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Abstract

The activity of neural populations in the brains of humans and animals can exhibit
vastly different spatial patterns when faced with different tasks or environmental stimuli.
The degree of similarity between these neural activity patterns in response to different
events is used to characterize the representational structure of cognitive states in a
neural population. The dominant methods of investigating this similarity structure first
estimate neural activity patterns from noisy neural imaging data using linear regression,
and then examine the similarity between the estimated patterns. Here, we show that
this approach introduces spurious bias structure in the resulting similarity matrix, in
particular when applied to fMRI data. This problem is especially severe when the
signal-to-noise ratio is low and in cases where experimental conditions cannot be fully
randomized in a task. We propose Bayesian Representational Similarity Analysis
(BRSA), an alternative method for computing representational similarity, in which we
treat the covariance structure of neural activity patterns as a hyper-parameter in a
generative model of the neural data. By marginalizing over the unknown activity
patterns, we can directly estimate this covariance structure from imaging data. This
method offers significant reductions in bias and allows estimation of neural
representational similarity with previously unattained levels of precision at low
signal-to-noise ratio. The probabilistic framework allows for jointly analyzing data from
a group of participants. The method can also simultaneously estimate a signal-to-noise
ratio map that shows where the learned representational structure is supported more
strongly. Both this map and the learned covariance matrix can be used as a structured
prior for maximum a posteriori estimation of neural activity patterns, which can be
further used for fMRI decoding. We make our tool freely available in Brain Imaging
Analysis Kit (BrainIAK).

Author summary

We show the severity of the bias introduced when performing representational similarity
analysis (RSA) based on neural activity pattern estimated within imaging runs. Our
Bayesian RSA method significantly reduces the bias and can learn a shared
representational structure across multiple participants. We also demonstrate its
extension as a new multi-class decoding tool.
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Introduction 1

Functional magnetic resonance imaging (fMRI) measures the 2

blood-oxygen-level-dependent (BOLD) signals [1], which rise to peak ∼ 6 seconds after 3

neuronal activity increases in a local region [2]. Because of its non-invasiveness, 4

full-brain coverage, and relatively favorable trade-off between spatial and temporal 5

resolution, fMRI has been a powerful tool to study the neural correlates of 6

cognition [3–5] . In the last decade, research has moved beyond simply localizing the 7

brain regions selectively activated by the cognitive processes and focus has been 8

increasingly placed on the relationship between the detailed spatial patterns of neural 9

activity and cognitive processes [6, 7]. 10

An important tool for characterizing the functional architecture of sensory cortex is 11

representational similarity analysis (RSA) [8]. This classic method first estimates the 12

neural activity pattern from fMRI data recorded as participants observe a set of stimuli 13

or experience a set of task conditions, and then calculates the similarity (e.g., by 14

Pearson correlation) between each pair of the estimated patterns. The rationale is that 15

if two stimuli are represented with similar codes in a brain region, the spatial patterns 16

of neural activation in that region would be similar when processing these two stimuli. 17

After the similarity matrix between all pairs of activity patterns is calculated in an 18

ROI, it can be compared against similarity matrices predicted by candidate 19

computational models. Researchers can also convert the similarity matrix into a 20

representational dissimilarity matrix (RDM, e.g., 1− C, for similarity C based on 21

correlation) and visualize the structure of the representational space in the ROI by 22

projecting the dissimilarity matrix to a low dimensional space [8]. Researchers might 23

also test whether certain experimental manipulations changes the degrees of similarity 24

between neural patterns of interest [9, 10]. To list just a few application of this method 25

in the domain of visual neuroscience, RSA has revealed that humans and monkeys have 26

highly similar representational structures in the inferotemporal (IT) cortex for images 27

across various semantic categories [11]. It also revealed a continuum in the abstract 28

representation of biological classes in human ventral object visual cortex [12] and that 29

basic categorical structure gradually emerges through the hierarchy of visual cortex [13]. 30

Because of the additional flexibility of exploring the structure of neural representation 31

without building explicit computational models, RSA has also gained popularity among 32

cognitive neuroscientists for studying more complex tasks beyond perception, such as 33

decision making. 34

While RSA has been widely adopted in many fields of cognitive neuroscience, a few 35

recent studies have revealed that the similarity structure estimated by standard RSA 36

might be confounded by various factors. First, the calculated similarity between two 37

neural patterns strongly depends on the time that elapsed between the two measured 38

patterns: the closer the two patterns are in time, the more similar they are [14] [15]. 39

Second, it was found that because different brain regions share some common time 40

course of fluctuation independent of the stimuli being presented (intrinsic fluctuations), 41

RDMs between regions are highly similar when calculated based on patterns of the same 42

trials of tasks but not when they are calculated based on separate trials (thus the 43

intrinsic fluctuation are not shared across regions). This indicates that RSA can be 44

strongly influenced by intrinsic fluctuation [14]. Lastly, Diedrichsen et al. (2011) 45

pointed out that the noise in the estimated activity patterns can add a diagonal 46

component to the condition-by-condition covariance matrix of the spatial patterns. This 47

leads to over-estimation of the variance of the neural pattern and underestimation of 48

correlation between true patterns, and this underestimation depends on signal-to-noise 49

ratio in each ROI, making it difficult to make comparison of RDMs between regions [16]. 50

Recognizing the first two issues, several groups have recently suggested modifications 51

to RSA such as calculating similarity or distance between activity patterns estimated 52
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from separate fMRI runs [15,17], henceforth referred to as cross-run RSA, and using a 53

Taylor expansion to approximate and regress out the dependency of pattern similarity 54

on the interval between events [15]. For the last issue, Diedrichsen et al. (2011) 55

proposed modeling the condition-by-condition covariance matrix between estimated 56

neural patterns as the sum of a diagonal component that models the contribution of 57

noise in the estimated neural patterns to the covariance matrix and components 58

reflecting the researcher’s hypothetical representational structure in the ROI [16] 59

(“pattern-component model”; PCM). These methods improve on traditional RSA, but 60

are not explicitly directed at the source of the bias, and therefore only offer partial 61

solutions. 62

Indeed, the severity of confounds in traditional RSA is not yet widely recognized. 63

RSA based on neural patterns estimated within an imaging run is still commonly 64

performed. Furthermore, sometimes a study might need to examine the representational 65

similarity between task conditions within an imaging run, such that cross-run RSA is 66

not feasible. The Taylor expansion approach to model the effect of event-interval can be 67

difficult to set up when a task condition repeats several times in an experiment. There 68

also lacks a detailed mathematical examination of the source of the bias and how 69

different ways of applying RSA affect the bias. Researchers sometimes hold the view 70

that RSA of raw fMRI patterns instead of activity patterns (β) estimated through a 71

general linear model (GLM) [18] does not suffer from the confounds mentioned above. 72

Last but not least, the contribution of noise in the estimated neural patterns to the 73

sample covariance matrix between patterns may not be restricted to the diagonal 74

elements, as we will demonstrate below. 75

In this paper, we first compare the result of performing traditional RSA on a 76

task-based fMRI dataset with the results obtained when performing the same analysis 77

on white noise, to illustrate the severe bias and spurious similarity structure that can 78

result from that performing RSA on pattern estimates within imaging runs. By 79

applying task-specific RSA on irrelevant resting-state fMRI data, we show that spurious 80

structure also emerges when RSA is performed on the raw fMRI pattern rather than 81

estimated task activation patterns. We sow that the spurious structure can be far from 82

a diagonal matrix, and masks any true similarity structure. We then provide an analytic 83

derivation to help understand the source of the bias in traditional RSA. Previously, we 84

have proposed a method named Bayesian RSA (BRSA), which significantly reduced this 85

bias and allows analysis within imaging runs [19]. Here, we further extend the method 86

to explicitly model spatial noise correlation, thereby mitigating the second issue 87

identified by Heriksson et al. [14], namely the intrinsic fluctuation not modelled by task 88

events in an experiment. Furthermore, inspired by the methods of hyper-alignment [20] 89

and shared response models [21], we extend our method to learn a shared 90

representational similarity structure across multiple participants (Group BRSA) and 91

demonstrate improved accuracy of this approach. Since our method significantly 92

reduces bias in the estimated similarity matrix but does not fully eliminate it at regimes 93

of very low signal-to-noise ratio (SNR), we further provide a cross-validation approach 94

to detecting over-fitting to the data. Finally, we show that the learned representational 95

structure can serve as an empirical prior to constrain the posterior estimation of activity 96

patterns, which can be used to decode the cognitive state underlying activity observed 97

in new fMRI data. 98

The algorithm in this paper is publicly available in the python package Brain 99

Imaging Analysis Kit (BrainIAK). 1
100

1Under the brainiak.reprsimil.brsa module. Our previous version of Bayesian RSA method [19]
with newly added modeling of spatial noise correlation is in the BRSA class of the module. The new
version described in this paper is implemented in the GBRSA class and can be applied to either a single
participant or a group of participants.
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Results 101

Traditional RSA translates structured noise in estimated 102

activity patterns into spurious similarity structure 103

Traditional RSA [8] first estimates the response amplitudes (β) of each voxel in an ROI 104

and then calculates the similarity between the estimated spatial response patterns of 105

that ROI to different task conditions. 106

The estimation of β is based on a GLM. We denote the fMRI time series from an 107

experiment as Y ∈ RnT×nV , with nT being the number of time points and nV the 108

number of voxels. The GLM assumes that 109

Y = X · β + ε. (1)

X ∈ RnT×nC is the “design matrix,” where nC is the number of task conditions. Each 110

column of the design matrix is constructed by convolving a hemodynamic response 111

function (HRF) with a time series describing the onsets and duration of all events 112

belonging to one task condition. The regressors composing the design matrix express the 113

hypothesized response time course elicited by each task condition. Each voxel’s response 114

amplitudes to different task conditions can differ. All voxels’ response profiles form a 115

matrix of spatial activity patterns β ∈ RnC×nV , with each row representing the spatial 116

pattern of activity elicited by one task condition. The responses to all conditions are 117

assumed to contribute linearly to the spatio-temporal fMRI signal through the temporal 118

profile of hemodynamic response expressed in X. Thus, the measured Y is assumed to 119

be a linear sum of X weighted by response amplitude β, corrupted by zero-mean noise ε. 120

The goal of RSA is to understand the degree of similarity between each pair of 121

spatial response patterns (i.e., between the rows of β). But because the true β is not 122

accessible, a point estimate of β, derived through linear regression, is usually used as a 123

surrogate: 124

β̂ = (XTX)−1XTY (2)

Similarity is then calculated between rows of β̂. For instance, one measure of similarity 125

that is frequently used is Pearson correlation: 126

Cij =
(β̂i − β̂i)(β̂i − β̂j)T

nV σβ̂i
σβ̂j

(3)

To demonstrate the spurious structure that may appear in the result of traditional 127

RSA, we first performed RSA on the fMRI data in one ROI, the orbitofrontal cortex, in 128

a previous dataset involving a decision-making task [22]. The task included 16 different 129

task conditions, or “states.” In each state, participants paid attention to one of two 130

overlapping images (face or house) and made judgments about the image in the 131

attended category. The transition between the 16 task states followed the Markov chain 132

shown in Fig 1A, thus some states often preceded certain other states. The 16 states 133

could be grouped into 3 categories according to the structure of transitions among 134

states (the exact meaning of the states, or the 3 categories, are not important in the 135

context of the discussion here.) We performed traditional RSA on the 16 estimated 136

spatial response patterns corresponding to the 16 task states. To visualize the structure 137

of the neural representation of the task states in the ROI, we used multi-dimensional 138

scaling (MDS) [23] to project the 16-dimensional space defined by the distance between 139

states (1 - correlation) onto a 3-dimensional space (Fig 1B). 140

This projection appears to show clear grouping of the states in the orbitofrontal 141

cortex consistent with the 3 categories, suggesting that this brain area represents this 142

aspect of the task. However, a similar representational structure was also observed in 143
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other ROIs. In addition, when we applied the same GLM to randomly generated white 144

noise and performed RSA on the resulting parameter estimates, the similarity matrix 145

closely resembled the result found in the real fMRI data (Fig 1C). Since there is no 146

task-related activity in the white noise, the structure obtained from white noise is 147

clearly spurious and must reflect a bias introduced by the analysis. In fact, we found 148

that the off-diagonal structure obtained from white noise (Fig 1C) explained 84± 12% 149

of the variance of the off-diagonals obtained from real data (Fig 1B). This shows that 150

the bias introduced by traditional RSA can dominate the result, masking the real 151

representational structure in the data. 152

To help understand this observation, we provide an analytic derivation of the bias 153

with a few simplifying assumptions [19]. The calculation of the sample correlation of β̂ 154

in traditional RSA implies the implicit assumption that an underlying covariance 155

structure exists that describe the distribution of β, and the activity profile of each voxel 156

is one sample from this distribution. Therefore, examining the relation between the 157

covariance of β̂ and that of true β will help us understand the bias in traditional RSA. 158

We assume that a covariance matrix U (of size nC × nC) captures the true 159

covariance structure of β across all voxels in the ROI: β ∼ N(0,U). Similarity 160

measures such as correlation are derived from U by normalizing the diagonal elements 161

to 1. It is well known that temporal autocorrelation exists in fMRI noise [24,25]. To 162

capture this, we assume that in each voxel ε ∼ N(0,Σε), where Σε ∈ RnT ×nT is the 163

temporal covariance of the noise (for illustration purposes, here we assume that all 164

voxels have the same noise variance and autocorrelation, and temporarily assume the 165

noise is spatially independent). 166

By substituting the expression for Y from equation 1 we obtain 167

β̂ = (XTX)−1XTXβ + (XTX)−1XT ε = β + (XTX)−1XT ε (4)

which means the point estimate of β is contaminated by a noise term (XTX)−1XT ε. 168

Assuming that the signal β is independent from the noise ε, it is then also independent 169

from the linear transformation of the noise, (XTX)−1XT ε. Thus the covariance of β̂ is 170

the sum of the covariance of true β and the covariance of (XTX)−1XT ε: 171

β̂ ∼ N(0, U + (XTX)−1XTΣεX(XTX)−1) (5)

The term (XTX)−1XTΣεX(XTX)−1 is the source of the bias in RSA. This bias 172

originates from the structured noise (XTX)−1XT ε in estimating β̂. It depends on 173

both the design matrix X and the temporal autocorrelation of the noise ε. Fig 1F 174

illustrates how structured noise can alter the correlation of noisy pattern estimates in a 175

simple case of just two task conditions. Even if we assume the noise is spatially and 176

temporally independent (i.e., Σε is a diagonal matrix, which may be a valid assumption 177

if one “pre-whitens” the data before further analysis [25]), the bias structure still exists 178

but reduces to (XTX)−1σ2, where σ2 is the variance of the noise. 179

Since the covariance matrix of β̂ is biased, its correlation is also distorted from the 180

true correlation structure. This is because correlation is merely a rescaling of rows and 181

columns of a covariance matrix. Fig 1C essentially illustrates this bias structure after 182

being converted to correlation matrix (in this case, σ=1 and β = 0) as this RSA 183

structure, by virture of being derived for white noise, can only result from structure in 184

the design matrix X. In reality, both spatial and temporal correlations exist in fMRI 185

noise, which complicates the structure of the bias. But the fact that bias in Fig 1C 186

arises even when applying RSA to white noise which itself has no spatial-temporal 187

correlation helps to emphasize the first contributor to the bias: the timing structure of 188

the task, which is exhibited in the correlations between the regressors in the design 189

matrix. Whenever the interval between events of two task conditions is shorter than the 190

length of the HRF (which typically outlasts 12 s), correlation is introduced between 191
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Figure 1. Standard RSA introduces bias structure to the similarity matrix.
(A) A cognitive task including 16 different experimental conditions. Transitions
between conditions follow a Markov process. Arrows indicate possible transitions, each
with p = 0.5. The task conditions can be grouped into 3 categories (color coded)
according to their characteristic transition structure. (B) Standard RSA of activity
patterns corresponding to each condition estimated from a brain region reveals a highly
structured similarity matrix (left) that reflects aspects of the transition structure in the
task. Converting the similarity matrix C to a distance matrix 1− C and projecting it
to a low-dimensional space using MDS reveals a highly regular structure (right). Seeing
such a result, one may infer that representational structure in the ROI strongly reflects
the task structure.
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Figure 1. (C) However, applying RSA to regression estimates of of patterns obtained
from pure white noise generates a very similar similarity matrix (left), with a similar
low-dimensional projection (right). This indicates that standard RSA can introduce
spurious structure in the similarity matrix that does not exist in the data. (D) RSA
Using Euclidean distance as a similarity metric applied to patterns estimated from the
same noise (left) yields a slightly different, but still structured, similarity structure
(right). (E) Calculating the correlation between raw patterns of resting state fMRI data
(instead of patterns estimated by a GLM), assuming the same task structure as in (A),
also generates spurious similarity structure, albeit different from those in (B-D). A
permutation test shows that many of the high correlation values are not expected in a
null distribution (details in main text). (F) The bias in this case comes from structured
noise introduced during the GLM analysis. Assuming the true patterns β (red dots) of
two task conditions are anti-correlated (the horizontal and vertical coordinates of each
dot represent the response amplitudes of one voxel to the two task conditions),
regression turns the noise ε in fMRI data into structured noise (XTX)−1XT ε (blue
dots). The correlation between the noises in the estimated patterns is often non-zero
(assumed to be positive correlation here) due to the correlation structure in the design
matrix and the autocorrelation property of the noise. The estimated patterns β̂ (purple
dots) are the sum of β and (XTX)−1XT ε. The correlation structure between estimated
activity vectors for each condition will therefore differ from the correlation structure
between the true patterns β. (G) Distribution of the autocorrelation coefficients in a
resting state fMRI dataset, estimated by fitting AR(1) model to the time series of each
voxel resampled at TR=2.4s. The wide range of degree of autocorrelation across voxels
makes it difficulty to calculate a simple analytic form of the bias structure introduced by
the structured noise, and calls for modeling the noise structure of each voxel separately.

their corresponding columns in the design matrix. The degree of correlation depends on 192

the overlapping of the HRFs. If one task condition often closely precedes another, which 193

is the case here as a consequence of the Markovian property of the task, their 194

corresponding columns in the design matrix are more strongly correlated. As a result of 195

these correlations, XTX is not a diagonal matrix, and neither is its inverse (XTX)−1. 196

In general, unless the order of task conditions is very well counter-balanced and 197

randomized across participants, the noise (XTX)−1XT ε in β̂ is not i.i.d between task 198

conditions. The bias term B = (XTX)−1XTΣεX(XTX)−1 then deviates from a 199

diagonal matrix and causes unequal distortion of the off-diagonal elements in the 200

resulting correlation matrix of β̂. These unequal distortions alter the order of ranking of 201

the values of the off-diagonal elements. Therefore, rank correlation between the 202

similarity matrix from traditional RSA and similarity matrix of any candidate 203

computational model is necessarily influenced by the bias. Conclusion based on such 204

comparison between two similarity matrices or based on comparing a pair of 205

off-diagonal elements within a neural similarity matrix becomes problematic, as long as 206

the bias causes unequal distortion. Furthermore, if the design matrices also depend on 207

participants’ performance such as errors and reaction time, the bias structure could 208

depend on their performance as well. Comparison between neural representational 209

structure and participants’ behavioral performance may also become problematic in 210

such situations. 211

It is worth pointing out that the bias is not restricted to using correlation as metric 212

of similarity. Because structured noise exists in β̂, any distance metrics between rows of 213

β̂ estimated within imaging runs of fMRI data are likely biased. We can take Euclidean 214

distance as an example. For any two task conditions i and j, the expectation of the 215

distance between β̂i and β̂j is
∑nV

k=1(βik − βjk)2 +nV (B2
ii +B2

jj − 2B2
ij), where B 216
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is the bias in the covariance structure. Therefore, the bias nV (B2
ii +B2

jj − 2B2
ij) in 217

Euclidean distance also depends on the task timing structure and the property of noise. 218

(See Fig 1D). 219

In our derivations above, point estimates of β̂ introduce structured noise due to the 220

correlation structure in the design matrix. One might think that the bias can be 221

avoided if a design matrix is not used, i.e., if RSA is not performed after GLM analysis, 222

but directly on the raw fMRI patterns. Such an approach still suffers from bias, for two 223

reasons that we detail below. 224

First, RSA on the raw activity patterns suffers from the second contributor to the 225

bias in RSA that comes from the temporal properties of fMRI noise. To understand 226

this, consider that estimating activity pattern by averaging the raw patterns, for 227

instance 6 sec after each event of a task condition (that is, at the approximate peak of 228

the event-driven HRF) is equivalent to performing an alternative GLM analysis with a 229

design matrix X6 that has delta functions 6 sec after each event. Although the columns 230

of this design matrix X6 are orthogonal and (XT
6 X6)−1 becomes diagonal, the bias 231

term is still not a diagonal matrix. Because of the autocorrelation structure Σε in the 232

noise, the bias term (XT
6 X6)−1XT

6 ΣεX6(XT
6 X6)−1 essentially becomes a sampling of 233

the temporal covariance structure of noise at the distances of the inter-event intervals. 234

In this way, timing structure of the task and autocorrelation of noise together still cause 235

bias in the RSA result. 236

To illustrate this, we applied RSA to the raw patterns of an independent set of 237

resting state fMRI data from the Human Connectome Project [26], pretending that the 238

participants experienced events according to the 16-state task in Fig 1A. As shown in 239

Fig 1E, even in the absence of any task-related signal spurious similarity structure 240

emerges when RSA is applied to the raw patterns of resting state data. To quantify the 241

extent of spurious structure in Fig 1E, we computed the null distribution of the average 242

estimated similarity structure by randomly permuting the task condition labels on each 243

simulated participant’s estimated similarity structure 10000 times and averaging them. 244

We then compared the absolute values of the off-diagonal elements in Fig 1E against 245

those in the null distribution. The Bonferroni corrected threshold for incorrectly 246

rejecting at least one true hypothesis that an off-diagonal element in the average 247

similarity matrix is from the null distribution is p=0.0004 for α=0.05. In our 248

resting-state fake RSA matrix, 39 out of 120 off-diagonal elements significantly deviated 249

from the null distribution based on this threshold. 250

Second, averaging raw data 6 sec after events of interest over-estimates the similarity 251

between neural patterns of adjacent events, an effect independent of the fMRI noise 252

property. This is because the true HRF in the brain has a protracted time course 253

regardless of how one analyzes the data. Thus the estimated patterns (we denote by β̂6) 254

in this approach are themselves biased due to the mismatch between the implicit HRF 255

that this averaging assumes and the real HRF. The expectation of β̂6 becomes 256

E[β̂6] = E[(XT
6 X6)−1XT

6 Y] = E[(XT
6 X6)−1XT

6 (Xβ + ε)] = (XT
6 X6)−1XT

6 Xβ 257

instead of β. Intuitively, X temporarily smears the BOLD patterns of neural responses 258

close in time but (XT
6 X6)−1XT

6 only averages the smeared BOLD patterns without 259

disentangling the smearing. β̂6 thus mixes the BOLD activity patterns elicited by all 260

neural events within a time window of approximately 12 sec (the duration of HRF) 261

around the event of interest, causing over-estimation of the similarity between neural 262

patterns of adjacent events. If the order of task conditions is not fully counter-balanced, 263

this method would therefore still introduce into the estimated similarity matrix a bias 264

caused by the structure of the task. 265

Similar effect can also be introduced if β̂ is estimated with regularized least square 266

regression [27]. Regression with regularization of the amplitude of β̂ trades off bias in 267

the estimates for variance (noise). On the surface, reducing noise in the pattern 268
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estimates may reduce the bias introduces into the similarity matrix. However, the bias 269

in β̂ itself alters the similarity matrix again. For example, in ridge regression, an 270

additional penalization term λβTβ is imposed for β for each voxel. This turns 271

estimates β̂ to β̂ = (XTX + λI)−1XTY. The component contributed to β̂ by the 272

true signal Xβ becomes (XTX + λI)−1XTβ. As λ increases, this component 273

increasingly attributes neural activity triggered by other task events near the time of an 274

event of interest to the event’s activity. Therefore, this method too would overestimate 275

pattern similarity between adjacent events. 276

In all the derivations above, we have assumed for simplicity of illustration that the 277

noise in all voxels has the same temporal covariance structure. In reality, the 278

autocorrelation can vary over a large range across voxels (Fig. 1G). So the structured 279

noise in each voxel would follow a different distribution. Furthermore, the spatial 280

correlation in noise means the noise in β̂ is also correlated across voxels, which makes 281

the bias even more complicated. At minimum, noise correlation between voxels violates 282

the requirement of Pearson correlation that pairs of observations should be independent. 283

Bayesian RSA significantly reduces bias in the estimated 284

similarity 285

As shown above, the covariance structure of the noise in the point estimates of neural 286

activity patterns β̂ leads to bias in the subsequent similarity measures. The bias can 287

distort off-diagonal elements of the resulting similarity matrix unequally if the order of 288

task conditions is not fully counterbalanced. In order to reduce this bias, we propose a 289

new strategy that aims to infer directly the covariance structure U that underlies the 290

similarity of neural patterns, using raw fMRI data. Our method avoids estimating β̂ 291

altogether, and instead marginalizes over the unknown activity patterns β without 292

discarding uncertainty about them. The marginalization avoids the structured noise 293

introduced by the point estimates, which was the central cause of the bias. Given that 294

the bias comes not only from the experimental design but also from the spatial and 295

temporal correlation in noise, we explicitly model these properties in the data. We 296

name this approach Bayesian RSA (BRSA) as it is an empirical Bayesian method [28] 297

for estimating U as a parameter of the prior distribution of β directly from data. 298

Direct estimation of similarity matrix while marginalizing unknown neural 299

patterns 300

BRSA assumes a hierarchical generative model of fMRI data. In this generative model, 301

the covariance structure U serves as a hyper-parameter that governs the distribution of 302

β, which in turn generates the observed fMRI signal Y. Each voxel i has its own noise 303

parameters, including auto-correlation coefficient ρi, variance σ2
i of innovation noise 304

(the noise component unpredictable from the previous time step) and pseudo-SNR si 305

(we use the term ‘pseudo-SNR’ because the actual SNR depends on both the value of 306

the shared covariance structure U and the voxel-specific scaling factor si). Given these, 307

(σisi)
2U is the covariance matrix of the distribution of the activity levels βi in voxel i. 308

The model allows different signal and noise parameters for each voxel to accommodate 309

situations in which only a fraction of voxels in an ROI might have high response to 310

tasks [27] and because the noise property can vary widely across voxels (e.g., Fig. 1G). 311

We denote the voxel-specific parameters (σ2
i , ρi and si) of all voxels together as θ. 312

If the fMRI noise can be assumed to be independent across voxels [19], then for any 313

single voxel i, we can marginalize over the unknown latent variable βi to obtain an 314

analytic form of the likelihood of observing the fMRI data Yi in that voxel 315

p(Yi|X, U, θi). Multiplying the likelihoods for all voxels will result in the likelihood for 316

the entire dataset: p(Y|X, U, θ). Note that this computation marginalizes over β, 317
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avoiding altogether the secondary analysis on the point estimates β̂ that is at the heart 318

of traditional RSA. Through the marginalization, all the uncertainty about β is 319

correctly incorporated into the likelihood. By searching for the optimal Û and other 320

parameters θ̂ that maximize the data likelihood, we can therefore obtain a much less 321

biased estimate of U for the case of spatially independent noise [19]. 322

However, as illustrated by [14], intrinsic fluctuation shared across brain areas that is 323

not driven by stimuli can dominate the fMRI time series and influence the RSA result. 324

If one labels any fluctuation not captured by the design matrix as noise, then intrinsic 325

fluctuation shared across voxels can manifest as spatial correlation in the noise, which 326

violates our assumption above. To reduce the impact of intrinsic fluctuation on the 327

similarity estimation, we therefore incorporate this activity explicitly into the BRSA 328

method, with inspiration from the GLM denoising approach [29]. 329

We start by assuming that the shared intrinsic fluctuation across voxels can be 330

explained by a finite set of time courses, which we denote as X0, and the rest of the 331

noise in each voxel is spatially independent. If X0 were known, the modulation β0 of 332

the fMRI signal Y by X0 can be marginalized together with the response amplitude β 333

to the experimental design matrix X (note that we still infer U , the covariance 334

structure of β, not of β0). Since X0 is unknown, BRSA uses an iterative fitting 335

procedure that alternates between a step of fitting the covariance structure U while 336

marginalizing β0 and β, and a step of estimating the intrinsic fluctuation X0 from the 337

residual noise with principal component analysis (PCA). Details of this procedure are 338

described in the Materials and Methods under Model fitting procedure. 339

Since our goal is to estimate U , voxel-specific parameters θ can also be analytically 340

or numerically marginalized so that we only need to fit U for the marginal likelihood 341

p(Y|X,X0, U). This reduces the number of free parameters in the model and further 342

allows for the extension of estimating a shared representational structure across a group 343

of participants, as shown later. Fig 2 shows a diagram of the generative model. More 344

details regarding the generative model and the marginalization can be found in the 345

Materials and Methods, under Generative model of Bayesian RSA. 346

The covariance matrix U can be parameterized by its Cholesky factor L, a 347

lower-triangular matrix. To find the Û that best explains the data Y , we first calculate 348

the L̂ that best explains the data by optimizing the marginal log likelihood: 349

L̂ = arg max log p(Y|X,X0, L)

= arg max

nV∑
i

log

∫ ∫ ∫
dβidβ0idθip(Yi|X,X0, βi, β0i, θi)p(βi|L, θi)p(β0i)p(θi)

(6)
And then obtain the estimated covariance matrix 350

Û = L̂L̂T (7)

Once Û is estimated (after the iterative fitting procedure for L and X0), Û is 351

converted to a correlation matrix to yield BRSA’s estimation of the similarity structure. 352

BRSA recovers simulated similarity structure 353

To test the performance of BRSA in a case where the ground-truth covariance structure 354

is known, we embedded structure into resting state fMRI data. Signals were simulated 355

by first sampling response amplitudes according to a hypothetical covariance structure 356

for the “16-state” task conditions (Fig 3A), and then weighting the design matrix of the 357

task in Fig 1A by the simulated response amplitudes. The simulated signals were then 358

added to resting state fMRI data. In this way, the “noise” in the test data reflected the 359
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i-th voxel

U

βi β0i εi

si σi ρi

Yi

Figure 2. Generative model of Bayesian RSA. The covariance structure U
shared across all voxels is treated as a hyper-parameter of the unknown response
amplitude β. For voxel i, the BOLD time series Yi are the only observable data. We
assume Yi is generated by task-related activity amplitudes βi (the i-th column of β),
intrinsic fluctuation amplitudes β0i and spatially independent noise εi:
Yi = Xβi + X0β0i + εi, where X is the design matrix and X0 is the set of time
courses of intrinsic fluctuations. εi is modeled as an AR(1) process with autocorrelation
coefficient ρi and noise standard deviation σi. βi depends on the voxel’s pseudo-SNR
si and noise level σi in addtion to U : βi ∼ N(0, (siσi)

2U). By marginalizing over
βi, β0i, σi, ρi and si for each voxel, we can obtain the likelihood function
p(Yi|X,X0, U) and search for U which maximizes the total log likelihood
log p(Y|X,X0, U) =

∑nV

i log p(Yi|X,X0, U) of the observed data Y for all nV
voxels. The optimal Û can be converted to a correlation matrix, representing the
estimated similarity between patterns.
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spatial and temporal structure of realistic fMRI noise. To make the estimation task 360

even more challenging, we simulated a situation in which within the ROI (Fig 3B; we 361

took the lateral occipital cortex as an ROI in this simulation, as an example) only a 362

small set of voxels respond to the task conditions (Fig 3C). This is to reflect the fact 363

that SNR often varies across voxels and that an ROI is often pre-selected based on 364

anatomical criteria or independent functional localizer, which do not guarantee that all 365

the selected voxels will have task-related activity. 366

Fig 3E shows the average covariance structure and similarity matrix estimated by 367

BRSA. The corresponding results estimated based on β̂ in standard RSA are shown in 368

Fig 3F. This comparison clearly demonstrates that at low SNR and with a small 369

amount of data, BRSA can recover the simulated covariance structure of task-related 370

signals, while standard RSA is overwhelmed by the bias structure (eq. 5). It has been 371

suggested that cross-run RSA, that is, similarity calculated between patterns estimated 372

from separate scanning runs, can also reduce bias [14,15,17]. As shown in Fig 3G, 373

indeed the true covariance and similarity structure can be recovered better by this 374

approach as compared to within-run RSA (Fig 3F). However, this approach leads to 375

faster degradation of results as SNR decreases, as demonstrated by the lowest two SNR 376

levels in the simulation. The peak height of task-triggered response is often in the range 377

of 0.1-0.5% in cognitive studies [30] while the noise level is often a few percents, which 378

means the SNRs expected in real studies are likely in the lower range in our simulation, 379

except when studying primary sensory stimulation. Furthermore, the inner products or 380

correlation between noises in patterns estimated from separate runs can be positive or 381

negative by chance. When the noise is large enough, even the correlation between 382

pattern estimates in different runs corresponding to the same task conditions may 383

become negative (as observed in Fig 3G). This makes it difficult to associate results of 384

cross-run RSA with a notion of pattern “similarity” because one would not expect 385

patterns for a task condition to be anti-correlated across runs. Fig 3H summarizes the 386

average correlation between the off-diagonal elements of the estimated similarity matrix 387

and those of the simulated similarity matrix. At high SNR, cross-run RSA’s 388

performance is similar to that of BRSA, and they both outperform within-run RSA. 389

But BRSA performs the best at low SNR. 390

We also tested cross-run RSA with the estimated patterns spatially whitened using 391

the procedure of [17]. Surprisingly, spatial whitening hurts similarity estimation. This 392

might be because the spatial correlation structure of the simulated signal is different 393

from that of the noise. Whitening based on the spatial correlation structure of noise 394

would re-mix signals between different voxels to the extent of changing its similarity 395

structure. Practically, it is difficult to estimate the spatial correlation of true signal 396

patterns, because their estimates are always contaminated by noise. 397

Added bonus: inferring pseudo-SNR map 398

Although the voxel-specific parameters θ are marginalized during fitting of the model, 399

we can obtain their posterior distribution and estimate their posterior means. The 400

estimated pseudo-SNR ŝ is of particular interest, as it informs us of where the estimated 401

representational structure is more strongly supported in the ROI chosen by the 402

researcher. As shown in Fig 3D, the estimated pseudo-SNR map highly resembles the 403

actual map of SNR in our simulated data in Fig 3C, up to a scaling factor. 404

Estimating shared representational similarity across participants 405

As mentioned above, BRSA can be extended to jointly fit the data of a group of 406

participants, thus identifying the shared representational similarity structure that best 407

explains the data of all participants. This is achieved by searching for a single U that 408
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maximizes the joint probability of observing all participants’ data (Group Bayesian RSA 409

;GBRSA). The rationale or GBRSA is that it searches for the representational structure 410

that best explains all the data. Using all the data to constrain the estimation of U 411

reduces the variance of estimation for individual participants, an inspiration from 412

hyper-alignment [20] and shared response model [21]. Fig 3H shows that the similarity 413

structure recovered by GBRSA has slightly higher correlation with the true similarity 414

structure than the average similarity structure estimated by other methods, across most 415

of the SNR levels and amounts of data. Cross-run RSA performs better only at the 416

highest simulated SNR. However, low average SNR is common in many brain areas and 417

this is where (G)BRSA offers more power for detecting the true but weak similarity 418

structure. 419

Controlling for over-fitting: model selection by cross-validation 420

on left-out data 421

Although Fig 2 shows that BRSA reduces bias, it does not eliminate it completely. This 422

may be due to over-fitting to noise. Because it is unlikely that the time course of 423

intrinsic fluctuation X0 and the design matrix X are perfectly orthogonal, part of the 424

intrinsic fluctuation cannot be distinguished from task-related activity. Therefore, the 425

structure of β0, the modulation of intrinsic fluctuation, could also influence the 426

estimated Û when SNR is low. 427

For instance, in Fig 3E, at the lowest SNR and least amount of data (top left 428

subplot), the true similarity structure is almost undetectable using BRSA. Is this due to 429

large variance in the estimates, or is it because BRSA is still biased, but to a lesser 430

degree than standard RSA? If the result is still biased, then averaging results across 431

subjects will not remove the bias, and the deviation of the average estimated similarity 432

structure from the true similarity structure should not approach 0. To test this, we 433

simulated many more subjects by preserving the spatial patterns of intrinsic fluctuation 434

and the auto-regressive properties of the voxel-specific noise in the data used in Fig 3, 435

and generating intrinsic fluctuations that maintain the amplitudes of power spectrum in 436

the frequency domain. To expose the limit of the performance of BRSA, we focused on 437

the lower range of SNR and simulated only one run of data per “subject”. Fig 4A 438

shows the quality of the average estimated similarity matrix with increasing number of 439

simulated subjects. The average similarity matrices estimated by BRSA do not 440

approach the true similarity matrix indefinitely as the number of subjects increase. 441

Instead, their correlation saturates to a value smaller than 1. This indicates that the 442

result of BRSA is still weakly biased, with the bias depending on the SNR. It is possible 443

that as the SNR approaches 0, the estimated Û is gradually dominated by the impact 444

of the part of X0 not orthogonal to X. We reason that this is partly because the 445

algorithm [31] we used to estimate the number of components in X0 is a relatively 446

conservative method. In particular, in this simulation, the number of components of 447

simulated intrinsic fluctuations were 20±4, while the number of components estimated 448

from these simulated data by the algorithm were 13±3. However, empirically this 449

algorithm [31] yields more stable and reasonable estimation than other methods we have 450

tested [32]. It should be noted that BRSA still performs much better than standard 451

RSA, for which the correlation between the estimated similarity matrix and the true 452

similarity matrix never passed 0.1 in these simulations (not shown). 453

The expected bias structure when spatial noise correlation exists is difficult to derive. 454

We used (XTX)−1 as a proxy to evaluate the residual bias in the estimated similarity 455

using BRSA. As expected, when the SNR approached zero, the model over-fit to the 456

noise and the bias structure increasingly dominated the estimated structure despite 457

increasing the number of simulated participants (Fig 4B). This observation calls for an 458
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Figure 3. Performance of BRSA on simulated data. (A) The true covariance
structure U from which the activity patterns were drawn. (B) We use lateral occipital
cortex (bright region) as an example ROI and resting state fMRI data from the Human
Connectome Project as noise. (C) We multiplied the design matrix of the task in Fig
1A with the simulated activity pattern and then added this “signal” to voxels that in a
cubical region of the ROI. The colors show the actual SNR of the added signal for one
example simulated brain, corresponding to the plot circumvented by a red square in E.
(D) The pseudo-SNR map estimated by BRSA for the data with a true SNR map
shown in C. The scale does not match the scale of true SNR, but the spatial pattern of
SNR is recovered. (E) Average covariance matrix (top) and similarity matrix (bottom)
estimated by BRSA in the cubic area in C, across different SNR levels (columns) and
different numbers of runs (rows). (F) The corresponding result obtained by standard
RSA based on activity patterns estimated within runs. (G) The corresponding result of
RSA based on cross-correlating patterns estimated from separate runs.
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Figure 3. (H) Top: average correlation (mean ± std) between the off-diagonal
elements of the estimated and true similarity matrices, for each method, across SNR
levels (x-axis) and amounts of data (separate plots). Bottom: The correlation between
the average estimated similarity matrix of each method (for GBRSA, this is the single
similarity matrix estimated) and the true similarity matrix. “point-est”: methods based
on point estimates of activity patterns; “-crossrun”: similarity based on
cross-correlation between runs; “-whiten”: patterns were spatially whitened (similarity
matrix not shown because the true structure could barely be seen)

evaluation procedure to detect over-fitting in applications to real data, when the ground 459

truth of the similarity structure is unknown. 460

One approach to assess whether a BRSA model has over-fit the noise is 461

cross-validation. In addition to estimating U , the model can also estimate the posterior 462

mean of all other parameters, including the neural patterns β of task-related activity, 463

β0 of intrinsic fluctuation, noise variances σ2 and auto-correlation coefficients ρ. For a 464

left-out testing data set, the design matrix Xtest is known given the task design. 465

Together with the parameters estimated from the training data as well as the estimated 466

variance and auto-correlation properties of the intrinsic fluctuation in the training data, 467

we can calculate the log predictive probability of observing the test data. The unknown 468

intrinsic fluctuation in the test data can be marginalized by assuming their statistical 469

property stays unchanged from training data to test data. The predictive probability 470

can then be contrasted against the cross-validated predictive probability provided by a 471

null model separately fitted to the training data. The null model would have all the 472

same assumptions as the full BRSA model, except that it would not assume any 473

task-related activity captured by X. When BRSA over-fits the data, the estimated 474

spatial pattern β̂ would not reflect the true response pattern to the task and is unlikely 475

to be modulated by the time course in Xtest. Thus the full model would predict signals 476

that do not occur in the test data, and yield a lower predictive probability than the null 477

model. The result of the full BRSA model on training data can therefore be accepted if 478

the log predictive probability by the full model is higher than that of the null model 479

significantly more often than chance. 480

Over-fitting might also arise when the assumed design matrix X does not correctly 481

reflect task-related activity. When there is a sufficient amount of data but the design 482

matrix does not reflect the true activity, the estimated covariance matrix Û in BRSA 483

would approach zero, as would the posterior estimates of β̂. In this case as well, the full 484

model would be indistinguishable from the null model. 485

We tested the effectiveness of relying on cross-validation to reject over-fitted results 486

using the same simulation procedure as in Fig 3, and repeated this simulation 36 times, 487

each time with newly simulated signals and data from a new group of participants in 488

HCP [33] as “noise”. Fig 5A shows the rate of correct acceptance when both training 489

and test data have signals. We counted each simulation in which the cross-validation 490

score (log predictive probability) of the full BRSA model was significantly higher than 491

the score of the null model (based on a one-sided student’s t-test at a threshold of 492

α=0.05) as one incidence of correct acceptance. When the SNR is high (above 0.14), 493

warranting reliable estimation of the similarity structures as indicated in Fig 3H, the 494

cross-validation procedure selected the full model significantly more often than chance 495

(all p<7e-7, binomial test). At the lowest SNR (0.14) and with only 1 run of training 496

data, the full model was never selected (p<3e-11), consistent with a poor estimation of 497

the similarity matrix in Fig 3E. As the amount of training data increased to 2 runs 498

(even without changing the SNR), the rate of accepting the full model increased, 499

although with the lowest SNR it was still not significantly different from chance 500

(p=0.6), while the estimated similarity matrix was also noisy but started to be visually 501
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A

B

Figure 4. Limited performance of BRSA at very low SNR and small
amount of data. (A) The average correlation between the off-diagonal elements of
the estimated and true similarity matrices (mean ± std) as the number of simulated
subjects increases. Each simulated subject had one run of data. Legend shows average
SNR in task-responsive voxels. Half of the voxels do not include any signal related to the
design matrix. The correlation reaches asymptotic levels slightly below 1 with increasing
numbers of participants except when the SNR is extremely low (0.07), indicating that
the bias is not fully eliminated.(B) The average correlation between the estimated
similarity matrix and the expected bias structure assuming white noise. The estimated
similarity structure is most dominated by the bias structure at the lowest SNR
simulated (0.07). The negative correlation at the highest SNR reflects the weak negative
correlation between the true similarity structure and expected bias structure (-0.055)
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detectable in Fig 3E. This indicates that the cross-validation procedure is relatively 502

conservative. Fig 5B shows the difference between the cross-validation scores of the full 503

and null models as the amount of training data doubled in one group of simulated 504

subjects, as an illustration of typical results. Dots to the left of the dashed line 505

represent subjects for whom the full model explained the data better than the null 506

model to a greater extent when two runs were used, as compared to one run of data 507

only. The means and standard deviations of the t-statistics across simulated groups for 508

all simulation configurations are displayed in Fig 5C. The differences in cross-validation 509

scores between full and null models are displayed in Fig 5D. 510

The cross-validation procedure also helps avoid false acceptance when activity 511

patterns are not consistently reproducible across runs. To illustrate this, we simulated 512

the case when signals are only added to the training data but not to the test data. Now, 513

the full model was always rejected across the simulated SNR and amounts of data (not 514

shown). Finally, when neither training data nor testing data included signal, the 515

cross-validation procedure also correctly rejected the full model in all cases. Fig 5E and 516

5F illustrate the difference between cross-validation scores of full and null models for 517

the two simulations, respectively. 518

Extension: decoding task-related activity from new data 519

BRSA has a relatively rich model for the data: it attempts to model both the 520

task-related signal and intrinsic fluctuation, and to capture voxel-specific SNR and noise 521

properties. In addition to cross-validation, this also enables decoding of signals related 522

to task conditions from new data. Similarly to the procedure of calculating 523

cross-validated log likelihood, but without pre-assuming a design matrix for the test 524

data, we can calculate the posterior mean of X̂test and X̂0test in the testing data. Fig 525

6A shows the decoded design matrix X̂test for one task condition (condition 6 in Fig 526

1B and 6B) and one participant, using one run of training data with the second-highest 527

SNR. Although our method decodes some spurious high responses when there is no 528

event of this task condition, overall the result captures many of the true responses in 529

the design matrix. The average correlation between the decoded design matrix and the 530

true design matrix is displayed in Fig 6B. High values on the diagonal elements indicate 531

that overall, the decoder based on BRSA can recover the task-related signals well. The 532

structure of the off-diagonal elements appears highly similar to those of the correlation 533

structure between corresponding columns in the original design matrix(r=0.82, 534

p<1e-30). This means that the signals corresponding to task conditions which often 535

occur closely in time in training data are more likely be confused when they are decoded 536

from testing data. Indeed, at the time of mistakenly decoded high response around the 537

90th TR in Fig 6A, there is a true event of the first task condition ((Fo)Fy) in the 538

design matrix. The decoder confused the response to the first condition as response to 539

the sixth condition. The events of these two conditions did in fact often co-occur in the 540

training data, therefore their overlap in the design matrix makes it difficult to 541

distinguish which event triggered the response in the training data, and reduces the 542

accuracy of posterior estimates of their activity patterns, causing further confusion at 543

the stage of decoding. We suspect that such confusion is not limited to decoding based 544

on BRSA, but should be a general limitation of multi-variate pattern analysis of fMRI 545

data: due to the slow smooth BOLD response, the more often the events of two task 546

conditions occur closely in time in the training data, the more difficult it becomes for 547

the classifier to discern their patterns. 548
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Figure 5. Cross-validation reduces the chance of false positive results. The
full BRSA model and a null model that assumes no task-related activity were fit to 1 or
2 runs of simulated data of a group of subjects with different SNRs, as in Fig 3.
Student’s t-test was performed on the difference between the cross-validation scores of
the full model and null model on a left-out run of data to determine whether the full
model should be accepted. This procedure was repeated 36 times on different groups of
simulated data. (A) Signals were added to both training and test data. The frequencies
with which the full models were accepted based on the t-test (correct acceptance) are
displayed. Darker bars correspond to low SNRs and lighter bars correspond to higher
SNRs in Fig 3. (B) The difference between cross-validation scores of the full and null
models for 1 or 2 runs of training data, at the lowest SNR (0.14). Dashed line: x = y.
Points to the left of the dashed line show more evidence for the full model when two
runs of data were used, as compared to one run. The chance of accepting the full model
increases when there are more data to fit the BRSA model. (C) Mean ± std of the
t-statistics of the difference between cross-validation scores of the full and null models
across simulated groups, for the corresponding amounts of data and SNR in A. (D)
Mean ± std of the difference between the cross-validation scores of the full models and
the null models across simulated groups in A. (E) Mean ± std of the difference between
the cross-validation scores when only the training data but not test data have signals.
(F) Mean ± std of the difference between the cross-validation scores when neither the
training data nor the test data have signals. In all cases in E and F the statistical test
correctly rejected the full model.
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Figure 6. Decoding capabilities of the BRSA method. (A) Decoded
task-related activity of the sixth condition from one simulated subject in one run of test
data, and the true design matrix of that condition in the test data. The simulated data
with the second highest SNR in Fig 3 were used. BRSA model was fitted to one run of
training data. (B) Average correlation between the decoded signals for each task
condition (rows) and the time courses for each condition in the design matrix used to
simulate the test data (columns).

Discussion 549

In this paper, we demonstrated that bias can arise in the result of representational 550

similarity analysis, a popular method in many recent fMRI studies. By analytically 551

deriving the source of the bias with simplifying assumptions, we showed that it is 552

determined by both the timing structure of the experiment design and the correlation 553

structure of the noise in the data. Traditional RSA is based on point estimates of neural 554

activation patterns which unavoidably include high amounts of noise. The task design 555

and noise property induce covariance structure in the noise of the pattern estimates. 556

This structure in turn biases the covariance structure of these point estimates, and a 557

bias persists in the similarity matrix. Such bias is especially severe when the SNR is low 558

and when the order of the task conditions cannot be fully counterbalanced. 559

To reduce this bias, we proposed a Bayesian framework that interprets the 560

representational structure as reflecting the shared covariance structure of activity levels 561

across voxels. Our BRSA method estimates this covariance structure directly from data, 562

bypassing the structured noise in the point estimates of activity levels, and explicitly 563

modeling the spatial and temporal structure of the noise. This is different from many 564

other methods that attempt to correct the bias after it has been introduced. 565

In addition to inferring the representational similarity structure, our method also 566

infers activation patterns (as an alternative to the traditional GLM), SNR for different 567

voxels, and even the “design matrix” for data recorded without knowledge of the 568

underlying conditions. The inferred activation patterns are regularized not only by the 569

SNR, but also by the learned similarity structure. The inference of an unknown “design 570

matrix” allows one to uncover uninstructed task conditions (e.g., in free thought) using 571

the full Bayesian machinery and all available data. 572

In a realistic simulation using real fMRI data as background noise, we showed that 573

BRSA generally outperforms standard RSA and cross-run RSA, especially when SNR is 574

low and when the amount of data is limited, making out method a good candidate in 575

scenarios of low SNR and difficult-to-balance tasks. Because temporal and spatial 576

correlation also exist in the noise of data from other neural recording modalities, the 577

method can also be applied to other types of data when the bias in standard RSA is of 578
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concern. To detect overfitting to noise, the difference between the cross-validated score 579

of the full model of BRSA and a null model can serve as the basis for model selection. 580

We further extend the model to allow for estimating the shared representational 581

structure across a group of participants. 582

The bias demonstrated in this paper does not necessarily question the validity of all 583

previous results generated by RSA. However, it does call for more caution when 584

applying RSA to higher-level brain areas for which SNR in fMRI is typically low, and 585

when the order between events of different task conditions cannot be fully 586

counterbalanced. This is especially the case with decision making tasks that involve 587

learning or structured sequential decisions, in which events cannot be randomly shuffled. 588

Even when the order of task conditions can be randomized, it may not be perfectly 589

counter-balanced. Thus, a small deviation of the bias structure from a diagonal matrix 590

may still exists. If the same random sequence is used for all participants, the tiny bias 591

can persist in the results of all participant and become a confound. Therefore, it is also 592

important to use different task sequences across participants. 593

Prior to the proposal of our method, similarity measures calculated between patterns 594

estimated from separate scanning runs (cross-run RSA) was proposed to overcome the 595

bias [15,17,34]. The inner product between noise pattern estimates from separate runs 596

is theoretically unbiased. However, at low SNR, cross-run RSA suffers from large noise, 597

sometimes generating results where noisy pattern estimates of the same condition from 598

different runs appear anti-correlated. In addition, even though the cross-run covariance 599

matrix is not biased, the magnitude of cross-run correlation is under-estimated because 600

the computation requires division by the standard deviation of the estimated patterns, 601

which is in turn inflated by the high amount of noise carried in the estimated patterns. 602

In our simulation, cross-run RSA appears to slightly outperform BRSA at very high 603

SNR but the results of both methods are already very close to the true similarity 604

structure in this case. On the other hand, at very low SNR, cross-run RSA fails to 605

reveal the true similarity structure, while BRSA does. However, cross-run RSA may be 606

a more conservative approach given that the cross-run covariance matrix (and 607

Mahalonobis distance [17] is unbiased. It is difficult to predict whether BRSA or 608

cross-run RSA are more suitable for any specific study and brain area of interest. 609

Nonetheless, based on our results, both approaches should always be favored over 610

traditional within-run RSA based on pattern estimates. 611

It is surprising that spatial whitening, that is often recommended [17], in fact hurts 612

the result of standard RSA and cross-run RSA in our simulation. This may be because, 613

in our simulation, the spatial correlation of noise is not the same as the spatial 614

correlation in the simulated signal. While whitening reduces the correlation between 615

noise in the estimated β̂ of different voxels, it may cause undesired remixing of true 616

signals between voxels. As discussed before, in practice, it is difficult to know whether 617

the intrinsic fluctuation and task-evoked signals share the same spatial correlation 618

structure, because we do not know the ground truth of signals in real data. The cost 619

and benefit of spatial whitening on standard and cross-validated RSA therefore awaits 620

more studies. Instead of performing spatial whitening, BRSA estimates a few time 621

series X0 that best explain the correlation of noise between voxels and marginalizes 622

their modulations in each voxel. Without remixing signals across voxels, it still captures 623

spatial noise correlation. 624

In our study, we did not directly compare BRSA to cross-validated Mahalanobis 625

distance [17] because they are foundamentally different measures: BRSA aims to 626

estimate the correlation between patterns, which is close to the cosine angle between 627

two patterns vectors [35,36]; in contrast, Mahalanobis distance aims to measure the 628

distance between patterns. Nonetheless, given the theoretical soundness of the 629

cross-validated Mahalanobis distance, it could also be a good alternative to BRSA when 630
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there are multiple runs in a task. 631

Our BRSA method is closely related to the PCM [16,37]. A major difference is that 632

PCM models the point estimates β̂ after GLM analysis while BRSA models fMRI data 633

Y directly. The original PCM [16] in fact considered the contribution of the noise in 634

pattern estimates to the similarity matrix, but assumed that the noise in β̂ is i.i.d 635

across task conditions. This means that the bias in the covariance matrix was assumed 636

to be restricted to a diagonal matrix. We showed here that when the order of task 637

conditions cannot be fully counter-balanced, such as in the example in Fig 1, this 638

assumption is violated and the bias cannot be accounted for by methods such as PCM. 639

If one knew the covariance structure of the noise Σε, then the diagonal component 640

of the noise covariance structure assumed in PCM [16] could be replaced by the bias 641

term (XTX)−1XTΣεX(XTX)−1 to adapt PCM to estimate the covariance structure 642

Û that best explains β̂ [38] if spatial noise correlation is not considered. However, as 643

shown in Fig 1G, different voxels can have a wide range of different autocorrelation 644

coefficients. Assuming a single Σε for all voxels may be over-simplified. In addition, 645

PCM assumes all voxels within one ROI have equal SNR. However, typically only a 646

small fraction of voxels exhibits high SNR [27]. Therefore, it is useful to model the noise 647

property and SNR of each voxel individually. 648

In addition to these differences, BRSA explicitly models spatial noise correlation. It 649

also comes with the ability to select between a full model and null model based on 650

cross-validated log likelihood, and the method can be applied to fMRI decoding. PCM 651

can additionally evaluate the likelihood of a few fixed candidate representational 652

structures given by different computational models. It can also estimate the additive 653

contributions of several candidate pattern covariance structures to the observed 654

covariance structure. These options are not yet available in the current implementation 655

of BRSA. Combining the strength of PCM and BRSA is an interesting future direction. 656

Many aspects of flexibility may be incorporated to BRSA. For example, the success 657

of the analysis hinges on the assumption that the HRF used in the design matrix 658

correctly reflects the true hemodynamics in the ROI, but it has been found that HRF in 659

fact vary across people and across brain regions [39, 40]. Jointly fitting the shape of the 660

HRF and the representational structure may improve the estimation. In addition, it is 661

possible that even if the landscape of activity patterns for a task condition stays the 662

same, the global amplitude of the response pattern may vary across trials due to 663

repetition supression [41–43] and attention [44,45]. Such modulation may not be 664

predictable by response time or stimulus duration. Allowing global amplitude 665

modulation of patterns associated with a task condition to vary across trials might 666

capture such variability and increase the power of the method. 667

Our simulations revealed that BRSA is not entirely unbiased, that is, results cannot 668

be improved indefinitely by adding more subjects. We hypothesize that the residual 669

bias is due to the underestimation of the number of components necessary to capture 670

the spatial correlation introduced by intrinsic fluctuation. Development of a proper but 671

less conservative algorithm for estimating the number of components suitable for BRSA 672

may improve its performance. 673

Comparing the cross-validation score of the full model and a null model is one 674

approach to detect overfitting. One interesting finding is that when the design matrix 675

does not explain the real brain response (Fig 5C where signal was not added to either 676

training or test data), and when there is a sufficient amount of training data, the full 677

model becomes indistinguishable from the null model. Even though such 678

cross-validation does not select the null model significantly more often than the full 679

model, not finding the opposite is sufficient to warn the researcher not to trust the 680

resulting similarity matrix as reflecting the true structure. When this happens, it is 681

advisable to focus on taking measures to improve the design of study. Ultimately, task 682
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designs that are not fully counterbalanced and low SNR in fMRI data are two critical 683

factors that cause bias in traditional RSA and impact the power of detecting similarity 684

structure. Carefully designing tasks that fully balance the task conditions, randomizing 685

the sequence of a task across participants, and increasing the number of measurements, 686

are our recommended approaches in the first place. In the analysis phase of the project, 687

one can then use BRSA. 688

Materials and methods 689

Generative model of Bayesian RSA 690

Our generative model of fMRI data follows the general assumption of GLM. In addition, 691

we model spatial noise correlation by a few time series X0 shared across all voxels. The 692

contribution of X0 to the ith voxel is β0i. Thus, for voxel i, we assume that 693

Yi = Xβi +X0β0i + εi (8)

Yi is the time series of voxel i. X is the design matrix shared by all voxels. βi is the 694

response amplitudes of the voxel i to the task conditions. εi is the residual noise in 695

voxel i which cannot be explained by either X or X0. We assume that ε is spatially 696

independent across voxels, and all the correlation in noise between voxels are captured 697

by the shared intrinsic fluctuation X0. 698

We use an AR(1) process to model εi: for the ith voxel, we denote the noise at time 699

t > 0 as εt,i, and assume 700

εt,i = ρiεt−1,i + ηt,i, ηt,i ∼ N(0, σ2
i ) (9)

where σ2
i is the variance of the “innovation” noise at each time point and ρi is the 701

autoregressive coefficient for the ith voxel. 702

We assume that the covariance of the multivariate Gaussian distribution from which 703

the activity amplitudes βi are generated has a scaling factor that depends on its 704

pseudo-SNR si: 705

βi ∼ N(0, (siσi)
2U). (10)

This is to reflect the fact that not all voxels in an ROI respond to tasks. 706

We further use Cholesky decomposition to parametrize the covariance structure U : 707

U = LLT , where L is a lower triangular matrix. Thus, βi can be written as 708

βi = siσiLαi, where αi ∼ N(0, I). This change of parameter allows for estimating 709

U of lower rank (if the researcher has sufficient reason to make such a guess) by setting 710

L as lower-triangular matrix with a few rightmost-columns truncated. With an 711

improper uniform prior for β0i, and temporarily assuming X0 is given, we have the 712

unmarginalized likelihood for each voxel i: 713

p(Yi,βi, β0i|X,X0, L, σi, ρi, si)

=p(Yi|βi, β0i, X,X0, σi, ρi)p(βi|L, σi, si)p(β0i)

=p(Yi|siσiLαi, β0i, X,X0, σi, ρi)p(αi)p(β0i)

∝p(Yi|siσiLαi, β0i, X,X0, σi, ρi)p(αi)

= exp[−
1

2
(Yi − siσiXLαi −X0β0i)

TΣ−1
εi

(Yi − siσiXLαi −X0β0i)]

· (2π)−
nT
2 |Σ−1

εi
| 12 (2π)−

k
2 exp[−

1

2
αTi αi]

(11)

where k ≤ nC is the rank of L. 714

PLOS 22/35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347260doi: bioRxiv preprint 

https://doi.org/10.1101/347260
http://creativecommons.org/licenses/by/4.0/


In contrast to the full model, our null model assumes 715

p(Yi,β0i|X0, σi, ρi)

=p(Yi|β0i, X0, σi, ρi)p(β0i)

∝p(Yi|β0i, X0, σi, ρi)

= exp[−
1

2
(Yi −X0β0i)

TΣ−1
εi

(Yi −X0β0i)]

· (2π)−
nT
2 |Σ−1

εi
| 12

(12)

For data within one run, Σ−1
εi

, the inverse matrix of the covariance of εi, is a banded 716

symmetric matrix which can be written as Σ−1
εi

= 1
σ2

i
(I − ρiF + ρ2

iD), where F is 1 717

only at the superdiagonal and subdiagonal elements and 0 everywhere else, and D is 1 718

on all diagonal elements except for the first and last one, and 0 elsewhere. For 719

abbreviation, we can denote Ai = A(ρi) = I − ρiF + ρ2
iD which is a function of ρi. 720

Σ−1
εi

can be factorized as Σ−1
εi

= 1
σ2

i
Ai. When Yi includes concatenated time series 721

across several runs, Σ−1
εi

is a block diagonal matrix with each block diagonal elements 722

corresponding to one run, constructed in the same way. 723

To derive the log likelihood of L for data of all voxels in the ROI, we need to 724

marginalizing all other unknown parameters. Below, we marginalize them step by step. 725

By marginalizing β0i, we have 726

p(Yi,βi|X,X0, L, σi, ρi, si)

∝
∫
p(Yi|siσiLαi, β0i, X,X0, σi, ρi)p(αi)dβ0i

=(2π)−
nT +k−n0

2 |Σ−1
εi
| 12 |XT

0 Σ−1
εi
X0|−

1
2 exp[−

1

2
αTi αi]

· exp[−
1

2σ2
i

(Yi − siσiXLαi)TA∗
i (Yi − siσiXLαi)]

(13)

n0 is the number of components in X0. In the equation above, we denoted A∗
i = 727

σ2
i (Σ

−1
εi
− Σ−1

εi
X0(XT

0 Σ−1
εi
X0)−1XT

0 Σ−1
εi

) = Ai −AiX0(XT
0 AiX0)−1XT

0 Ai. 728

By further marginalizing αi which is equivalent to marginalizing βi, we get 729

p(Yi|X,X0, L, σi, ρi, si)

=

∫
p(Yi|siσiLαi, X,X0, σi, ρi)p(αi)dαi

∝(2π)−
nT −n0

2 |Σ−1
εi
| 12 |XT

0 Σ−1
εi
X0|−

1
2 |Λ∗

i |
1
2

· exp[−
1

2
(

1

σ2
i

Y Ti A
∗
iYi − µ

∗T
i Λ∗−1

i µ∗
i )]

(14)

where Λ∗
i = (I + s2

iL
TXTA∗

iXL)−1 and µ∗T
i = si

σi
Λ∗
iL

TXTA∗
iYi are the variance 730

and mean of the posterior distribution of αi, respectively. 731

All the steps of marginalization above utilize the property of multivariate Gaussian 732

distribution. Next we marginalize the noise variance σ2
i . We assume an improper 733

uniform distribution of σ2
i in R+. It is also possible to assume a conjugate prior for σ2

i . 734

Given that data of at least hundreds of time points are obtained in each run to provide 735

enough constraint to σ2
i , our choice does not appear to cause problem. To isolate σ2

i , 736

using the property of Cholesky decomposition of Σ−1
εi

, the above equation can be 737
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written as 738

p(Yi|X,X0, L, σi, ρi, si)

∝(2π)−
nT −n0

2 σ2
i

−nT −n0
2 (1− ρ2

i )
nr
2 |XT

0 AiX0|−
1
2 |Λ∗

i |
1
2

· exp[
1

2σ2
i

(s2
iY

T
i A

∗
iXLΛ∗

iL
TXTA∗

iYi − Y
T
i A

∗
iYi)]

(15)

This form is proportional to an inverse-Gamma distribution of σ2
i . nr is the number 739

of runs in the data. Therefore, we can analytically marginalize σ2
i and obtain 740

p(Yi|X,X0, L, ρi, si)

=

∫
p(Yi|X,X0, L, σi, ρi, si)p(σ2

i )dσ
2
i

∝(2π)−
nT −n0

2 (1− ρ2
i )

nr
2 |XT

0 AiX0|−
1
2 |Λ∗

i |
1
2 Γ(

nT − n0

2
− 1)

· [
Y Ti A

∗
iYi − s2

iY
T
i A

∗
iXLΛ∗

iL
TXTA∗

iYi

2
]1−

nT −n0
2

(16)

We did not find ways to further analytically marginalize si or ρi. But we can 741

numerically marginalize them by weighted sum of 16 at nl × nm discrete grids 742

{ρil, sim} (0 < l < nl, 0 < m < nm) with each grid representing one area of the 743

parameter space of (ρ, s). 744

p(Yi|X,X0, L)

≈
nl∑
l=1

nm∑
m=1

p(Yi|X,X0, L, ρil, sim)w(ρil, sim)

∝
nl∑
l=1

nm∑
m=1

(2π)−
nT −n0

2 (1− ρ2
il)

nr
2 |XT

0 AilX0|−
1
2 |Λ∗

ilm|
1
2 Γ(

nT − n0

2
− 1)

· [
Y Ti A

∗
ilYi − s2

imY
T
i A

∗
ilXLΛ∗

ilmL
TXTA∗

ilYi

2
]1−

nT −n0
2 w(ρil, sim)

(17)

The weights w(ρil, sim) are the prior probabilities of the two parameters in the 745

area represented by {ρil, sim}. We assume uniform prior of ρ in (-1,1). All the 746

simulations in this paper used a negative exponential distribution as prior for s. The 747

grids sim are each chosen at the centers of mass of the prior distribution in the bins 748

they represent in (0,+∞). All bins equally divide the area under the curve of the prior 749

distribution for s. Alternative forms of priors such as uniform in (0, 1) and truncated 750

log normal distribution are also implemented in the tool. 751

Because we made the assumption that εi is independent across voxels. The log 752

likelihood for all data is the sum of the log likelihood for each voxel. 753

log p(Y |X,X0, L) =

nV∑
i=1

log p(Yi|X,X0, L). (18)

For the null model, the likelihood for each voxel after marginalizing β0i and σ2
i can 754

be similarly derived, 755

p(Yi|X0, ρi)

∝(2π)−
nT −n0

2 (1− ρ2
i )

nr
2 |XT

0 AiX0|−
1
2

· Γ(
nT − n0

2
− 1)[

Y Ti A
∗
iYi

2
]1−

nT −n0
2

(19)
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and the total log likelihood can be calculated similarly by numerically marginalizing ρi 756

and summing the log likelihood for all voxels. 757

Model fitting procedure 758

To fit the model, we need the derivative of the total log likelihood with respect to L. It 759

can be derived that conditional on any grid of parameter pairs {ρil, sim}, the 760

derivative of the log likelihood for voxel i against each lower-triangular element of L is 761

the corresponding lower-triangular element of the matrix 762

∂

∂L
logp(Yi|X,X0, L, ρil, sim)

=− s2
imX

TA∗
ilXLΛ∗

ilm

+
s2
im(nT − n0 − 2)

Y Ti A
∗
ilYi − s2

imY
T
i A

∗
ilXLΛ∗

ilmL
TXTA∗

ilYi

· (I − s2
imX

TA∗
ilXLΛ∗

ilmL
T )XTA∗

ilYiY
T
i A

∗
ilXLΛ∗

ilm

(20)

where A∗
il and Λ∗

ilm are A∗
i and Λ∗

i evaluated at {ρil, sim}. The derivative of the 763

total log likelihood against L after marginalizing over all grids {ρil, sim} of all voxels is 764

∂

∂L
logp(Y |X,X0, L)

=

nV∑
i=1

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X,X0, L)
∂

∂L
log p(Yi|X,X0, L, ρil, sim)

(21)

p(ρil, sim|Yi, X,X0, L) is the posterior probability of {ρil, sim} conditional on a 765

given L. It can be obtained by normalizing p(Yi|X,X0, L, ρil, sim)w(ρil, sim) after 766

calculating 16. 767

With the derivative 21, the total log likelihood 18 can be maximized using 768

gradient-based method such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 769

to search for the optimal L [46–49]. 770

However, the derivations above have made the assumption that X0 is given, while it 771

is not. The requirement for X0 should be to appropriately capture the correlation of 772

noise across voxels without overfitting. Therefore, at the starting of the model fitting, 773

regular regression of Y against X and any nuisance regressors such as head motion and 774

constant baseline is performed. Then the algorithm by Gavish and Donoho [31] is used 775

to select the optimal number of components n0 to choose X0 from the eigenvectors of 776

the residual of regression. Because regular regression does not shrink the magnitudes of 777

β, their magnitudes can only be over-estimated. n0 thus has no risk of being 778

over-estimated. This n0 is then fixed throughout the model fitting. Next, the first n0 779

principal components of the residual of regression are set as X̂0 to allow for calculating 780

the marginal log likelihood in 21 and gradient ascent with BFGS. A sufficient steps of 781

iterations are performed to optimize L. Then β̂post, the posterior expectations of β, are 782

calculated with the current L̂ and with s, ρ, σ being marginalized. X̂0 is subsequently 783

recalculated using PCA from the residuals after subtracting Xβ̂post from Y . The 784

alternation between optimizing L and re-estimating X̂0 is repeated until convergence. 785

Once we obtain L̂, the estimate of L, the estimate of the covariance structure is 786

Û = L̂L̂T . Converting it into a correlation matrix yields the similarity matrix by 787

BRSA. Even though X̂0 is estimated from data based on posterior estimation of β 788

repeatedly during fitting, L is still optimized for the log likelihood with all other 789

unknown variables marginalized. Thus the estimated Û is an empirical prior of β 790

PLOS 25/35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/347260doi: bioRxiv preprint 

https://doi.org/10.1101/347260
http://creativecommons.org/licenses/by/4.0/


estimated from data. This is the reason we consider our model as an empirical Bayesian 791

method. 792

Many subcomponents of the expressions in these equations do not depend on L and 793

thus can be pre-computed before optimizing for L. The fixed grids of (ρ, s) further 794

make several subcomponents shared across voxels when evaluating 16. These all reduce 795

the amount of computation needed. 796

The fitting of the null model is similar to that of the full model except that there is 797

no L to be optimized. 798

Model selection and decoding 799

Once a model has been fitted to some data from a participant or a group of participants, 800

we can estimate the posterior mean of ρ, s, σ2, β and β0, conditional on the empirical 801

prior Û (essentially L̂), data Y , design matrix X and estimated intrinsic fluctuations 802

X̂0. Below, we derive their formula and the procedure in which they are used for 803

calculating cross-validated log likelihood of new data and decoding task-related signal 804

X̂test and X̂0test from new data in the context of fMRI decoding. 805

The posterior mean of these variables are 806

σ̂2
i(post) =

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)

∫
σ2
i p(σ2

i |Yi, L,X, X̂0, ρil, sim)dσi

=

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)
1

nT − n0 − 4

· Y Ti A
∗
ilYi − s

2
imY

T
i A

∗
ilXL̂Λ∗

ilmL̂
TXTA∗

ilYi
(22)

807

ŝi(post) =

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)sim (23)

808

ρ̂i(post) =

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)ρil (24)

809

β̂i(post) =

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)s2
imL̂ΛilmL̂

TXTA∗
ilYi (25)

810

β̂0i(post) =

nl∑
l=1

nm∑
m=1

p(ρil, sim|Yi, X, X̂0, L̂)

· (X̂T
0 A

∗
ilX̂0)−1X̂T

0 A
∗
il(Yi − s

2
imXL̂ΛilmL̂

TXTA∗
ilYi)

(26)

For null model, σ̂2
i(post), β̂0i(post) and ρ̂i(post) are of similar forms except that all 811

terms including sim are removed and that p(ρil, sim|Yi, X, X̂0, L̂) is replaced by 812

p(ρil|Yi, X̂0). 813

To calculate cross-validated log likelihood, we assume the posterior estimates above 814

and the statistical properties of X0 stay unchanged in the testing data. We use 815

zero-mean AR(1) process to describe the statistical properties of X0. The AR(1) 816

parameters estimated from X̂0 serve as the parameters of the empirical prior for X0 in 817

the testing data. When X0 at each time point t is treated as a random vector X
(t)
0 , the 818

AR(1) parameters of each component can be jointly written as the diagonal matrix 819

V∆X0 for the variance of the innovation noise, and diagonal matrix TX0 for the 820

auto-regressive coefficients, both of size n0 × n0. 821
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For model selection purpose, design matrix Xtest for the testing data should be 822

generated in the same manner as they are for the training data by the researcher. For 823

full BRSA model, Xtestβ̂post is the predicted task-related signal in Ytest. 824

Yres = Ytest −Xtestβ̂post is the residual variation which cannot be explained by the 825

design matrix and the posterior activity pattern β̂post. Null model does not predict any 826

task-related activity, so all Ytest constitutes residual variation Yres. In either the full 827

model or the null model, the posterior estimate β̂0i(post) expresses their prediction 828

about how voxels should be co-modulated by a fluctuation, while the fluctuation time 829

course X0test is only predictable in terms of its variance and temporal autocorrelation 830

expressed by V∆X0 and TX0 . σ̂2
i(post) and ρ̂i(post) express the models’ predictions 831

about the variance and temporal dependency of the fluctuation in each voxel in addition 832

to the co-fluctuation. With these parameters estimated from training data, both the full 833

and null models can marginalize the unknown X0test and yield their corresponding 834

predictive log likelihoods for the testing data Ytest. These log likelihoods are the basis 835

for selecting between the full and null models. 836

To calculate the log likelihood, we notice that the predictive model of Yres in testing 837

data by both models are dynamical system models in which X0test is the latent state 838

and Yres is the observed data. They are slightly different from the standard dynamical 839

system model [50] in that not only the latent states, but also the noise, have temporal 840

dependency [51]: 841

X
(t)
0test ∼ N(X

(t−1)
0test TX0 , V∆X0) (27)

842

Y (t)
res −X

(t)
0testβ̂0post

∼ N((Y (t)
res −X

(t)
0testβ̂0post)Diag(ρ̂post),Diag(σ̂2

post))
(28)

Where Diag(ρ̂post) and Diag(σ̂2
post) are diagonal matrices with vectors ρ̂post and 843

σ̂2
post being their diagonal elements, respectively. 844

Because a modified forward-backward algorithm from the standard approach [50] is 845

needed to calculate the preditive log likelihood 846

p(Yres|β̂0post, TX0 , V∆X0 ,Diag(ρ̂post),Diag(σ̂2
post)) and the posterior distribution of 847

X0test, we describe the procedure below. 848

Define 849

Ĝ(X
(t)
0test) = p(X

(t)
0test|Y (1)

res , · · · , Y
(t)
res ) (29)

850

Ĥ(X
(t)
0test) =

p(Y (t+1)
res , · · · , Y (nT )

res |X
(t)
0test, Y

(t)
res )

p(Y
(t+1)
res , · · · , Y (nT )

res |Y (1)
res , · · · , Y (t)

res )
, for t < nT (30)

and 851

ct = p(Y (t)
res |Y

(1)
res , · · · , Y

(t−1)
res ), for t > 0

c1 = p(Y (1)
res )

(31)

Therefore, the cross-validated log likelihood is 852

log p(Y (1)
res , · · · , Y

(nT )
res |β̂0post, TX0 , V∆X0 , σ̂

2
post, ρ̂post) =

nT∑
t=1

log ct (32)

It can be derived that the posterior distribution of X
(t)
0test is 853

γ(X
(t)
0test) = p(X

(t)
0test|Y (1)

res , · · · , Y
(nT )
res ) = Ĝ(X

(t)
0test)Ĥ(X

(t)
0test) (33)
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Below, we denote the mean and covariance of Ĝ(X
(t)
0test) as µ

(t)
X0

and Γ
(t)
X0

, and the 854

mean and covariance of γ(X
(t)
0test) as µ̃

(t)
X0

and Γ̃
(t)
X0

. 855

µ
(t)
X0

, Γ
(t)
X0

and ct can be calculated by the forward step. µ̃
(t)
X0

and Γ̃
(t)
X0

can be 856

calculated by the backward step. To perform model selection, only forward step is 857

necessary. 858

To perform the forward step, we first note that for t = 1 859

X
(1)
0test ∼ N(0, V∆X0(I − T 2

X0
)−1) (34)

and 860

Y (1)
res ∼ N(X

(1)
0testβ̂0post,Diag(σ̂2

post)(I − Diag(ρ̂2
post))

−1) (35)

Denote VX0 = V∆X0(I − T 2
X0

)−1, we have 861

c1Ĝ(X
(1)
0test) = p(X

(1)
0test|Y (1)

res )p(Y (1)
res )

=p(X
(1)
0test)p(Y (1)

res |X
(1)
0test)

=(2π)−
n0
2 |VX0 |−

1
2 exp[−

1

2
X

(1)
0testV

−1
X0
X

(1)
0test

T
]

· exp[−
1

2

nV∑
i=1

(Y (1)
res −X

(1)
0testβ̂0post)

2(1− ρ2
i(post))

σ2
i(post)

]

nV∏
i=1

(
1− ρ2

i(post)

σ2
i(post)

)
1
2

(36)

Ĝ(X
(1)
0test) is a multivariate normal distribution of X

(1)
0test, we can find its covariance 862

and mean from 36: 863

Γ
(1)
X0

= [V −1
X0

+ β̂0post(I − Diag(ρ̂2
post))Diag(σ̂2

post)
−1β̂T0post]

−1 (37)

864

µ
(1)
X0

= Y (1)
res (I − Diag(ρ̂2

post))Diag(σ̂2
post)

−1β̂T0postΓ
(1)
X0

(38)

Because Ĝ(X
(1)
0test) is a normalized probability distribution, the components in 36 after 865

factoring out the multivariate normal distribution Ĝ(X
(1)
0test) is c1: 866

c1 =(2π)−
nV
2 |VX0 |−

1
2 |Γ(1)

X0
| 12

nV∏
i=1

(
σ̂2

i(post)

1− ρ̂2
i(post)

)−
1
2

= exp{−
1

2
[Y (1)

res (I − Diag(ρ̂2
post))Diag(σ̂2

post)
−1Y (1)

res

T

− µ(1)
X0

Γ
(1)
X0

−1
µ

(1)
X0

T
]}

(39)

For any t > 1, the following relation holds: 867

ctĜ(X
(t)
0test)

=

∫
p(Y (t)

res |X
(t)
0test, X

(t−1)
0test , Y

(t−1)
res )p(X

(t)
0test|X

(t−1)
0test )Ĝ(X

(t−1)
0test )dX

(t−1)
0test

(40)

p(Y (t)
res |X

(t)
0test, X

(t−1)
0test , Y

(t−1)
res ) is defined by 28. p(X

(t)
0test|X

(t−1)
0test ) is defined by 27. 868

Mean and covariance of Ĝ(X
(t−1)
0test ) are calculated by the previous step for t− 1. 869

Therefore, by marginalizing X
(t−1)
0test , we obtain 870

Γ
(t)
X0

= (K2 − J(K1 + Γ
(t−1)
X0

−1
)JT )−1 (41)
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and 871

µ
(t)
X0

= [∆Y (t)
res Diag(σ̂2

post)
−1β̂T0post + (µ

(t−1)
X0

Γ
(t−1)
X0

−1

−∆Y (t)
res Diag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post)(K1 + Γ

(t−1)
X0

)−1JT ]Γ
(t)
X0

(42)

where ∆Y (t)
res = Y (t)

res − Y (t−1)
res Diag(ρ̂post). 872

J = V −1
∆X0

T TX0
+ β̂0postDiag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post, 873

K1 = TX0V
−1

∆X0
T TX0

+ β̂0postDiag(σ̂2
post)

−1Diag(ρ̂post)
2β̂T0post and 874

K2 = V −1
∆X0

+ β̂0postDiag(σ̂2
post)

−1β̂T0post. Note that J , K1, K2 are all constants. 875

Similarly to 39, after factoring out Ĝ(X
(t)
0test), we obtain 876

ct = (2π)−
nV
2 |K1 + Γ

(t−1)
X0
|− 1

2 |V∆X0 |−
1
2 |Γ(t−1)

X0
|− 1

2 |Γ(t)
X0
| 12

nV∏
i=1

σ−1
ipost

· exp[−
1

2
µ

(t−1)
X0

Γ
(t−1)
X0

−1
µ

(t−1)
X0

T
+

1

2
µ

(t)
X0

Γ
(t)
X0

−1
µ

(t)
X0

T

−
1

2
∆Y (t)

res Diag(σ̂2
post)

−1∆Y (t)
res

T
+

1

2
(µ

(t−1)
X0

Γ
(t−1)
X0

−1

−∆Y (t)
res Diag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post)(K1 + Γ

(t−1)
X0

)−1

(µ
(t−1)
X0

Γ
(t−1)
X0

−1
−∆Y (t)

res Diag(σ̂2
post)

−1Diag(ρ̂post)β̂
T
0post)

T ]

(43)

By calculating 41, 42 and 43 recursively with t incremented by 1 until nT , the 877

predictive log likelihood 32 of both the full and null models can be calculated to serve as 878

the basis of model selection. 879

To calculate the mean and variance of the posterior distribution γ(X0test
(t)) of 880

X0test, backward step is needed. We denote its mean as µ̂
(t)
X0

, and covariance as Γ̂
(t)
X0

. 881

For any t < nT , it can be derived that 882

ct+1Ĥ(X
(t)
0test) =∫

Ĥ(X
(t+1)
0test )p(X

(t+1)
0test |X

(t)
0test)p(Y (t+1)

res |X(t)
0test, X

(t+1)
0test , Y

(t)
res )dX

(t+1)
0test

(44)

By plugging in 33, we get 883

γ(X0test
(t)) =

Ĝ(X
(t)
0test)

ct+1

·
∫
γ(X0test

(t+1))

Ĝ(X
(t+1)
0test )

p(X
(t+1)
0test |X

(t)
0test)p(Y (t+1)

res |X(t)
0test, X

(t+1)
0test , Y

(t)
res )dX

(t+1)
0test

(45)

After the marginalization in 45 and observing the terms related to X0test
(t), we get the 884

recursive relations 885

Γ̂
(t)
X0

= (Γ
(t)
X0

−1
+K1 − JT (Γ̂

(t+1)
X0

−1
− Γ

(t+1)
X0

−1
+K2)

−1

J)−1 (46)

and 886

µ̂
(t)
X0

= [µ
(t)
X0

Γ
(t)
X0

−1
−∆Y (t+1)

res Diag(σ̂2
post)

−1Diag(ρ̂post)β̂
T
0post

+ (µ̂
(t+1)
X0

Γ̂
(t+1)
X0

−1
− µ(t+1)

X0
Γ

(t+1)
X0

−1
+ ∆Y (t+1)

res Diag(σ̂2
post)

−1β̂T0post)

(Γ̂
(t+1)
X0

−1
− Γ

(t+1)
X0

−1
+K2)−1J ]Γ̂

(t)
X0

(47)
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Note that γ(X0test
(nT )) = Ĝ(X

(nT )
0test ), therefore µ̂

(nT )
X0

= µ
(nT )
X0

and 887

Γ̂
(nT )
X0

= Γ
(nT )
X0

. By recursively calculating 46 and 47 with t decremented by 1 from 888

nT − 1 until 1, the posterior distribution of X
(t)
0test given all the testing data can be 889

calculated. 890

For decoding purpose, we need to obtain not only the posterior mean of intrinsic 891

fluctuations X
(t)
0test, but also the task-related activity X

(t)
test. Therefore, we do not 892

subtract a predicted signal Xtestβ̂post based on a hypothetical design matrix from 893

testing data Ytest. We perform the forward-backward algorithm on Ytest directly. By 894

replacing β̂0post in the equations from 27 to 47 with [β̂Tpost, β̂
T
0post]

T and other related 895

terms accordingly, the posterior mean of both X
(t)
test and X

(t)
0test can be decoded just as 896

X
(t)
0test is decoded in 47. 897

Data processing and analysis 898

Data used in Fig 1B are from the experiments of Schuck et al. [22], following the same 899

preprocessing procedure as the original study. The fMRI data were acquired at 900

TR=2.4s. Data of 24 participants were used. Their design matrices were used for all the 901

following analyses and simulations. Data in Fig 1E,G and Fig 3 were preprocessed 902

data obtained from Human Connectome Project (HCP) [33]. The first 24 participants 903

who have completed all 3T protocols and whose data were acquired in quarter 8 of the 904

HCP acquiring period without image quality issues were selected for analysis in Fig 3. 905

Data from 864 participants without image quality issues in HCP were used in the 906

analysis in Fig 5. Each participants in the HCP data have 2 runs of resting state data 907

with posterior-anterior phase encoding direction and 2 runs with anterior-posterior 908

phase encoding direction. Time series were resampled at the same TR as the design 909

matrix before further analysis. 910

β̂ point estimates in Fig 1 were obtained with AFNI’s 3ddeconvolve [52]. The design 911

matrices were set up by convolving the stereotypical double-Gamma HRF in SPM [53] 912

with event time courses composed with impulses lasting for the duration of the 913

participants’ reaction time. AR(1) coefficients in Fig 1G were estimated after 914

upsampling the fMRI time series in the HCP data to the TR in Schuck et al. [22] and 915

linear detrending. Upsampling is to reflect the lower temporal resolution more typically 916

employed in task-related fMRI studies. 917

In the experiments of Fig 3, lateral occipital cortex was chosen as the ROI, which 918

included 4804± 29 (mean ± standard deviation) voxels. Task related signals were 919

only added to voxels within a bounding box of which the coordinates satisfy 920

25 < x < 35, −95 < y < −5 and −15 < z < 5. 189.0± 0.2 voxels fell within this 921

bounding box. β were simulated according to the covariance matrix in Fig 3A and 922

scaled by one values in 1, 2, 4, 8. To evaluate the performance of the recovered 923

correlation structure by different methods, the correlation between the off-diagonal 924

elements of the recovered similarity matrix from data of each simulated participant was 925

correlated with those elements of the ideal similarity matrix to yield the top panel of 926

Fig 3H. The top panel reflects the correlation of individual results. The bottom panel 927

reflects the correlation of average results over simulated participants. 928

In order to make fair comparison with BRSA which considers temporal 929

auto-correlation in noise, all the point estimates of β̂ in Fig 3 were performed with 930

restricted maximum likelihood estimation. AR(1) parameters of each voxel were 931

estimated after initial regular regression. The AR(1) parameters were used to 932

re-compute the temporal noise covariance matrices for each voxel and β̂ were calculated 933

again assuming these noise covariance matrices. When spatial whitening of β̂ were 934

performed, it followed the procedure of Diedrichsen et al. [17]. Point estimates of the 935
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spatial covariance of noise were first calculated from residuals of regression. These are 936

not full rank matrices due to large numbers of voxels. The off-diagonal elements were 937

further shrunk by weighting the point estimate of the spatial noise covariance structure 938

by 0.4 and a diagonal covariance matrix with the same diagonal elements as the point 939

estimate covariance matrix by 0.6. 940

To simulate the fMRI noise in Fig 4, we first estimated the number of principal 941

components to describe the spatial noise correlation in the 24 resting state fMRI data 942

from HCP databse using the algoritm of Gavish and Donoho [31]. The spatial patterns 943

of these principal components were kept fixed as the modulation magnitude β0 by the 944

intrinsic fluctuation. AR(1) parameters for each voxel’s spatially indepndent noise were 945

estimated from the residuals after subtrating these principal components. For each 946

simulated subject, time courses of intrinsic flucutations were newly simulated by 947

scrambling the phase of the Fourier transformation of the X0 estimated from the real 948

data, thus preserving the amplitudes of their frequency spectrum. AR(1) noise were 949

then added to each voxel with the same parameters as estimated from the real data. To 950

speed up the simulation, only 200 random voxels from the ROI in Fig 3B were kept for 951

each participant in these simulations. Among them, 100 random voxels were added with 952

simulated task-related signals. Thus, each simulated participant has different spatial 953

patterns of β0 due to the random selection of voxels. 500 simulated datasets were 954

generated based on the real data of each participant, for each of the three SNR levels. 955

In total 36000 subjects were simulated. The simulated pool of subjects were sub-divided 956

into bins with a fixed number of simulated subjects ranging from 24 to 1200. The mean 957

and standard deviation of the correlation between the true similarity matrix and the 958

average similarity matrix based on the subjects in each bin were calculated, and plotted 959

in Fig 4A. 960

All SNRs in Fig 3 and Fig 4 were calculated post hoc, using the standard deviation 961

of the added signals in the bounding box region devided by the standard deviation of 962

the noise in each voxel, and averaged across voxels and simulated subjects for each level 963

of simulation. 964
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