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Abstract

We introduce a novel scalable approach to identifying common latent structure in
neural population spike-trains, which allows for variability both in the trajectory
and in the rate of progression of the underlying computation. Our approach is
based on shared latent Gaussian processes (GPs) which are combined linearly, as
in the Gaussian Process Factor Analysis (GPFA) algorithm. We extend GPFA to
handle unbinned spike-train data by incorporating a continuous time point-process
likelihood model, achieving scalability with a sparse variational approximation.
Shared variability is separated into terms that express condition dependence, as
well as trial-to-trial variation in trajectories. Finally, we introduce a nested GP
formulation to capture variability in the rate of evolution along the trajectory. We
show that the new method learns to recover latent trajectories in synthetic data, and
can accurately identify the trial-to-trial timing of movement-related parameters
from motor cortical data without any supervision.

1 Introduction

Many computations in the brain are thought to be implemented by the dynamical evolution of activity
distributed across large neural populations. As simultaneous recordings of population activity have
become more common, the need has grown for analytic methods that can identify these dynamical
computational variables from the data. Where the computation is tightly coupled to an externally
measurable covariate — a stimulus or a movement, perhaps — such identification is a simple matter
of exploiting linear or non-linear regression to describe a population encoding or decoding model.
However, when aspects of the computation are likely to reflect internal mental states, which may vary
substantially even when external covariates remain constant, the relevant variables must be uncovered
from neural data alone, most typically using a latent variable model [1–6].

However, most such methods fail to account properly for at least one key form of dynamical variability
— trial-to-trial differences in the timing of the computation. Such differences may be reflected in
behavioural variability, for instance in reaction times or movement durations [7], or in varying
relationships between external events and neural firing, for instance in sensory onset latencies [8]. In
some cases manual alignment to salient external events or behavioural time-course may be used to
reduce temporal misalignment [8, 9]. However, just as with variability in the trajectories themselves,
temporal variations in purely internal states must ultimately be identified from neural data alone [10].

A particularly challenging problem is to build models that capture the variability both in the latent
trajectories underlying spiking population activity, and in the time-course with which such trajectories
are followed. Temporal misalignment in trajectories might be confused for variability in the trajectory
itself; while genuine variability in that trajectory makes alignment more difficult. Indeed, previous
work has considered these problems separately. Algorithms like dynamic time warping (DTW) [11]
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treat the time-series as observed and try to estimate an optimal alignment of each series. DTW and
related approaches may suffer in settings where observed data are noisy, though recent work has
begun to explore more robust [12–15], or probabilistic alternatives for time-series alignment [16–18].
Furthermore, these approaches generally assume a Gaussian noise model. Only recently work has
considered pairwise alignment of univariate point-processes [19–21]. We are not aware of any work
that considers multivariate point processes, such as a set of spike-times of simultaneously recorded
neurons.

In this work, we develop a novel method to jointly infer shared latent structure directly from the
spiking activity of neural populations, allowing for (and identifying) trial-to-trial variations in the
timing of the latent processes. We make two main contributions.

First, we extend Gaussian Process Factor Analysis (GPFA) [2], an algorithm that has been successfully
applied in the context of extracting time-varying low-dimensional latent structure from binned neural
population activity on single trials, to directly model the point-process structure of spiking activity.
We do so using a sparse variational approach, which both simplifies the adoption of a non-conjugate
point-process likelihood, and significantly improves on the scalability of the GPFA algorithm.

Second, we combine the sparse variational GPFA model with a second Gaussian process in a nested
model architecture. We exploit shared latent structure across trials, or groups of trials, in order to
disentangle variation in timing from variation in trajectories. This extension allows us to infer latent
time-warping functions that align trials in a purely unsupervised manner – that is, using population
spiking activity alone with no behavioural covariates. We apply our method to simulated data and
show that we can more accurately recover firing rate estimates than related methods. Using neural
data from a variable-delay centre-out reaching task in macaque, we demonstrated that the inferred
alignment is behaviourally meaningful and highly predictive of reaction times.

2 Gaussian Process Factor Analysis

Gaussian Process Factor Analysis (GPFA) is a method for inferring latent structure that is shared
across a population of neurons from single trials [2]. Temporal correlations in the high-dimensional
neural population are modelled via a lower number of shared latent processes xk(·), k = 1, . . . ,K,
which linearly relate to a high-dimensional signal hhh(·) ∈ RN in neural space. Thus, inter-trial
variability in neural firing that is shared across the population is modelled via the evolution of the
latent processes on a given trial.

In the GPFA model, a Gaussian process (GP) prior is placed over each latent process xk(·), specified
via a mean function µk(·) and a covariance function, or kernel, κk(·, ·). The extent and nature of the
temporal correlations is specified by κk(·, ·) and governed via hyperparameters.

The classic GPFA model in [2] considers regularly sampled observations of hhh(t) that are corrupted by
axis-aligned Gaussian noise. Recent work has aimed to extend GPFA to a Poisson observation model
[22]. Here, hhh(t) is related to a piecewise-constant firing rate of a Poisson process whose counting
process is observed as spike-counts falling into time bins of a fixed width.

We can summarise the GPFA generative model for observations y(r)
n (ti) of neuron n on trial r in a

general way by writing

x
(r)
k (·) ∼ GP(µk(·), κk(·, ·)) for k = 1, . . . ,K

h(r)
n (·) =

K∑
k=1

cn,kx
(r)
k (·) + dn for n = 1, . . . , N

y(r)
n (ti) ∼ p(y(r)

n (ti)|h(r)
n (ti)) for i = 1, . . . , T

(1)

The cn,k are weights for each latent and neuron that define a subspace mapping from low-dimensional
latent space to high-dimensional neural space, dn is a constant offset.

A severe restriction of GPFA is its poor scaling properties: Since time is evaluated on an evenly spaced
grid with T points, GPFA requires building and inverting a T × T covariance matrix, which scales
cubically in the time-series length. The intractability of performing exact inference in GPFA models
with non-conjugate likelihood adds further complexity on top of this [22, 23]. In the next section, we
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will outline how to improve the scalability of GPFA irrespective of the choice of observation model
via the use of inducing points.

3 Sparse Variational Gaussian Process Factor Analysis (svGPFA)

The framework of sparse variational GP approximations [24] has helped to overcome difficulties
associated with the scalability of GP methods to large sample sizes. It has since been applied to
diverse problems in GP inference, contributing to improvements of the scalability of GP methods to
large datasets and complex, potentially non-conjugate applications [25–29].

A sparse variational extension of the GPFA model introduced in section 2 can be obtained by
extending the work on additive signal decomposition in [25]. The main idea is to augment the model
in (1) by introducing inducing points uuuk for each latent process k = 1, . . . ,K. The inducing points
uuuk represent function evaluations of the kth latent GP at Mk input locations zzzk. A joint prior over
the process xk(·) and its inducing points can hence be written as

p(uuuk|zzzk) = N
(
uuuk|000,K(k)

zz

)
p(xk(·)|uuuk) = GP(µ̃k(·), κ̃k(·, ·))

(2)

where the GP prior over xk(·) is now conditioned on the inducing points with conditional mean and
covariance function

µ̃k(t) = κκκk(t, zzz)K(k)
zz

−1
uuuk

κ̃k(t, t′) = κk(t, t′)− κκκk(t, zzzk)K(k)
zz

−1
κκκk(zzzk, t

′)
(3)

κκκk(·, zzz) is a vector valued function taking a single input argument and consisting of evaluations of
the covariance function κk(·, ·) at the input and inducing point locations zzzk. K(k)

zz is the Gram matrix
of κk(·, ·) evaluated at the inducing point locations.

We follow [25] in choosing a factorised variational approximation for posterior inference of the form
q({uuuk}Kk=1, x1:K) =

∏K
k=1 p(xk|uuuk)q(uuuk), with Gaussian q(uuuk) = N (uuuk|mmmk, Sk). This choice

of posterior approximation makes it possible to derive a variational lower bound to the marginal
log-likelihood over the observed data Y = {yyy(r)

1 , . . . , yyy
(r)
N }Rr=1 of the form

log p(Y) ≥
R∑
r=1

N∑
n=1

E
q(h

(r)
n )

[
log p(yyy(r)

n |h(r)
n )
]
−

R∑
r=1

K∑
k=1

KL
[
q(uuu

(r)
k )‖p(uuu(r)

k )
]
def
= F (4)

where q(h(r)
n ) is the variational distribution over the affine transformation of the latents for the nth

neuron obtained from q(x) =
∫
p(x|uuu)q(uuu)duuu. q(h(r)

n ) is a GP with additive structure. Its mean
function ν(r)

n (t) and covariance function σ(r)
n (t, t′) are given by

ν(r)
n (t) =

∑
k

cn,k κκκk( t , zzzk) K(k)
zz

−1
mmm

(r)
k + dn

σ(r)
n (t, t′) =

∑
k

c2n,k

(
κk(t, t′) + κκκk(t, zzzk)

(
K(k)
zz

−1
S

(r)
k K(k)

zz

−1
− K(k)

zz

−1
)
κκκk(zzzk, t

′)
) (5)

Evaluating the above scales linearly in the number of time points T and cubically only in the
number of inducing points. Maximising the lower bound F in (4) allows for variational learning
of the parameters in q(uuuk), the kernel hyperparmeters, the inducing point locations, and the model
parameters describing the affine transformation from latents to hn’s.

3.1 A continuous-time point-process observation model

The form of the variational lower bound in (4) makes it clear that including different observation
models only requires taking a Gaussian expectation of the respective log-likelihood. Importantly, the
inference approach is essentially decoupled from the locations of the observed data. This crucial
consequence of the inducing point approach makes it possible to move away from gridded, binned
data and fully exploit the power of GPs in continuous-time.
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Previous work has used sparse variational GP approximations to infer the intensity of a univariate
GP modulated Poisson process [26]. Here, we extend this to the multivariate case by combining
the svGPFA model with a point-process likelihood. To do this, we relate the affine transformation
of the latent processes for the nth neuron, hn(·), to the non-negative intensity function of a point-
process, λn(·), via a static non-linearity g : R→ R+. Thus, the spike times of neuron n on trial r,
ttt
(r)
n = {t1, . . . tΦ(n,r)}, are modelled as

p(ttt(r)n |λ(r)
n ) = exp

(
−
∫ Tr

0

dt λ(r)
n (t)

)
Φ(n,r)∏
i=1

λ(r)
n (ti) (6)

Where λn(t) = g(hn(t)), Tr is the duration of the rth trial, and Φ(n, r) is the total spike-count of
neuron n on trial r. The expected log-likelihood term in (4) can be evaluated as

E
q(h

(r)
n )

[
log p(ttt(r)n |h(r)

n )
]

= −
∫ Tr

0

E
q(h

(r)
n )

[
g(h(r)

n (t))
]
dt+

Φ(n,r)∑
i=1

E
q(h

(r)
n )

[
log g(h(r)

n (ti))
]

(7)

The resulting expected log-likelihood in (7) still contains an integral over the expected rate function
of the neuron, which cannot be computed analytically. However, the integral is one-dimensional and
can be computed numerically using efficient quadrature rules [30, 31].

Our svGPFA model with a point-process likelihood already fully addresses the two major limitations
of the classic GPFA approach outlined in section 2: Firstly, it improves the scalability of the algorithm
via the use of inducing points, scaling cubically only in the number of inducing points per latent and
linearly in the total number of spiking events. Secondly, our approach appropriately models neural
spike trains as observations of a point-process. The svGPFA model with a point-process likelihood
will provide the basis for further extensions addressing temporal alignment across trials, which will
be the focus of the following section.

4 Temporal alignment and latent factor inference using Gaussian processes

The svGPFA model we have developed in section 3 aims to extract different latent trajectories on each
trial. It does not explicitly model any structure that is shared across trials, and each trial’s variable
time-course is simply captured via inter-trial differences in latents. In this section, we will extend our
basic svGPFA model in order to disentangle inter-trial variations in time-course from variations in
the latent trajectories themselves. To achieve this, we explicitly model latent structure that is shared
across trials, across subsets of trials, or that is trial specific and make use of a nested GP architecture
with time-warping functions. In this way, shared, neurally-defined latent structure provides an anchor
for the temporal alignment across trials. We extend the previous inducing point approach in order to
arrive at a sparse variational inference algorithm in this setting.

4.1 A generative model for population spike times with grouped trial structure and variable
time courses

We introduce latent processes that are shared across all trials, across subsets of trials that share the
same experimental condition, or that are specific to each individual trial. We model each of these as
draws from a GP prior with K latent processes, L experimental conditions, and R trials:

shared: αk(·) ∼ GP(µαk (·), καk (·, ·)) for k = 1, . . . ,K

condition-specific: β
(`)
k (·) ∼ GP(µβk(·), κβk(·, ·)) for ` = 1, . . . , L

trial-specific: γ
(r)
k (·) ∼ GP(µγk(·), κγk(·, ·)) for r = 1, . . . , R

(8)

Allowing each of these latents to evolve in potentially separate subspaces, we define the linear
mapping from low-dimensional latent, to high-dimensional neural space to be of the form

h(r)
n (·) =

K∑
k=1

(
cαn,kαk(·) + cβn,kβ

`(r)
k (·) + cγn,kγ

(r)
k (·)

)
+ dn (9)
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(a)
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Figure 1: (a) generative model architecture. (b) the augmented model with inducing points.

where `(r) is the condition of trial r. When these latents are evaluated on a canonical time-axis all
trials evolve according to the same time-course. To incorporate inter-trial variability in time-course
into our model, we include a second GP that acts to warp time differently on each trial:

time-warping: τ (r)(·) ∼ GP(µτ (·), κτ (·, ·)) for r = 1, . . . , R (10)

As before, we can relate hn(·) to the neuron’s firing rate via a static non-linearity g(·), and use
a point-process observation model for spike times. Thus, the firing rate of neuron n on trial r is
described as λ(r)

n (t) = g(h
(r)
n (τ (r)(t))). This generative model is summarised in Figure 1(a).

4.2 Sparse variational inference using inducing points

The generative model introduced in section 4.1 is a two-layer GP, where one layer has additive
structure. Previous work in the GP literature has successfully applied inducing point approaches for
variational inference in nested GP architectures [32, 33] (albeit without explicit additive decomposi-
tions within layers), and we can take a similar approach here.

We introduce sets of inducing points for each of the latent processes αk(·), β(`)
k (·), γ(r)

k (·), and τ (r)(·),
which we will denote as uuuαk , uuuβ,(`)k , uuuγ,(r)k , and uuuτ,(r), respectively. The augmented model using in-
ducing points is summarised in Figure 1(b). For each of the latent processes ζ = {α, β, γ} we choose
a factorised approximating distribution of the form q({ζk,uuuζk}Kk=1|τ) =

∏K
k=1 p(ζk|uuu

ζ
k, τ)q(uuuζk) with

q(uuuζk) = N (uuuζk|mmm
ζ
k, S

ζ
k). For the time-warping process, we choose q(τ,uuuτ ) = p(τ |uuuτ )q(uuuτ ) with

q(uuuτ ) = N (uuuτ |mmmτ , Sτ ).

Using this approximation, the variational lower bound to the marginal log-likelihood becomes

F =
∑
r,n

E
q(h

(r)
n )

[
log p(yyy(r)

n |h(r)
n )
]
−
∑
r

KL
[
q(uuuτ,(r))‖p(uuuτ,(r))

]
−
∑
k

KL [q(uuuαk )‖p(uuuαk )]−
∑
`,k

KL
[
q(uuu

β,(`)
k )‖p(uuuβ,(`)k )

]
−
∑
r,k

KL
[
q(uuu

γ,(r)
k )‖p(uuuγ,(r)k )

]
(11)

The mean and covariance function of the variational GP q(h(r)
n ) are given by

ν(r)
n (t) =

∑
ζ,k

cζn,k Ψ
ζ,(r)
k,1 (t, zzzζk) Kζ,(k)

zz

−1
mmm
ζ,(r)
k + dn

σ(r)
n (t, t) =

∑
ζ,k

cζn,k
2
(

Ψ
ζ,(r)
k,0 (t) + Tr

[(
Kζ,(k)
zz

−1
S
ζ,(r)
k Kζ,(k)

zz

−1
− Kζ,(k)

zz

−1
)

Ψ
ζ,(r)
k,2 (t, zzzζk)

])
(12)

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/331751doi: bioRxiv preprint 

https://doi.org/10.1101/331751


The Ψ
ζ,(r)
k,i (t, zzzζk) are the Ψ-statistics [32, 34] of the kernel covariance functions

Ψ
ζ,(r)
k,0 (t) = Eq(τ(r))

[
κκκζk( τ (r)(t) , τ (r)(t))

]
Ψ
ζ,(r)
k,1 (t, zzzζk) = Eq(τ(r))

[
κκκζk( τ (r)(t) , zzzζk)

]
Ψ
ζ,(r)
k,2 (t, zzzζk) = Eq(τ(r))

[
κκκζk(zzzζk, τ

(r)(t))κκκζk(τ (r)(t), zzzζk)
] (13)

The Ψ-statistics can be evaluated analytically for common kernel choices such as the linear, ex-
ponentiated quadratic, or cosine kernel. For other kernel choices they can be computed using
e.g. Gaussian quadrature. Finally, the variational distribution over the time-warping functions
q(τ (r)) =

∫
p(τ (r)|uuuτ,(r))q(uuu(τ,(r))duuu(τ,(r) is also a GP with mean and covariance function

ντ,(r)(t) = κκκτ ( t , zzzτ ) Kτzz
−1 mmmτ,(r)

στ,(r)(t, t′) = κτ (t, t′) + κκκτ (t, zzzτ )
(
Kτzz
−1Sτ,(r)Kτzz

−1 − Kτzz
−1
)
κκκτ (zzzτ , t′)

)
.

(14)

The variational lower bound in (11) can thus be evaluated tractably and optimised with respect to all
parameters in the model.

5 Results

5.1 Synthetic data

We first generate synthetic data for 100 neurons on 15 trials that are each one second in duration.
The neural activity is driven by one shared and one condition-specific latent process. We omit the
trial-specific latent process here, such that inter-trial variability is solely due to the variable time-
course of each trial and independent Poisson variability in the spiking of each neuron. The generative
procedure is illustrated in Figure 2 and aims to provide a toy simulation of decision-making, where
trial-to-trial differences in the decision-making process are modelled via the time-warping.

0 1
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-0.5
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time-warping

exp (·)

τ t

β
`
(τ
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α
(τ
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`
(t
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α
(t
)

τ
(t
)

t

` = 1

` = 2

shared

condition-specific

time

ne
ur

on
id

x

population firing rates λ(t)

trial1
trial2

Figure 2: Synthetic data example: the shared latent reflects a gating signal; conditions are preferred
and anti-preferred for each neuron. Inter-trial differences in the decision-making process are modelled
via time warping. Warped latents are shown for two example trials per condition. The warped latents
are mixed linearly and passed through an exponential non-linearity to generate firing rates, which
drive a Poisson process. Example spike rasters are superimposed over the population firing rates for
two example trials of different conditions.

We first investigate how our sparse variational inference approach compares to the Poisson GPFA
approach proposed in [22] (vLGP), using published code1 which includes some further numerical
approximations for speed. Figure 3(a) shows that the svGPFA methods achieve an improved approxi-
mation at lower or comparable runtime cost. We next fit the time-warped method (tw-pp-svGPFA)
with 5 inducing points for the shared and condition-specific latents, and 8 inducing points for the
time-warping latent. We use Gauss-Legendre quadrature with 80 abscissas for evaluating the log-
normaliser term in (7). We compare tw-pp-svGPFA with time-warped PCA [10] (twPCA)2, vLGP, a

1https://github.com/catniplab/vlgp
2https://github.com/ganguli-lab/twpca
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Figure 3: (a) runtime in seconds vs. approximation error of inference approach (under generative
parameters and matched kernel hyperparameters) of pp-svGPFA (solid) with different numbers
of inducing points (nZ) and vLGP (dashed). Approximation error is computed as the mean KL-
divergence between the respective marginal distributions q(hn(t)) and those of a full Gaussian
variational approximation over latent processes. (b) comparison of RMSE of inferred firing rates
across different methods and bin widths. K = 2 for all methods. (c) relative runtime comparisons
across svGPFA methods.

latent linear dynamical systems model with Poisson observations (PLDS) [5], and our point-process
(pp-) and Poisson (P-) svGPFA model without time-warping, but with all other settings chosen
equivalently. For the discrete-time methods, we bin the spike trains at different resolutions before
applying either method to the data.

Figure 3(b) shows the RMSE in inferred firing rates of each method. The svGPFA variants achieve
the best posterior estimate of firing rates throughout. The svGPFA models without time-warping and
vLGP have to fit the temporal variability via inter-trial differences in the latent processes. PLDS has to
use innovations noise to explain any inter-trial variability. Thus, neither of these approaches enables
one to dissociate variations in time-course from other sources of inter-trial variability. In the case of
the PLDS, discrepancies between the inferred latent path, and a canonical path as predicted via the
learnt dynamical operator could in principle be used to estimate an alignment across trials. However,
innovations noise is typically modelled via a stationary parameter which restricts the capacity of
such an approach to capture more complex variations in timing. twPCA does not assume a noise
model for spike train data and thus has difficulties in recovering the firing rates and time-warped
structure underlying the spike train data. This is especially true since spiking is relatively sparse in
our example. Figure 3(c) compares the relative runtime between the different svGPFA models.

5.2 Variable-delay centre-out reaching task

We apply tw-pp-svGPFA to simultaneously recorded spike trains of 105 neurons in macaque PMd
and M1 during a variable-delay centre-out reaching task [2]. In this task, the animal is presented with
one of multiple possible target locations, but has to wait for a variable duration before it receives
the instruction to perform an arm-reach to the target. Beyond these designed sources of inter-trial
variability, there are also variations in reaction time and movement kinematics, as well as extra
variability in neural firing. We fit our model to repeated trials from 5 different target directions (12
trials per condition). We use 20 inducing points per latent, 10 inducing points for the time-warping
functions, and 100 Gauss-Legendre quadrature abscissas to evaluate the log-normaliser term in (7).

1 5 10

7

7.3

LO
N

O
 p

re
d-

lo
gl

ik

104

warped
nonwarped

Figure 4: Leave-one-neuron-out (LONO) cross-validation across
latent dimensionality on 15 held-out trials (3 per condition). Results
are shown for models with an exponential static non-linearity, with
and without the time-warping layer. The time-warped models achieve
a higher predictive log-likelihood than their non-warped analogues.
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We perform model comparison across latent dimensionality by leave-one-neuron-out cross-validation
on held-out data [2]. To demonstrate the benefit of time-warping, we compare the time-warped
models to their svGPFA analogues without a time-warping layer. Figure 4 shows that time-warping
results in a substantial increase in predictive log-likelihood on held-out data.

Figure 5(a) shows that the inferred time-warping functions automatically align the latent trajectories
to the onset of movement (MO). The model did not have access to this information and the alignment
is purely based on structure present in the neural population activity. Furthermore, the time passed
in warped time since the go-cue (GC) is highly predictive of reaction times, as is shown in Figure
5(b). We achieve an R2 value of 0.90, which is substantially higher than previously reported values
on the same dataset ([35] report R2 = 0.52 using a switching LDS model). Figure 5(c) shows a
reduction in the standard deviation of the times when the animal’s absolute hand position crosses a
threshold value. This reduction is not simply due to an overall compression of time, since the slope
of the time-warping functions during the movement period was 1.0572 on average across trials. This
demonstrates that the inferred time-warping provides an improved alignment of the behaviourally
measured arm reach compared to MO or GC alignment, which are common ways of aligning data in
reaching experiments [36].
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Figure 5: (a) Inferred time-warping functions and behavioural events. τ(t) automatically aligns trials
to MO. Inset histogram compares the distribution of MO times in measured, and in warped time. (b)
leave-one-out cross-validated predictions of the reaction times, computed by determining a threshold
value for MO in warped time from all but one trials, and taking the time it takes to pass this threshold
from the GC on the held-out trial. (c) within-condition standard deviation (std.) in times when the
absolute hand position crosses a threshold under different methods of alignment. Inset illustrates
target directions and location of the threshold (85% of average reach distance). Grey bars show
average std. across target directions.

6 Conclusion

In this work, we have introduced a scalable sparse variational extension of GPFA, allowing one
to extract latent structure directly from the unbinned spike-time observations of simultaneously
recorded neurons. We further extended GPFA using an explicit separation of shared variability into
condition-dependent and trial-specific components within a nested GP architecture. This allowed
us to separate trial-to-trial variations in trajectories from variations in time-course. We arrived at a
scalable algorithm for posterior inference using inducing points.

Using synthetic data, we showed that our svGPFA methods can more accurately recover firing
rate estimates than related methods. Using neural data, we demonstrated that our time-warped
method infers a behaviourally meaningful alignment in a completely unsupervised fashion using only
information present in the neural population spike times. We showed that the inferred time-warping
is behaviourally meaningful, highly predictive of reaction times, and provides an improved temporal
alignment compared to manually aligning to behaviourally defined time-points.

While we have focused on temporal variability in this work, we note that the inference scheme using
inducing points is more generally applicable for a variety of other nested GP models of interest in
neuroscience, such as the GP-LVM [34, 37]. Furthermore, it can also be applied to multiple sets of
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observed data with potentially different likelihoods in a canonical correlations analysis extension of
GPFA. This could be useful for inferring latent structure from multiple recorded signals. For instance,
one could combine the analysis LFP or calcium imaging data with that of spike trains. Thus, with
slight modifications to the model architecture, an analogous inference approach to the one presented
here is applicable in a variety of contexts, including manifold learning, combinations of modalities,
and beyond.
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