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Abstract

Estimating causal connectivity between spiking neurons from measured spike
sequences is one of the main challenges of systems neuroscience. In this paper we
introduce two nonparametric Bayesian methods for spike-membrane and spike-
spike causal connectivity based on Gaussian process regression. For spike-spike
connectivity, we derive a new semi-analytic variational approximation of the
response functions of a non-linear dynamical model of interconnected neurons.
This semi-analytic method exploits the tractability of GP regression when the
membrane potential is observed. The resulting posterior is then marginalized
analytically in order to obtain the posterior of the response functions given the
spike sequences alone. We validate our methods on both simulated data and real
neuronal recordings.

1 Introduction

Action potentials (spikes) are the fundamental units of neuronal communication [1]. Spikes originate
from the axon hillock and propagate through the axon towards the synaptic terminal, where the release
of neurotransmitters affects the membrane potential of the downstream neurons. While there is a great
deal of computation in the dynamics of a single neuron [2], most of the computational capabilities
of biological neuronal networks depend on their pattern of interconnections [3]. Mapping causal
interrelations between spiking neurons is therefore a major goal in system neuroscience. However,
inferring causal connectivity from spike sequences is a challenging data analysis problem as networks
of spiking neurons are highly non-linear dynamical systems [4].

In this paper we introduce two related methods for the estimation of the causal response function
between spiking neurons based on Gaussian process (GP) regression. Both methods rely on an
important neurophysiological fact concerning neuronal communication: the membrane potential
responds approximately linearly to weak synaptic inputs while spike initiation is a highly non-linear
function of the membrane potential [5, 6]. The first of our new methods is applicable when both spike
sequences and membrane potentials are observed variables. In this case, the posterior distribution
of the resulting connectivity model can be obtained analytically and is related to the GP-CaKe
method for field-field causal connectivity [7]. The main methodological contribution of the paper
is in our second method, which is applicable when only the spike sequences are measured. In
this situation, the Bayesian model cannot be solved in closed form since the spike initiation model
is non-Gaussian. Furthermore, approximate inference is complicated by the intractability of the
inhomogeneous Poisson likelihood [8, 9]. To resolve these difficulties, we derive a new semi-analytic
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variational approximation that combines the analytic solution of the response function given the
membrane potential with a likelihood-free stochastic estimation of the membrane potential.

2 Spike-membrane causal connectivity analysis

In this section we introduce a nonparametric Bayesian method for estimating the causal response
function when both spike sequences and membrane potentials are observed variables. Besides its
intrinsic relevance in several experimental settings, this method is also an important analytically
tractable component of our method for spike-spike connectivity. We begin by introducing a linear
dynamical model of the membrane potential that captures the linear response of the membrane
potentials to weak synaptic inputs.

2.1 A linear dynamical model of the membrane potential

Consider a network of N interconnected neurons. In the following, we will denote the membrane
potential of the j-th neuron as mj(t) and its spike sequence as the sum of delta functions sk(t) =∑

k δ(t− tj,k) where tj,k is the timestamp of the k-th spike of the j-th neuron. The linear response
of a neuronal membrane to a synaptic input can be described using a differential equation [7]:

τ
d

dt
mj(t) = −mj(t) + Ij(t) , (1)

where the time constant τ determines the time that the membrane needs to return to baseline after
a perturbation. The synaptic input from the other N − 1 neurons in the network is given by the
following function:

Ij(t) =
N∑

k=1,k 6=j

ck→j(t) ? sk(t) + wj(t) , (2)

where the operator ? denotes convolution. The additional stochastic term wj(t) is Gaussian white
noise with variance σ2 and accounts for unmeasured perturbations. The causality of the neuronal
network is guaranteed as the causal response function ck→j(t) vanishes for negative values of t.

2.2 Analytic GP regression for spike-membrane causal connectivity

We use the dynamical model specified by Eq. 1 and Eq. 2 as an implicit likelihood of a nonparametric
Bayesian model. The model is defined by assigning a GP prior over the space of response functions
ck→j . The posterior distribution of ck→j is a GP and can be obtained in closed-form because both
the derivative and the convolution in Eq. 1 and Eq. 2 are linear operators. In the frequency domain,
Eq. 1 and Eq. 2 can be jointly written as

mj(ω) =
N∑

k=1

ck→j(ω)γk(ω) + w̃j(ω) , (3)

where
γk(ω) = (−iωτ + 1)−1sk(ω) = (−iωτ + 1)−1

∑
j

e−iωtk,j

and
w̃j(ω) = (−iωτ + 1)−1wj(ω) .

Eq. 1 defines a nonparametric regression problem wheremj(ω) is the observed data, γk(ω) are known
mixing functions and ck→j(ω) are the unknowns. Problems of this form have an analytic solution
when the prior distributions over ck→j(ω) are GPs [10]. To assure the causality of the response
functions we adopt the causal covariance function that was introduced in [7]. In the frequency domain
this covariance function can be expressed as

K(ω1, ω2) = f(ω1, ω2) (sSE(ω2 − ω1) + iHsSE(ω2 − ω1)) , (4)

where f(ω1, ω2) is a function that induces smoothness by discounting the high frequency components,
sSE(ω) is the spectral density of a squared exponential covariance function andH denotes the Hilbert
transform which enforces causality. The resulting GP prior induces causality, smoothness and
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Figure 1: A. The generative model as explained in the text. For simplicity of the notation, the
relevant variables are only shown for two neurons. Note that the membrane potentials m can be either
observed or latent. In the latter case we use the variational approach. B. A draw from the generative
model for two neurons connected through a single unidirectional excitatory connection as well as the
variational recovery of the membrane and action potentials. The shaded regions indicate one standard
deviation.

temporal localization of the response function. See Appendix A for more details on the construction
of this covariance function.

Consider a set of M time points {t1, ..., tM} and a vector of measured membrane potentials mu =
m(tu). The posterior expected value of ck→j is given by

c̄k→j(t) =
∑
u,v

WuvmvK(t, tu) , (5)

where the GP weights Wuv depend on the covariance function and can be obtained using standard
GP regression techniques in the frequency domain. The matrix formula for the weights is given in
Appendix B. The time domain covariance function in Eq. 5 is the inverse Fourier transform of Eq. 4
with respect to both of its arguments.

3 Spike-spike causal connectivity analysis

We can now use the results of the previous section in order to derive a semi-analytic solution to the
more challenging problem of spike-spike connectivity.

3.1 A non-linear model of spike initiation

In biological neurons, spike initiation depends on the non-linear dynamics of the membrane poten-
tial and of several ionic channels [4]. We approximate these dynamics using a stochastic model.
Specifically, the firing rate f(t) is obtained by passing the rescaled membrane potential through a
compressive non-linearity:

f(t) = a σ(b mj(t) + φ) , (6)
where a is the maximum firing rate and σ(·) is the logistic sigmoid with b and φ its gain and threshold
parameters respectively. The resulting spike sequence follows a nonhomogeneous Poisson process
with density function f(t) [8]. This model is admittedly a simplification. For example, it does not
take into account the refractory period [11]. However, the variational Bayesian model that we will
introduce in the next section can be used with any other spike initiation model without substantial
modifications.

3.2 Semi-analytic variational GP regression for spike-spike causal connectivity

To simplify the notation we will explain the analysis for the case of two neurons. All results
generalize straightforwardly to arbitrary network structures. Given a set of M sample time points
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{t1, ..., tM}, we organize the sampled time-series in the arrays sj = (sj(t1), .., sj(tM )), mj =
(mj(t1), ..,mj(tM )) and c2→1 = (c2→1(−tM/2), .., c2→1(tM/2)). The graphical model is shown
in Fig. 1. This model is summarized by the following factorized joint distribution:

p(s1,m1, c2→1|s2) = p(s1|m1) p(m1|c2→1, s2) p(c2→1) , (7)
where we conditioned on the spike sequence s2. Our aim is to obtain p(c2→1|s1, s2), i.e., the
posterior distribution of the causal response function given the two spike sequences. Most existing
variational methods do not directly leverage the analytic solution of p(c2→1|m1, s2) and require
the evaluation of the intractable likelihood p(s1|m1) [12–14]. Therefore we developed a new semi-
analytic variational approximation that fully exploits the analytic tractability of the latent GP analysis.
We begin by defining the following structured joint variational distribution:

q(s1,m1, c2→1|s2) = q(c2→1|m1, s2) q(m1|s1) p(s1) , (8)
where p(s1) is the real marginal distribution of s1. In this variational factorization we assumed that
the distribution of the membrane potentialm1 solely depends on the spike sequence s1. We can find
the distributions q(c2→1|m1, s2) and q(m1|s1) by minimizing the following functional:

L[q] = Ep(s2)[DKL(p‖q)] . (9)
Note that this functional is a proper (joint-contrastive) variational loss since it is always non-negative
and vanishes if and only if p(s1,m1, c2→1, s2) = q(s1,m1, c2→1, s2). We can rearrange the loss
as:

Ep(s2)[DKL(p‖q)] = Ep(s1,m1,c2→1,s2)

[
log

p(s1,m1, c2→1|s2)

q(s1,m1, c2→1|s2)

]
.
=q Ep(m1,c2→1,s2)

[
log

p(c2→1|m1, s2)

q(c2→1|m1, s2)

]
− Ep(m1,s1)[log q(m1|s1)]

= Ep(s2,m1)[DKL(p(c2→1|s2,m1)‖q(c2→1|s2,m1))]

−Ep(m1,s1)[log q(m1|s1)] , (10)
where .

=q denotes that the expressions are equal up to terms that are constant in q. The first term of
this expression is an expectation of a KL divergence and therefore vanishes when q(c2→1|s2,m1) is
equal to the real posterior p(c2→1|s2,m1), which can be expressed analytically (see Eq. 5). We can
parameterize the remaining term as a mixture of Gaussian distributions:

q(m1|s1) =
∑
h

αh(s1)N (m1|µh(s1), Qh(s1)) , (11)

where the scalar-valued functions αh(s1), the vector-valued functions µh(s1) and the matrix-valued
functions Qh(s1) are determined by expressive regression models such as deep convolutional net-
works [15]. The parameters of these networks can be trained by minimizing the remaining term of
the variational loss

L[p(c2→1|m1, s2) q(m1|s1) p(s1)]
.
=q −Ep(m1,s1)[log q(m1|s1)] , (12)

whose gradient can be easily sampled without bias by sampling from the model marginal p(m1, s1).
Optimizing Eq.12 requires to train the regression models αh(s1), µh(s1) and Qh(s1) separately
every time we want to analyze a new network structure since the distribution p(m1, s1) includes
the (marginalized) effects of all neurons. In order to increase the efficiency of the method we
approximate p(m1, s1) with the joint distribution of a single uncoupled neuron. This is a weak
coupling approximation since we are assuming the (cumulative) coupling strength between neurons
to be small compared to the stochastic input. We analyze the consequences of this approximation in
our experiments below. We can now obtain the variational posterior q(c2→1|s1, s2) by marginalizing
the variational distribution analytically:

q(c2→1|s1, s2) =

∫
p(c2→1|m1, s2) q(m1|s1) dm1

=

∫
N (c2→1|Wm1,Kp)

[∑
h

αh(s1)N (m1|µh(s1), Qh(s1))

]
dm1

=
∑
h

αh(s1)N
(
c2→1

∣∣Wµh(s1),Kp +WQh(s1)WT
)
,

(13)

where W are the GP weights (see Eq. 5) and Kp is the covariance matrix of the posterior
p(c2→1|m1, s2). We refer to our method of spike-spike connectivity estimation as SGP CaKe
(Spike GP Causal Kernels).
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4 Related work

Several techniques have been used to identify spike-spike connectivity. Simple nonparametric
methods such as histograms have a long history and are still widely applied [16]. Parametric methods
based on the generalized linear model (GLM) often offer a better signal-to-noise ratio [17]. The
models introduced in this paper are strictly related to GP classification and can therefore be considered
as the nonparametric generalization of GLM based methods [10]. Other modern approaches are based
on dynamic Bayesian networks [18] and Cox processes [19]. We will now devote special attention to
methods based on Hawkes processes, given their theoretical similarity to our approach.

4.1 Spike-spike connectivity with Hawkes Processes

The multivariate stochastic process defined in this paper has some similarity with a Hawkes pro-
cess [20]. While most of the existing literature based on Hawkes processes assumes a simple
parametrization for the response functions, several new studies introduced the use of nonparametric
methods [21–23]. Hawkes processes have been successfully used in neuroscience settings in order to
infer spike-spike causal connectivity [24, 25]. In a Hawkes process the spike density of the j-th unit
is a linear functional of the spike sequences of the other units:

fj(t)− µj =
∑
k

ck→j(t) ? sk(t) , (14)

where µj is the baseline spike density. Note that Eq. 14 is strikingly similar to our Eq. 1. The differ-
ence is that in a Hawkes Process the spike density is a linear functional of the input spike sequences
while in our model the linear response is defined at the level of the latent membrane potential. From
a biophysical point of view, linearity of the spike density response is not a realistic assumption since
spike initiations in biological neurons are determined by highly non-linear ‘threshold’ events [4].
Another obvious problem of Eq. 14 is that the spike density could become negative in the presence
of inhibitory responses. Conversely, in our model a highly negative membrane potential simply
corresponds to a very low but positive spike density. The similarity between Eq. 1 and Eq. 14 implies
that both the analytic and the semi-analytic methods introduced in this paper can be applied to Hawkes
processes as well. The analytic method cannot be applied on real data since the spike density is not
directly measurable. Nevertheless we will use it as an idealized baseline comparison in our simulation
studies where we know the ground truth.

5 Simulated effective connectivity

Here we validate the reconstructions by SGP CaKe. The details of the deep neural networks used for
the estimation of the membrane are given in appendix E. The performance of spike-spike connectivity
methods and non-linear regression in general is strongly affected by the form of regularization used.
In order to have a balanced comparison we compare the performance of our method with its equivalent
Hawkes process model where the prior covariance function and the approximative inference methods
are exactly the same. We also include a comparison with a simpler nonparametric method based on
spike-spike histograms [16].

First we define five different network structures, as shown in Fig. 4A. For each of these structures,
which may contain both excitatory and inhibitory interactions, we generate 200 trials of observable
membrane potentials and spikes according to the generative model of Section 3.2. The true connection
strength w is varied to investigate its effect on the recovery of the causal response function. More
details of the simulation procedure can be found in Appendix C. The first two networks simply
demonstrate the recovery of either excitatory, inhibitory or absent coupling. An example of a single
trial of simulated data is shown in Fig. 1B. The leftmost subfigures show the recovery of the membrane
potential using the variational procedure. Note that as expected the spike density of neuron 2 is
temporally concentrated near the spikes of the input neuron. Importantly, the transformation from
membrane potentials to firing probabilities is non-linear, which is one of the main differences between
SGP CaKe and the Hawkes process. Similarly, the rightmost figures show how the firing rates may
be reconstructed using the variational method.

Figure 2 shows the variational approximation of the membrane potential for the first network, this
time for different coupling strengths w. As the figure shows, the membrane potentials recovered well
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Figure 2: A. Variational inference of the membrane potentials for the source and target neurons of
network 1 (see Fig. 4A, for w ∈ {0.1, 0.5}). The dashed line indicates the membrane threshold. B.
The correlation and root-mean-squared error between the true and estimated membrane potentials.
Shaded intervals indicate one standard deviation.

for the neurons that received no input (i.e. the top row of the figure). For the neurons that did receive
input the membrane potential approximation deteriorates in its estimation of the magnitude when
the coupling strength is increased. This is due to the violation of the assumption that neurons are
only weakly coupled and have their activity predominantly driven by internal dynamics. Despite this,
the correlation between the true and the estimated membrane potential remains high and, as we will
show below, sufficient to recover the causal structure.

5.1 Recovery of effective connectivity
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Figure 3: Examples of reconstructed causal kernels for both variants of SGP CaKe together with
the corresponding cross-correlograms and effect sizes for each of the three methods, per connection.
Shaded intervals and error bars indicate 95% confidence intervals.

As an example, Fig. 3 shows the recovered causal response functions for the two-neuron network
with a single inhibitory connection. Both variants of SGP CaKe successfully distinguish present
and absent coupling and correctly identify that the present connection is inhibitory. In addition, we
show the cross-correlation estimation of this connection. While this more traditional approach also
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identifies the inhibitory coupling, it fails to classify the other connection as absent, as can be seen
from the estimated effect sizes (see Appendix C) for the two connections.
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Figure 4: A. The considered network structures. B. Root-mean-squared-error between the actual
connectivity matrix and the different recovery approaches shown for different numbers of bootstrapped
subsamples. Interval widths indicate one standard deviation over 1 000 runs of the indicated number
of bootstrapped samples.

To further quantify these results we use the estimated causal response functions to recover the
coupling structures from Fig. 4A. The presence of a connection is estimated via a z-test at the peak
of the true causal response function while its directionality is given by the sign of the corresponding
z-score (more details are provided in Appendix C). The performance is scored using the root-mean-
squared-error between the true adjacency matrix describing the coupling structure and the estimated
structure. The results of this analysis are shown in Fig. 4B. From these results it is apparent that both
SGP CaKe variants consistently provide the best estimates of the causal coupling structure. In many
cases the recovery is (near) perfect.

When the coupling strength w is increased the assumption of weak coupling is again violated. We
see that this is particularly detrimental for the networks with common causes and transitive effects.
However, when the true membrane potential is observed, SGP CaKe still estimates the coupling
structure nearly perfectly. Also, even for these more complex cases, the variational SGP CaKe
approach outperforms both variants of the Hawkes process, even the idealized case where the true
firing rates are known. Interestingly, for some networks the Hawkes process in fact performs better
with the estimated firing rates than with the true ones. Presumably this is due to the smoothing
induced by the variational approach, which causes the estimated firing rates to be more similar to
membrane potentials.

6 Analysis of real spike trains: connectivity in rat entorhinal cortex

To illustrate a more realistic application of our proposed methods we applied both the SGP CaKe
and the Hawkes process to multi-unit recordings of rat entorhinal cortex [26, 27]. Details of the data
acquisition and preprocessing can be found in Appendix D. For these data sets only the spikes were
observed so we estimated the membrane potentials and firing rates for SGP CaKe and the Hawkes
process respectively using the semi-analytic variational approach. As the ground truth is obviously
unavailable, we estimated coupling in two different conditions (condition one consists of the rat
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Figure 5: Estimated causal connectivity between three neuronal clusters in entorhinal cortex for four
conditions (see Appendix D. The insets show the (average) correlation between the causal response
functions for the four different conditions.

moving freely in an open square; condition two consists of the rat navigating through a linear maze)
and looked at the between-session reproducibility for validation of the procedures.

The estimated causal response functions between three electrodes are shown in Fig. 5. Overall, SGP
CaKe and the Hawkes process resulted in similar causal response functions, although slight differences
may be observed in the estimated coupling structure. Clearly there is strong correspondence in the
causal response functions within conditions, while at the same time the response functions between
the conditions are fairly different, showing the sensitivity of the methods. The reproducibility is
further quantified in the correlations between the causal response functions for each pair of conditions
(see inset in Fig. 5).

7 Conclusion

We introduced two new nonparametric Bayesian models for spike-membrane and spike-spike con-
nectivity analysis. We obtain an approximate semi-analytic posterior for the spike-spike problem by
minimizing a new likelihood-free variational loss. This semi-analytic method has wide applicability
outside our current model since it can be used every time a latent GP regression is coupled to a
non-linear emission model. For example, our semi-analytic variational method can be directly used in
a calcium imaging setting where the spikes are observed through a non-linear calcium response [28].
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