spontaneous activity in cortical circuitry is intrinsically variable, both at the 
single neuron and population level (Figs. 1,2). While some of the effects of cellular noise sources 
on variability had been studied in single biophysical Hodgkin-Huxley type neuron models20,40–42, 
this is the first estimate of internally generated variability in an integrated, biologically 
constrained model of a cortical circuit. Our results confirm previous predictions of simplified 
network models that showed that biological details such as distance dependent connectivity43, 
feedback inhibition44, and differences in synaptic time scales45—all intrinsically part of our 
model—can lead to internally generated variability. 

Our second insight was that stochastic synaptic transmission is amplified by chaotic network 
dynamics to drive a rapid, chaotic divergence of the network, resulting in the above-mentioned 
variability (Figs. 3,4). Chaotic network dynamics without synaptic noise have been extensively 
studied22–24, and it has been suggested that synaptic noise generates high neural variability in 
postsynaptic neurons18,46. However, this is the first time that the interplay between stochastic 
synaptic transmission and chaotic network dynamics has been seen and understood. 

A third insight was that spike times were unreliable during spontaneous activity (Fig. 5), but 
became reliable during evoked activity (Figs. 6,7). Even comparatively weak thalamocortical 
input could switch the network to a highly reliable spiking regime. Left alone, the network is in a 
chaotic regime, but transient inputs can push the network towards a temporally precise regime 
where millisecond-precision spike-time reliability is possible. This explains how patterns of 
activity generated by cortical circuitry in response to sensory stimuli can often have millisecond 
spike-timing precision26,47. 

The fourth—and perhaps most surprising insight—is the mechanism for this dichotomous 
behavior. We determined that the recurrent network architecture causes both the amplification of 
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synaptic noise during spontaneous activity, and the quenching of the noise sources in the 
presence of input.  In the former case, the network is driven towards a chaotic, divergent regime, 
whereas in the latter, a temporally precise regime emerges (Fig. 8). The critical role of the 
recurrent network stands in contrast to previous modelling work which showed that relatively 
few synchronous thalamic inputs maximize reliability in single neurons in cat visual cortex40. 
However, this study likely overestimated synaptic reliability—synaptic release probabilities are 
lower in vivo than in vitro, both in general16 and in this specific pathway48. We conclude that the 
thalamic input is the trigger, but that the input can only pull the neurons out of chaos with help 
by the network. 

The exact mechanism for this triggering of reliable spiking, and the means by which signals are 
reliably propagated through the circuitry amid variable activity remains a subject for future 
investigation. One possible explanation is that certain connectivity motifs could amplify 
reliability through redundant connectivity.  Candidate motifs have already been identified in the 
NMC-model, such as common neighbor motifs49 and high-dimensional cliques that shape spike 
correlations between neurons38. Dendritic nonlinearities, such as N-Methyl-D-aspartate 
(NMDA)-mediated plateau potentials evoked by clustered synaptic inputs onto the dendritic tree 
could also play an important role50,51. 

 
Potential effects of missing biological detail 

While the NMC-model is one of the most detailed models of neocortical circuitry to date, several 
biological details are lacking. In terms of noise sources, the most important missing detail is ion-
channel noise. Other electrical noise sources such as thermal noise are orders of magnitude 
smaller13. 

The partial ion-channel noise in irregular firing neurons in the NMC-model (which is responsible 
for the irregular initiation of action potentials in vitro20) is overshadowed by synaptic noise under 
in vivo-like conditions (Fig. 4).  But how would additional ion-channel noise in axons and 
dendrites of all neurons impact variability? In dendrites, ion-channel noise is thought to evoke 
little to no variability in isolated back-propagating action potentials41. Thus, mean ion-channel 
models are likely sufficient for accurate action potential initiation. 

Action potentials reliably invade axonal arbors of neocortical pyramidal neurons without 
failures52. But as action potentials propagate along axons, their timing becomes increasingly 
variable. Simulations predict that ion-channel noise affects action potential timing in all axons 
with a diameter below 0.05 µm, with the standard deviation of action potential variability 
predicted to increase by 0.6 ms per 2 mm in 0.02 µm diameter axons21. In the NMC-model, 
axons have a mean axonal diameter of around 0.03 µm and are modeled deterministically. 
Therefore, ion-channel noise in longer axons could increase variability of spike timing by up to 
several milliseconds. 
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The missing ion-channel noise might push the circuit towards a more variable state. On the other 
hand, adding missing detail to the synapse models might increase reliability: The reliability of 
synaptic transmission increases with the number of readily releasable vesicles53. Some studies 
have found  univesicular synaptic transmission at cortical synapses54, while others have 
estimated there may be as many as ten releasable vesicles per synapse55. 

The current version of the NMC-model assumes one readily releasable vesicle per synapse, and 
thus potentially underestimates synaptic reliability. To estimate the potential impact of 
multivesicular release, we repeated the simulation experiments with an increasing number of 
readily releasable vesicles (𝑛66j) at all synapses (Supplementary Fig. 8). As expected, the time 
course of divergence slowed with increasing 𝑛66j. Nonetheless, for mean 𝑛66j values which 
reproduce cortical PSP variability data (𝑛66j = 2 − 3; data not shown), synaptic noise remains 
the dominant source of noise driving the rapid chaotic divergence. In addition, 𝑛66j may vary 
between and across synapse types, but a systematic exploration thereof is beyond the scope of 
the present study.  

There are other intrinsic mechanisms not yet included in the NMC model such as gap junctions, 
intra-circuit neuromodulation56 or active information transfer from glia to neurons57,58, whose 
contributions to variability within cortical circuits are as yet poorly understood. However, for 
these mechanisms to contribute significantly as additional noise sources above and beyond 
synaptic noise, they would have to cause somatic membrane potential differences on the order of 
1 mV (RMSD) (Fig. 4).

Concluding remarks 

In the intact animal, a neocortical microcircuit is integrated with the rest of the brain and 
constantly receiving input: around 80% of corticocortical synapses are formed with non-local 
neurons17, which are not yet accounted for in the NMC-model. In the behaving brain, most of 
this external input to the microcircuit will likely contain signals: for example, visual cortex is 
strongly modulated by movement-related activity59. 

This study provides, for the first time, a data-constrained biophysical framework towards 
theories of cortical coding that can integrate these signals along a spectrum: from population 
firing rates to reliable individual spike-times. We hypothesize that population firing rates might 
encode attentional states, general movement-related activity, or other slow variables, whereas 
patterns of spikes with high temporal precision26 might encode more particular information, such 
as the touch of a whisker or, perhaps, perception of a specific object. The critical role of the 
recurrent network for the reliable representation of information in these spike patterns further 
suggests that such patterns might play an important role in computations across the hierarchy of 
cortical regions60. The present study provides a solid foundation for future studies in this 
direction, and ultimately towards a deeper understanding of cortical information processing. 
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Methods 

Simulation 

Model of neocortical microcircuitry (NMC) 

Simulations of electrical activity were performed on a previously published model of a 
neocortical microcircuit in two-week old rat. Reconstruction and simulation methods are 
described extensively by Markram et al.17.  In our study, we used a microcircuit consisting of 
31,346 biophysical Hodgkin-Huxley NEURON models and around 7.8 million connections 
forming roughly 36.4 million synapses. Synaptic connectivity between 55 distinct morphological 
types of neurons (m-types) was predicted algorithmically by integrating anatomical data, such as 
layer-dependent cell type densities, morphologies and bouton densities, to generate a wiring 
diagram61 with highly heterogeneous connectivity38,62,63. Consequently, the NMC-model exhibits 
a naturally emerging structural and functional EI-balance62, without relying on assumptions 
about the exact level of coupling between excitatory and inhibitory currents. The densities of 
ion-channels on morphologically-detailed neuron models were optimized to reproduce the  
behavior of different electrical neuron types (e-types) as recorded in vitro64.  We also used a 
larger mesocircuit comprising seven microcircuits (mean of 36.5 million synapses per circuit), 
with no boundaries between the peripheral circuits and the original microcircuit in the center 
(only shown in Figure 2b). Simulations were run on a BlueGene/Q supercomputer (BlueBrain 
IV). NEURON models and the connectome are available online at bbp.epfl.ch/nmc-portal65. 

 

Simulation of in vivo-like spontaneous activity 

In the in vivo-like state, release probabilities for all synapses were modulated according to the 
extracellular calcium concentration found in vivo, leading to substantially lower reliability than 
in vitro16. As described by Markram et al.17, the 𝑢4o	parameter for synaptic transmission was 
modulated differentially as a function of  extracellular calcium concentration ( 𝐶𝑎#K p), 
allowing transitions from in vitro to in vivo-like dynamics. Neurons were depolarized with a 
somatic current injection, with currents expressed as a percent of first spike threshold for each 
neuron, to mimic, for example, the effect of depolarization due to missing neuromodulators. 
Apart from a small white-noise component (with a variance of 0.001% of the mean injected 
current per neuron, unless stated otherwise), the current injection was constant. With mean 
injected currents at around 100% of first spike threshold and 𝐶𝑎#K p at 1.25 mM, the 
microcircuit exhibits in vivo-like spontaneous activity17. 

 

Simulation of evoked activity 

The microcircuit is innervated by 310 (virtual) thalamic fibers17. In vivo spike train recordings 
from 30 VPM neurons were randomly assigned to the 310 fibers, to achieve varying degrees of 
naturalistic synchronous thalamic inputs. Spike trains were recorded during replayed texture-
induced whisker motion in anesthetized rats39. Full methods are described in Reimann et al.38. 
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The second stimulus consisted of synchronous spikes at the 60 central thalamic fibers, with all 60 
virtual thalamic neurons firing simultaneously, to approximate a whisker ‘flick’ (see Markram et 
al.17). 

 

Save-resume 

After running a simulation for some amount of biological time, the final states of all variables in 
the system were written to disk using NEURON’s SaveState class.  For large-scale simulations, 
this required the various processes to coordinate how much data each needed to write, so that 
each rank could then seek the appropriate file offset and together write in parallel without 
interfering with the others.  After restoring a simulation, the user could specify new random 
seeds (see below). 

 

Random numbers 

In our simulations, we used random number generators (RNGs) to model all stochastic 
processes: noisy current injection, stochastic ion channels, probabilistic release of 
neurotransmitters and generation of spontaneous release events. Each synapse had two RNGs. 
One was used to determine vesicle release on the arrival of an action potential. The other 
determined the spontaneous release signal. Similarly, each stochastic 𝐾K-channel model had a 
RNG determining voltage-dependent opening and closing times. Finally, the white noise process 
underlying the noisy depolarization was determined by one RNG per neuron. By using different 
random seeds to initialize the RNGs, we obtained different sequences of random numbers, and 
consequently different but equally valid simulation outcomes. In earlier versions of the 
NEURON microcircuit simulation software, the user was given only a single random seed 
parameter with which to alter the random number streams generated by all RNGs.  We added the 
option to separately change random seeds for RNGs for a specific type of stochastic component.  
For example, "IonChannelSeed <value>" allows the specification of a seed which is only given 
to the RNGs used by ion channel instances. 

 

Stochastic ion-channels 

In some interneuron models, a potassium channel type with a stochastic implementation was 
added using previously-described methods17,20,41. This made it possible to model ion channel 
noise. Instead of a mean field model, the equations used explicitly track the number of channels 
in a certain state and allow these numbers to evolve stochastically. When the seed of the random 
process changes, the small fluctuation caused by the channel noise change with it, but the mean 
behavior of the ion channel remains the same. 
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Stochastic synapses 

The synapse models are described in full detail in Markram et al.17. Each synapse has one RNG 
to determine vesicle release upon action potential arrival at the synapse. A second RNG is used 
to determine the signal for spontaneous miniature post synaptic potentials. When the synapse 
receives the signal for a spontaneous release event, it is treated as a presynaptic action potential. 
Therefore, changing the random seed for the minis will eventually change the random number 
stream for vesicle release for presynaptic spikes, and therefore lead to a “pseudo-deterministic” 
synapse. 

 

Multivesicular release 

The synapse model used in this study (see Markram et al.17) supports multivesicular release 
(MVR): each release event activates a fraction of the maximal postsynaptic conductance (𝑔=hs) 
proportional to the size of the readily-releasable pool of vesicles (𝑛66j). In the univesicular case 
(𝑛66j = 1), the release of one vesicle is sufficient to completely activate the postsynaptic 
conductance. However, when 𝑛66j > 1, full activation requires the release of all available 
presynaptic resources. This allowed us to independently control the mean postsynaptic response 
to synapse activation (which depends on  𝑔=hs, but not 𝑛66j) and its instantaneous profile 
(where 𝑛66j matters). 

 

Deterministic synapse model 

In the deterministic synapse model, the 𝑢4o variable is interpreted as the fraction of consumed 
resources, rather than a release probability. That is, each release event activates a fraction of 
postsynaptic conductance proportional to 𝑢4o. For this reason, DetAMPANMDA and 
DetGABAAB are identical to their stochastic (multivesicular) counterparts in the limit as 𝑛66j →
	∞. 

 

Single spike injection 

We injected single spikes in twenty different layer 4 pyramidal neurons (and twenty random 
neurons across the circuit, data not shown) by replaying (see below) an additional spike event in 
one neuron per simulation. Thus, there were no shifted or missing spikes, as may occur when 
injecting a spike in vivo. The spike was injected 0.1 ms after resuming the simulation from 
identical initial conditions. 

 

Step-pulse perturbation 

We applied a microscopic current step-pulse to all neurons at their soma 0.1 ms after resuming 
the simulation (duration: 0.1 ms, amplitude: 1 pA,). The current was chosen to have an almost 
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negligible effect on individual neurons, and was near the limit of the NEURON integrator. On 
average, 108 ± 8 neurons out of 31,346 neurons had any changes in their spike times (mean of 19 
trials ± STD). The majority of the shifted spikes were shifted by less than 0.05 ms (59.1%: < 0.05; 
33.1%: < 1 ms.; 5.5%: < 20 ms; 1.8%: < 100 s; 0.5%: < 1 s). Finally, 3 ± 2 neurons had extra or 
missing spikes. The median first occurrence of an extra or missing spike was at 257 ms (min: 11 
ms, max: 946 ms after resuming). 

 

Decoupled replay 

When resuming a simulation at 𝑡', we decoupled all connections by setting the connection 
weights to zero, ensuring that action potentials would be delivered to the synapses of 
postsynaptic neurons. At the same time, we started replaying action potential times from a 
previous resumed simulation, activating the synapses of postsynaptic neurons as if the 
presynaptic neuron had fired an action potential, but actually replaying presynaptic action 
potentials from the previous simulation. For computational reasons, spikes that had not been 
delivered at the save time 𝑡' were not delivered in the decoupled replay (meaning that a couple 
of presynaptic spikes per neuron may have been lost, leading to a slight underestimation of 
divergence). 

 

Analysis 

RMSD and correlation 

All analysis was performed using custom scripts written in Python 2.7 using the NumPy, 
matplolib and SciPy libraries. Scripts were executed on a Linux cluster connected to the same 
IBM GPFS file system that the simulation output was written to. Root-mean-square deviation 
𝑅𝑀𝑆𝐷, and correlation 𝑟, as defined in Equations 1 and 2 were implemented with NumPy. 

 

Similarity 

The similarity measure 𝑠(𝑡) was defined as the normalized difference between diverging  𝑟, 𝑡  
(or 𝑅𝑀𝑆𝐷,(𝑡)), and steady-state 𝑟, 𝑡  (or 𝑅𝑀𝑆𝐷,(𝑡)). The steady-state value was defined, as 
the continuous 𝑟,,"uvwwxg 𝑡 	computed by shuffling the soma voltages between simulation trials, 
so that instead of 40 deviating pairs of trajectories, we compared 40 independent pairs of 
trajectories. As an alternative, we defined it as the mean stationary, fully deviated 𝑟M	for t > 1000 
ms after resuming from identical initial conditions. 

 

Firing rate 

Firing rate was defined as the average number of spikes in a time interval of size ∆𝑡, divided by 
∆𝑡 (∆𝑡 = 10	𝑚𝑠, unless stated otherwise). 
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Neuron selection 

We selected all excitatory neurons in layers 4, 5 and 6 that belonged to the 30 minicolumns (out 
310 in total) in the center of microcircuit (n = 2024). The analysis was restricted to neurons that 
spiked at least once in each of the compared simulation paradigms. 

 

Spike-timing reliability 

Spike-timing reliability was measured using a correlation-based measure first proposed by 
Schreiber et al.37. Briefly, the spike times of each neuron in each trial were convolved with a 
Gaussian kernel of width 𝜎" = 5	𝑚𝑠 to yield filtered signals 𝑠 𝑛, 𝑘; 𝑡  for each neuron n and 
each trial k (∆𝑡" = 1	𝑚𝑠).  The spike-timing reliability for each neuron was then defined as the 
mean inner product between pairs of signals divided by their magnitude: 𝑟"jkTg(𝑛) =

#
y(yLE)

" S,T;J ∙"(S,x;J)
|"(S,T;J)|∙|"(S,x;J)|T{x , (K = 30; independent trials). Decoupled replay: there are M=5 

replays of each of the K=30 trials, and thus 	𝑟"jkTg(𝑛) =
#

y3(3LE)
"Q S,T;J ∙"Q(S,x;J)
|"Q(S,T;J)|∙|"Q(S,x;J)|T{x= . 

 

Errors and statistical tests 

Error bars and shared areas indicate 95%-confidence intervals (CI), unless stated otherwise. t-
based CIs (n = 20; or n = 40 if stated) were computed using scipy.stats.sem and scipy.stats.t.ppf 
to compute P-values from the CIs. Errors for fit parameters, obtained with 
scipy.optimize.curve_fit, are given as the square-root of the variance of the parameter estimate. 
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Supplementary figures (1 –8) 
 

 

 

 

 

 
 

Supplementary Figure 1: Quantifying the rapid divergence of electrical activity 
(a1) Root-mean square deviation (𝑅𝑀𝑆𝐷,) and correlation (𝑟,) of the somatic membrane potentials 
between pairs of resumed simulations diverging from identical conditions, for five different base states 
(faded colors) and the mean of 40 saved base states (red), with ∆𝑡 = 10	𝑚𝑠. Same neurons as in Fig. 1c. 
(a2) Same as a1, but with ∆𝑡 = 1𝑚𝑠.  (b) Mean divergence in the first 10 ms, with ∆𝑡, = 0.1	𝑚𝑠 (mean of 
all neurons and 40 saved base states ± standard deviation). (c) 𝑅𝑀𝑆𝐷, and 𝑟, for different analysis bin 
sizes ∆𝑡. The time step for the soma voltage is ∆𝑡, = 0.1	𝑚𝑠. (d) The similarity (𝑠2345	and 𝑠6) (mean ± 
95% confidence interval). Dots signal where 𝑠2345 and 𝑠6 are larger than 0, by a 95% confidence interval 
(p < 0.025).  
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Supplementary Figure 2: Rapid divergence of population firing rate 
Mean population firing rate difference (∆𝑡 = 5	𝑚𝑠)	between pairs of simulations 
diverging from identical initial conditions (mean of all neurons and of 40 saved 
base states ± 95% confidence interval). 
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Supplementary Figure 3: Linear relationship between 𝑹𝑴𝑺𝑫𝑽 and 𝒓𝑽 
Root-mean square deviation (𝑅𝑀𝑆𝐷,) and correlation (𝑟,) of the somatic membrane potentials between 
pairs of simulations diverging from identical initial conditions (mean of all neurons and saved base states). 
(a) Changing random seeds for subsets of noise sources with the standard stochastic release model. (b) 
Changing random seeds for subsets of noise sources with a mean release model. (c) Standard stochastic 
release model for decoupled, replayed simulations. 
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Supplementary Figure 4: Mean synaptic release model 
(a) Correlation 𝑟, (as in Fig. 4 and Supplementary Fig. 5), with pseudo-deterministic 
synaptic release by not changing the random seeds for vesicle release (but with a change in 
‘mini’ signals for b). (b) As in a, but with deterministic synaptic release (mean release 
model), apart from abcd which has the fully stochastic model. 
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Supplementary Figure 5: Unravelling noise sources 
(a) Correlation 𝑟,	from identical initial conditions with different cellular noise sources turned on, and when 
turning of cellular noise, but perturbing the system by a single extra spike (in one neuron) or a miniscule 
perturbation in all neurons. (b) Steady-state membrane potential fluctuations (𝑅𝑀𝑆𝐷M) and correlations 
(𝑟M) for network simulations (b1) and decoupled, replayed simulations (b2) for different noise sources. (c) 
Similarity 𝑠6/2345 at 10-20 ms for network simulations (c1) and decoupled, replayed simulations (c2) for 
different noise sources. (d-e) Same as b-c, but only for the subset of neurons that have stochastic ion-
channels (irregularly firing e-types, 1’137 out of 31’346 neurons). All error bars indicate 95% confidence 
intervals, based on 20 pairs of simulations (40 for abcd).  
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Supplementary Figure 6: Predicting impact of other noise sources 

(a) Correlation 𝑟, when only changing random seeds for noisy depolarization, but with 
different magnitudes of noise. (b) As in a, but with all noise sources enabled by changing 
random seeds. 
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Supplementary Figure 7: Divergence of evoked activity 
(a) The similarity 𝑠2345 defined as the difference between the 𝑅𝑀𝑆𝐷, of diverging and 
independent trials, normalized to lie between 1 (identical) and 0 (fully diverged) (mean ± 95% 
confidence interval), for the thalamic stimulus.  (b) Population raster plot and population 
peristimulus time histogram (PSTH) of all 31’346 neurons in the microcircuit, during evoked 
activity with a simplified “whisker flick” stimulus (60 VPM neurons are firing at the same time, 
one spike). (c1) As a, but for the “whisker flick” stimulus. (c2) As c1, but for 𝑠6 instead of 
𝑠2345. 
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Supplementary Figure 8: Multivesicular release 
Change in divergence time course depending on the size of the pool of readily releasable 
vesicles (𝑛66j). Quantified by similarity of the somatic membrane potentials diverging from 
identical initial conditions: (a) 𝑠2345	and (b) 𝑠6. (mean of all neurons and n base states ± 95% 
confidence interval). (UVR: n = 40; all others: n = 20). 
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