
1

Flexible resonance in prefrontal networks with strong feedback inhibition

Jason S. Sherfey1,2,a*, Salva Ardid1, Joachim Hass3,4, Michael E. Hasselmo2, Nancy J. Kopell1,
1 Department of Mathematics and Statistics, Boston University, Boston, MA 02215
2 Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston
University, MA 02215
3 Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty
Mannheim of Heidelberg University, Mannheim, Germany
4 Faculty for Applied Psychology, SRH University of Applied Sciences, Heidelberg, Heidelberg,
Germany
a 610 Commonwealth Ave., Boston, MA, 02215
* Corresponding author. E-mail: sherfey@bu.edu

Abstract

Oscillations are ubiquitous features of brain dynamics that undergo task-related changes in synchrony, power,
and frequency. The impact of those changes on target networks is poorly understood. In this work, we used a
biophysically detailed model of prefrontal cortex (PFC) to explore the effects of varying the spike rate, synchrony,
and waveform of strong oscillatory inputs on the behavior of cortical networks driven by them. Interacting
populations of excitatory and inhibitory neurons with strong feedback inhibition are inhibition-based network
oscillators that exhibit resonance (i.e., larger responses to preferred input frequencies). We quantified network
responses in terms of mean firing rates and the population frequency of network oscillation; and characterized
their behavior in terms of the natural response to asynchronous input and the resonant response to oscillatory
inputs. We show that strong feedback inhibition causes the PFC to generate internal (natural) oscillations in the
beta/gamma frequency range (>15 Hz) and to maximize principal cell spiking in response to external oscillations
at slightly higher frequencies. Importantly, we found that the fastest oscillation frequency that can be relayed by
the network maximizes local inhibition and is equal to a frequency even higher than that which maximizes the
firing rate of excitatory cells; we call this phenomenon population frequency resonance. This form of resonance is
shown to determine the optimal driving frequency for suppressing responses to asynchronous activity. Lastly, we
demonstrate that the natural and resonant frequencies can be tuned by changes in neuronal excitability, the
duration of feedback inhibition, and dynamic properties of the input. Our results predict that PFC networks are
tuned for generating and selectively responding to beta- and gamma-rhythmic signals due to the natural and
resonant properties of inhibition-based oscillators. They also suggest strategies for optimizing transcranial
stimulation and using oscillatory networks in neuromorphic engineering.
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Author Summary

The prefrontal cortex (PFC) flexibly encodes task-relevant representations and outputs biases to mediate higher
cognitive functions. The relevant neural ensembles undergo task-related changes in oscillatory dynamics at beta-
and gamma frequencies. Using a computational model of the PFC network, we show that strong feedback
inhibition causes the PFC to generate internal oscillations and to prefer external oscillations at similar
frequencies. The precise frequencies that are generated and preferred can be flexibly tuned by varying the
synchrony and strength of input network activity, the level of background excitation, and neuromodulation of
intrinsic ion currents. We also show that the peak output frequency in response to external oscillations, which
depends on the synchrony and strength of the input as well as the strong inhibitory feedback, is faster than the
internally generated frequency, and that this difference enables exclusive response to oscillatory inputs. These
properties enable changes in oscillatory dynamics to govern the selective processing and gating of task-relevant
signals in service of cognitive control.

Introduction 1

Oscillatory neural activity is a common feature of brain dynamics. In vitro experiments have demonstrated that 2

different brain regions can produce network oscillations at different frequencies [1, 2]. In vivo experiments have 3

shown that field potential oscillations in prefrontal cortex (PFC) at beta- (15-35Hz) and gamma-(35-80Hz) 4

frequencies undergo task-related modulations in their power [3] and synchrony [4] and that multiple frequencies 5

can appear in the same region [5, 6]. Despite the wealth of experimental evidence suggesting changes in 6

oscillation frequency and synchrony are functionally significant, little remains known about the mechanisms by 7

which they affect processing in downstream networks (but see [7]). In this paper, we will explore the natural, 8

resonant, and competitive dynamics of PFC networks and how the task-modulated properties of oscillatory 9

signals affect those dynamics. 10

Neural systems at multiple scales are known to exhibit larger responses to oscillatory inputs at preferred 11

(resonant) frequencies. For instance, neurons can exhibit resonance in subthreshold voltage fluctuations [8,9], and 12

networks can exhibit resonance in the amplitude of suprathreshold instantaneous firing rates of self-inhibiting 13

interneurons (INs) [10] and reciprocally connected populations of principal cells (PCs) and INs [11]. Given weak 14

inputs, these systems often exhibit response amplitudes that scale linearly with the input, and they oscillate with 15

the same frequency as the input. In the linear regime, analytical methods can be applied to fully characterize 16

network responses [11]. However, the results of such analyses no longer hold when inputs are strong and 17

responses become strongly nonlinear. 18

Neural models of fast network oscillations, like those observed in PFC, often involve populations of cells 19

receiving strong feedback inhibition to synchronize the network and strong excitatory input to drive the 20

oscillation [6]. Under a constant (possibly noisy) tonic input, self-inhibiting populations of INs and reciprocally 21

connected PC and IN populations can generate (natural) gamma-frequency network oscillations, termed 22

ING [1,12] and PING [12,13], respectively. Due to the strong input and oscillatory response to a tonic drive, the 23

earlier work on network resonance does not extend to these inhibition-based oscillators. 24

In this article, we present a numerical study of the natural and resonant behavior of an inhibition-based 25

PC/IN network oscillator. In contrast to the linear regime, we will show that the frequency of the network 26

oscillation equals the input up to a maximal frequency, above which, it decreases; we call this phenomenon 27

population frequency resonance. We will show that different input frequencies maximize inhibition and excitation 28

when inputs are strong and that the population frequency peaks when inhibition is maximized. The importance 29

of this phenomenon will be demonstrated by showing that the optimal driving frequency for suppressing 30

responses to asynchronous input is that which maximizes population frequency and not that which maximizes the 31

firing rate of excitatory PCs. Finally, we will show how network resonance depends on dynamic, task-modulated 32

properties of the input as well as intrinsic properties of the resonant network. Our quantitative results identify 33

mechanisms that are not model specific, as will be shown by analogous simulations in a Hodgkin-Huxley type 34

model of PFC and a generic integrate-and-fire network model that exhibit qualitatively similar behavior. 35

The paper will begin with a characterization of network responses to asynchronous and oscillatory inputs. 36

Responses will be characterized in terms of firing rate and population frequency, and then the latter will be 37
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shown to determine the maximal suppression of asynchronous activity. The dependence of response on 38

experimentally-motivated input parameters will be described. Finally, the paper will end with a discussion of the 39

functional relevance of these findings for flexible neural processing. 40

Results 41

We explored the impact of modulating task-related signals on cortical processing using an 42

experimentally-constrained, Hodgkin-Huxley type network model of prefrontal cortex (PFC). Principal cell (PC) 43

activity in PFC can be interpreted as a bias signal that mediates higher cognitive functions. The model 44

represents a deep output layer of reciprocally-connected PCs and fast spiking interneurons (INs) that provide 45

strong feedback inhibition. The network was driven by collections of independent spike trains modeling upstream 46

activity in populations of excitatory cells. The input spike trains were either asynchronous with constant rate or 47

mediated by an oscillatory modulation of the rate. Rhythmic activity is considered task-relevant [14] while the 48

asynchronous activity is task-irrelevant (see Discussion for further considerations). We studied how the network 49

behavior varies with task-related changes in synchrony, frequency, and strength of periodic inputs, and how that 50

behavior relates to the response driven by equal-strength, asynchronous activity. 51

Response of the PC/IN network with spiking input 52

PC/IN networks generate non-sinusoidal rhythms in response to asynchronous spiking. 53

Disconnected PCs respond to a tonic input of asynchronous spiking (Fig 1A) with asynchronous responses (Fig 54

1Bi). Similar to PING oscillations driven by a noisy tonic drive [13], PC/IN networks with increasingly strong 55

feedback inhibition respond to asynchronous spiking with an increasingly periodic modulation of instantaneous 56

firing rate (iFR); the input strength-dependent frequency of the response to an asynchronous input will be called 57

the natural frequency of the network, fN , for a given input strength (Figs 1Bii-iii; see Table 1 for definitions of 58

the symbols used throughout this paper). Notably, the response of the PC/IN network is pulsatile (Fig 1Biii, iFR 59

trace) because of how quickly INs silence the PC population and the longer time required for PC-synchronizing 60

inhibition to decay; this results in spike trains that are more synchronous than would occur in an oscillation with 61

sinusoidal rate-modulation; this form of spike synchrony in the input will be shown below to have significant 62

consequences for responses in downstream networks. As with all inhibition-based oscillators, the rhythm period 63

increases with the duration of inhibition ( [6], S1 Fig), and the network remains silent within a cycle as long as 64

the inhibition remains sufficiently strong. Over time, this results in the PC/IN network outputting periodic 65

volleys of spikes (i.e., pulse packets) separated by periods of inhibition. 66

Natural and resonant frequencies are different in strongly-driven PC/IN networks. Linear 67

oscillators respond to a sinusoidal input with an amplitude that depends on the input frequency and with a 68

frequency that matches its input frequency. The response of the strongly-driven PC/IN network deviates from 69

this behavior in several respects, and it is at this point that a more careful examination of what is meant by 70

input and output of a PC/IN network is required. 71

Oscillatory inputs to networks of neurons are often treated as sinusoidal. An important reason for this is that 72

the sinusoidal frequency response of a linear system completely describes the system and contains all the 73

information needed to derive its response to any signal [11]. However, as we have already shown, inhibition-based 74

PC/IN oscillators are non-sinusoidal, and we are investigating a nonlinear (i.e., strong input) regime. Therefore, 75

we will use numerical simulation to investigate the network response to non-sinusoidal inputs, perhaps delivered 76

from other upstream PC/IN oscillators. As an approximation to the kind of periodic pulse packets that PC/IN 77

networks generate, we will explore the effects of periodic Poisson signals with square wave rate-modulation in 78

addition to the more traditional signals with sine wave rate-modulation. 79

Outputs from neurons and populations of neurons are usually analyzed in terms of firing rates because spikes 80

drive neurotransmission and their rates determine integrated effects on postsynaptic neurons. However, 81

postsynaptic activation of PCs can depend more strongly on the frequency of input population oscillation than 82

the firing rates of presynaptic neurons [10,15,16]. Thus, to characterize outputs in terms of properties that 83

determine downstream effects, we analyzed the collective population frequency (i.e., the frequency of output 84
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Figure 1. Strong feedback inhibition produces natural oscillation in PC/IN network. (A) Diagram
showing feedforward excitation from external (independent) Poisson spike inputs to 20 excitatory principal cells
(PCs) receiving feedback inhibition from 5 inhibitory interneurons (INs). See Fig 7A for details. (B) Simulations
showing the network switching from an asynchronous to oscillatory state with natural oscillation as the strength
of feedback inhibition is increased.

Table 1. Meaning of symbols used in the study of resonance and gating.

Symbol Description

λ(t) Instantaneous input rate of Poisson process (kHz)

rinp Time-averaged Poisson input rate, 〈λ〉t (kHz)

finp Frequency of Poisson input rate-modulation (Hz)

δinp Pulse width of Poisson input with square wave rate-modulation (ms)

iFR Instantaneous output firing rate averaged over principal cells (sp/s)

r̄PC Time-averaged population firing rate of principal cells (sp/s)

r̄IN Time-averaged population firing rate of interneurons (sp/s)

fpop Frequency of output population rhythm (Hz); identical for PCs and INs

fN Natural frequency (Hz) (i.e., fpop elicited by asynchronous input)

fPC
R r̄PC-resonant frequency (Hz) (i.e., input finp maximizing output r̄PC)

f INR r̄IN -resonant frequency (Hz) (i.e., input finp maximizing output r̄IN )

fpopR fpop-resonant frequency (Hz) (i.e., input finp maximizing output fpop)
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rate-modulation) in addition to the time- and population-averaged firing rates of PCs and INs (see Methods for 85

more details on the choice of output measures). The population frequency differs from the mean PC firing rate 86

when only a fraction of PCs spike per cycle or PCs spike more than once per cycle on average. If PC/IN 87

networks were like linear oscillators, their frequency would be inherited from the input; however, as we will show 88

in PC/IN networks, the output frequency has its own peak (i.e., exhibits resonance), and its characterization is 89

equally important. 90

Given this understanding of inputs and outputs for PC/IN networks, we next contrasted the response to an 91

ongoing tonic input of asynchronous spiking with the responses to sinusoidal and high-synchrony, square wave 92

inputs with equal-strength (i.e., equal time-averaged rate rinp) and frequency finp (Fig 2A), in analogy to the 93

tonic and frequency responses for linear oscillators described above. We plotted the mean population firing rates, 94

r̄PC and r̄IN , in response to square waves (Fig 2Bi) and sine waves (Fig 2C) as measures of output activity for 95

PC and IN populations, respectively. In the strong input regime, all input frequencies elicited a response. 96

Rhythmic inputs produced greater PC responses than asynchronous inputs for most input frequencies (compare 97

the solid r̄PC curve to the horizontal dashed line in Figs 2Bi and 2C) because their more synchronous spike 98

trains enabled a larger fraction of more correlated PCs to reach threshold before INs were sufficiently engaged to 99

silence the entire population (Fig 2D-E). 100

Given sinusoidal drive, the fraction of PCs that could spike before being inhibited increased for input 101

frequencies around the natural frequency, fN , relative to input frequencies far from fN ; the fraction peaked at 102

fPC
R slightly above fN (Fig 2C, blue curve). Given fixed-mean, high-synchrony square wave drive, all cells spiked 103

on every cycle up to a peak due to the larger instantaneous amplitudes that are present at low frequencies for 104

such inputs (see Methods for a qualitative comparison of r̄PC response profiles between weak vs. strong and 105

square vs. sine wave inputs). For both input waveforms, r̄PC peaked at the same fPC
R = 24 Hz, and the number 106

of PCs spiking per cycle (i.e., the iFR amplitude) decreased beyond fPC
R . fPC

R is always ≥ fN in our model 107

because the correlated spiking of oscillatory inputs produces larger instantaneous drives than the equal-mean 108

asynchronous input while the strength and duration of feedback inhibition on each cycle are the same for both 109

oscillatory and asynchronous inputs. Divergence between natural and resonant frequencies is common in 110

nonlinear [17] and linear systems [8] that show resonance and intrinsic oscillations, except for the harmonic 111

oscillator where they are equivalent. This peak in PC population response to rhythmic inputs with frequencies 112

near fN depends on matching periodic drives with the rate-limiting time constants of the driven network [18]. 113

The mechanism that determines the precise value of fPC
R in the inhibition-based PC/IN oscillator is not fully 114

understood (see Discussion). Like fN , fPC
R decreases with increasing duration of inhibition (S1 Fig), and the 115

dependence of both on input properties and intrinsic modulatory currents will be presented in later sections. 116

In contrast to PC firing rates peaking near the natural frequency, fN , time-averaged IN firing rates continued 117

to increase until input frequency reached f INR > fPC
R (Fig 2Bi, red curve), where the decreasing number of PCs 118

spiking per cycle became too few to induce IN spiking on each cycle (see next section for more details). 119

Interestingly, this shows that activity of INs driven exclusively by PCs can continue increasing with the frequency 120

of a rhythmic drive to PCs even when PC activity is decreasing, and, consequently, that firing rate resonant 121

frequencies of PC and IN populations can differ. This divergence of fPC
R and f INR required (1) strong input (S1 122

Fig), (2) a population of PCs with noisy spiking (S2 Fig), (3) PC → IN synapses that are strong enough for a 123

fraction of PCs to activate INs (S2 Fig), and (4) an IN capable of producing higher firing rates than the PC. For 124

instance, if there is only a single PC (or all PCs spike at the same moment), then the INs can spike only when 125

the PC spikes; thus, the IN spike rate would necessarily decrease with the PC spike rate, and the two would peak 126

for the same input frequency. However, if there is a PC population with noisy spiking and strong PC → IN 127

synapses, then spikes in a subset of the PC population can engage the INs on a given cycle without requiring all 128

cells in the PC population to spike. In this case, even when the time- and population-averaged PC firing rate 129

decreases, INs can continue spiking on every cycle of the input. These qualitative results also hold for leaky 130

integrate-and-fire (LIF) networks (S3 Fig), and the quantitative results hold in a PFC network with 5 times as 131

many PC cells (S4 Fig). Response properties for input frequencies below fN and above f INR will be shown to 132

depend on input synchrony and strength. 133

Peak oscillation frequency is determined by peak interneuron firing. At the population level, 134

outputs can be further described by the frequency of population oscillation, fpop (Fig 2Bii); that is, the 135

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/364729doi: bioRxiv preprint 

https://doi.org/10.1101/364729
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Figure 2. Input frequency-dependent output response profiles. (A) Diagram of PFC network receiving
sinusoidal or high-synchrony square wave input. (B) Response to high-synchrony input. (i) Mean firing rate (FR)
profile for PC (blue) and IN (red) populations. Horizontal dashed lines mark the FR response to equal-strength
asynchronous input. The diagonal dashed (1:1) line marks where firing rate equals input frequency. (ii)
Population frequency profile for PC and IN populations. Peak population frequency occurs at the input frequency
maximizing IN activity (i.e., feedback inhibition). Horizontal dashed lines mark the natural frequency in response
to asynchronous input. (C) FR profile for PC (blue) and IN (red) populations in response to sinusoidal input.
Dashed lines mark the same features as in (Bi). (D) Spike rasters and PC iFR responses to oscillatory inputs at
the PC and IN firing rate resonant frequencies. (E) Spike rasters and PC iFR responses to inputs producing
network responses paced by internal time constants: (left) asynchronous input, (right) high-frequency input.
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modulation frequency of the instantaneous population firing rate, or equivalently, the inter-pulse frequency of 136

spike packets emitted by the PC/IN network (see Methods for more details). fpop profiles also exhibited a peak 137

at a particular input frequency, fpopR , a phenomenon we call population frequency resonance. For square and sine 138

wave inputs to the PFC and LIF networks, the population frequency peaked at f INR (i.e., fpopR = f INR ), then 139

approached the natural frequency as the response became paced by the network’s internal time constants (i.e., 140

fpop → fN as finp →∞) (Fig 2Bii). The population frequency peaked at f INR because the PC population could 141

lock to the period of the drive only as long as INs were able to synchronously silence the PC population on each 142

cycle of the input (Fig 2D-E). This yields the possibly counterintuitive result for the inhibition-based PC/IN 143

oscillator that the fastest output oscillation (but not the highest PC firing rate) occurs at the excitatory input 144

frequency that maximizes feedback inhibition. 145

Population frequency resonance suppresses response to asynchronous activity 146

The difference in natural and resonant frequencies in the PC/IN network has at least one functional consequence 147

that we will introduce here. It will serve as motivation for our further exploration of the dependence of natural 148

and resonant frequencies on other properties in the remaining sections below. Consider two parallel pathways 149

driving separate output PC populations that are reciprocally connected to a shared pool of INs (Fig 3A). One 150

pathway (the target) delivers a rhythmic signal to one PC population while the opposing pathway (the 151

distractor) delivers an equal-strength asynchronous signal to the competing PC population. 152

Without competition, both PC populations would output periodic pulse packets of excitatory spikes, the 153

target at the input frequency if finp ≤ fpopR and the distractor at the natural frequency fN . The PC population 154

frequency determines how frequently a PC population engages the IN population. When multiple outputs 155

compete through shared INs, the output population with the highest frequency oscillation most frequently drives 156

IN cells, tends to phase lock with them, and suppresses spiking in output populations oscillating more slowly. Any 157

time the target population oscillates with a frequency faster than the natural frequency (i.e., fpop > fN ), spiking 158

in the distractor population is suppressed (Fig 3B). Importantly, peak suppression of the distractor population 159

occurs when the target population frequency is maximal and not when the target PC activity is strongest. This 160

implies that the optimal driving frequency to suppress responses to asynchronous distractors is the fpop-resonant 161

frequency (Fig 3B-C). Such a rhythmically-driven output oscillating faster than the natural oscillation will always 162

drive INs to continuously suppress responses to asynchronous distractors as long as the faster oscillation in the 163

target remains. Internally-generated, nested oscillations with frequencies greater than fN would also suppress the 164

response to asynchronous drive but only while present on the depolarizing phase of the slower driving oscillation. 165

This distractor suppression occurs because the target population recruits interneuron-mediated lateral inhibition 166

on every cycle of its oscillatory input with a period shorter than that required for the distractor population to 167

reach threshold (Fig 3C, see membrane potential plots). Even if the lower-frequency distractor would otherwise 168

have a higher firing rate than the target, its spike output is never fully realized when it receives another pulse of 169

strong inhibition before reaching threshold. For this reason, the outcome of the competition is determined by the 170

frequency of the population oscillation and not its amplitude. Dynamically, the suppression arises within a cycle 171

as the target begins to oscillate more quickly than the distractor (S5 Fig). In contrast, there is no suppression of 172

either pathway when the distractor input is strong enough so that the natural frequency that it induces equals 173

the population frequency of the target (S6 Fig), despite the distractor PCs having lower firing rate, or when both 174

PC populations receive asynchronous input (see T1 in S5 Fig). 175

Furthermore, the extent to which maximum fpop (i.e., fpopR ) exceeds fN determines the range of input 176

frequencies that can activate targets that suppress competing responses to asynchronous distractors (Fig 3B). 177

Since fpopR > fN , there is always an input frequency that can suppress competing distractors. In this scenario, 178

the expected firing rate difference does not determine who is suppressive as long as firing rates are sufficient for a 179

PC population pulse to activate the inhibitory INs. This result provides further justification for considering fpop 180

as an output measure (in addition to r̄PC) because that frequency can determine the outcome of competition. 181

This example represents a novel, functionally-relevant reason for examining output fpop and demonstrates the 182

importance of the separation between the natural fN and resonant frequencies (fpopR = f INR ) in PC/IN networks 183

with strong feedback inhibition. 184
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Figure 3. Frequency-dependent suppression of asynchronous activity. (A) Diagram showing a target
PC population, PCT, driven by medium-synchrony oscillatory input in competition with an
asynchronously-driven distractor PC population, PCD. (B) Dependence of distractor suppression on target input
frequency. (i) Time-averaged firing rates (FRs) of PCT (blue) and PCD populations. As expected, PCT FR peaks
at the r̄PC-resonant frequency. PCD responds at the FR expected given asynchronous input (horizontal black
line, labeled “natural response”) when target input frequency is below the natural frequency (vertical black line)
or far above fRPC ; it is suppressed at intermediate frequencies. (ii) PCT population (output) frequency versus the
input frequency to PCT. As expected, PCT fpop peaks at the fpop-resonant frequency. Importantly, whenever
fpop exceeds the natural frequency (horizontal black line), PCD FR is suppressed; maximal suppression of PCD

occurs when PCT fpop is maximal and not when PCT FR peaks in (i). (C) Example simulation with continuous
suppression of the distractor pathway by a target pathway driven with a fpop-resonant input. On every cycle, the
more rapidly oscillating target population engages the INs before the distractor reaches threshold.

Inputs tune the PC/IN network 185

For the remainder of the work presented here we will examine how the response properties of the PC/IN network 186

(with one output PC population) depend on flexible parameters of the input and the slower effects of 187
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neuromodulation. It will be shown that the response properties of the PC/IN oscillator are not purely intrinsic 188

and can be adaptively shaped by extrinsic influences. This represents a powerful means by which task-related 189

modulations can influence cortical processing. 190

Input synchrony increases the separation between natural and peak frequencies. More 191

synchronous input rhythms (i.e., smaller δinp) delivering more coincident spikes (i.e., larger instantaneous drives) 192

to each PC cell (Fig 4A) drove larger fractions of the target PC population to spike on each cycle before feedback 193

inhibition was recruited to silence it. Consequently, greater synchrony enhanced output firing rates r̄PC for all 194

input frequencies and the strength of resonant response (Fig 4Bi) without affecting the resonant input frequency 195

fPC
R maximizing PC firing rates (Fig 4Bi, C). In contrast, f INR increased with input synchrony because r̄PC 196

remained sufficiently large to engage interneurons for greater finp; and, since fpopR = f INR , peak population 197

frequency also increased (Fig 4C); this increase in separation between natural and peak frequencies with 198

synchrony implies that a wider range of input frequencies can be exclusively selected (i.e., suppress responses to 199

asynchronous activity) when they are more synchronous. In summary, output networks are able to achieve faster 200

network oscillations, produce greater projection neuron output, and recruit more local inhibition when target 201

signal inputs are more synchronous. 202

Input synchrony-dependent responses below the natural frequency and above the peak frequency. 203

We discovered a number of noteworthy behaviors of the PC/IN network that depend on input synchrony at 204

driving frequencies above and below the natural and resonant frequencies. When inputs have low synchrony, they 205

can deliver a suprathreshold input to PCs that lasts longer than the duration of feedback inhibition, resulting in 206

PC oscillations nested within each cycle of the input (Fig 4D). This represents a mechanism for generating nested 207

oscillations through an interaction between a slow external driving rhythm (with low spike synchrony) and an 208

internally generated, inhibition-based natural rhythm. These nested oscillations can produce second population 209

frequencies that have more power than the input frequency (see the bump for low frequency sine wave inputs in 210

Fig 4C and corresponding power spectra in S7 Fig) and mean rates that exceed the input frequency when PCs 211

spike more than once per input cycle (see bumps at low frequencies in Fig 4B). 212

In contrast, PCs spike at most once per cycle when inputs are highly synchronous. Additionally, it is known 213

that there is greater postsynaptic EPSP summation of more synchronous spikes. For highly synchronous inputs, 214

this causes all PCs to spike on every cycle when there are enough input spikes driving them. Given square-wave 215

inputs with a fixed number of total spikes (built-in to the study to achieve equal-strength rhythmic and 216

asynchronous inputs), the number of spikes delivered per cycle decreases as frequency increases. This decrease in 217

pulse strength with increasing frequency restricts the range of input frequencies that engage all PCs on every 218

cycle. The dependencies of input pulse strength on synchrony and frequency cause the mean output rate to 219

increase with input frequencies well below fN to an extent that scales with input synchrony (Fig 4B, compare 220

low and high synchrony). Finally, well above the natural frequency, the r̄PC profile exhibited smaller peaks at 221

harmonics of the resonant frequency in response to highly synchronous inputs (Fig 4E). 222

Stronger inputs increase natural and resonant frequencies. Stronger inputs (i.e., higher time-averaged 223

rate rinp) (Fig 5A), delivering larger mean drives to each PC cell, increased the mean output firing rate (Fig 5Bi), 224

natural and peak population frequencies (Fig 5Bii), and firing rate resonant frequencies (Fig 5C). The dependence 225

of fN on rinp implies the natural response is a variable-frequency network oscillation controlled by the strength 226

of input (see Discussion for functional implications). fPC
R equaled fN for weak inputs and increasingly exceeded 227

it for inputs with increasing strength; in contrast, f INR and fpopR exceeded fN for all input strengths that were 228

strong enough to produce a natural oscillation (Fig 5C). Finally, f INR and fPC
R converged when the input was too 229

weak to produce a natural oscillation and the network entered a band-pass regime (S1 Fig). The fact that the 230

peak frequency always exceeds the natural frequency at drives where a natural oscillation is present implies that 231

there is always an input frequency that enables suppression of responses to asynchronous activity. 232

Neuromodulation of the PC/IN network. We have shown in previous sections that the control PC/IN 233

network based on rat medial prefrontal cortex exhibits beta-range natural (Fig 1) and resonant (Fig 2) 234

frequencies. Next, we simulated knockout experiments to explore how modulating the conductance of non-spiking 235
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Figure 4. Dependence of response profiles on input synchrony. (A) Diagram of PFC network receiving
variable-synchrony square wave or sinusoidal inputs. (Bi) Firing rate profile for PC populations given oscillatory
inputs with different degrees of synchrony. (Bii) Population frequency profile for inputs with different degrees of
synchrony. Horizontal dashed line marks the natural frequencies for each degree of synchrony. (C) The effect of
input synchrony on resonant frequencies. Maximum population frequency (at the IN firing rate res. freq.)
increases with input synchrony. (D) Spike rasters and PC iFR responses showing the nesting of natural
oscillations generated by a local network on the depolarizing phase of a lower-frequency external driving
oscillation with sine wave (left) or square wave (right) rate-modulation. (E) Spike rasters and PC iFR responses
showing that weaker firing rate resonance at the first harmonic (i.e., smaller bump at finp = 44Hz in Bi, blue
curve) occurs for high synchrony (left) but not low synchrony (right) oscillatory inputs.

currents would affect the network response (Fig 6). Removing hyperpolarizing currents (IKs, IKCa) increased the 236

r̄PC-resonant frequency, while removing depolarizing currents (INaP ) decreased the resonant frequency or (ICa) 237

silenced PCs altogether (Fig 6C). The weak effect of removing the hyperpolarizing currents could be amplified by 238

increasing their conductance. As long as PCs remained in a spiking regime, removing modulatory currents did 239
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Figure 5. Dependence of response profiles on input strength. (A) Diagram of PFC network receiving
variable-strength high-synchrony square wave input. (Bi) Firing rate profile for PC populations given oscillatory
inputs with different strengths. (Bii) Population frequency profile for inputs with different strengths. Horizontal
dashed lines mark the natural frequencies for each drive strength. (C) The effect of input strength on natural
and resonant frequencies. (D) Spike rasters and PC iFR responses showing the typical case of stronger input
driving more output: (left) weaker input, less output, (right) stronger input, more output. (E) Spike rasters and
PC iFR responses showing special case of resonance at first harmonic enabling a weaker input to drive more
output: (left) weaker input, more output, (right) stronger input, less output.

not qualitatively alter the response profile in most cases. The one exception was that removing IKCa resulted in 240

a flatter profile near the peak; then across realizations, this caused resonant peaks to occur at neighboring input 241

frequencies and produced a non-zero standard deviation on the fPC
R bar plot. A parsimonious explanation of 242

these effects is that the shift in resonant frequency resulted from the shift in excitability caused by the 243

non-spiking currents. Consistent with this hypothesis, similar shifts were achieved with the addition of tonic 244
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inputs that similarly shift baseline excitability (Fig 6D). Thus, neuromodulation of non-spiking currents and 245

baseline excitability can tune the response profiles of PC/IN networks. 246

Figure 6. Neuromodulation of firing rate resonance in PC/IN network. (A) Diagram showing an
external sinusoidal Poisson input to the dendrites of 20 two-compartment principal cells (PCs) receiving feedback
inhibition from a population of 5 fast spiking interneurons (INs). PC and IN models include conductances found
in prefrontal neurons (see Fig 7A for details). (B) Input frequency-dependent firing rate profile showing
resonance at a beta2 frequency. (C) The effect of knocking out individual ion currents on the resonant input
frequency maximizing firing rate outputs. Removing hyperpolarizing currents (-Ks, -KCa) increased the resonant
frequency, while removing depolarizing currents (-NaP) decreased the resonant frequency or (-Ca) silenced the
cell altogether (see Fig 7A for ion channel key). Error bars indicate mean ± standard deviation across 10
realizations; only -KCa had a non-zero standard deviation (i.e., values that differed across realizations). (D) The
effect of hyperpolarizing and depolarizing injected currents, Iapp, on the resonant frequency mirrored the effect of
knockouts on excitability.

Discussion 247

In this work, we characterized the prefrontal PC/IN network response to strong oscillatory inputs in terms of 248

biologically-relevant input and output properties. The PC/IN network with strong feedback inhibition exhibited 249

resonance in the spiking of PC and IN populations as well as the output population frequency of the network. 250

We have shown that a separation of preferred frequency for output spiking (the frequency maximizing PC 251

activity) and the maximal frequency that can be relayed by the network is enabled by the combination of (1) 252

strong excitatory input that generates a response to all input frequencies, (2) strong feedback inhibition: the 253

ability of fast spiking INs to synchronously silence the PC population, and (3) noisy spiking in a population of 254

PCs for which an active subset are able to activate INs. The peak output frequency of the inhibition-based 255

network oscillator was determined by the input frequency maximizing local inhibition from the INs and always 256

exceeded the natural frequency induced by equal-strength asynchronous activity. This population frequency 257

resonance was shown to determine the optimal driving frequency for suppressing responses to asynchronous input. 258

Finally, we showed that the resonant properties of PC/IN networks can be flexibly tuned by task-modulated 259

signal properties (synchrony and strength) to dynamically shape ongoing neural processing. 260
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Functional implications 261

Boosting: Amplifying signals with preferred frequencies. Firing rate resonance (i.e., r̄PC -resonance) in 262

neuronal networks can be used to amplify population signals embedded in a resonant oscillation. Such 263

amplification has been shown to promote the propagation of signals across weakly connected brain areas [19] and 264

to support the transmission of time-varying, rate-coded signals when signal fluctuations are slow relative to the 265

resonant frequency [10]. The smaller r̄PC-resonances we observed at higher harmonics could enable synchronous 266

signals carried at higher frequencies to benefit from the same effects. 267

High beta-frequency (20-35Hz) oscillations have been observed in prefrontal cortex (PFC) in numerous studies 268

[4, 14,20]. Here, we have shown that a PC/IN network constrained by prefrontal data exhibits r̄PC-resonance in 269

the same range for a wide variety of inputs (i.e., oscillatory inputs with firing rates and synchrony levels spanning 270

those observed experimentally in the same region). This beta resonance suggests that PFC networks are tuned 271

for processing signals embedded in beta rhythms. Furthermore, we have shown that the natural response of the 272

prefrontal network driven by asynchronous spiking is to generate beta-frequency oscillations. This could explain 273

why beta rhythms are frequently associated with top-down cognitive control of attention [21,22] and decision 274

making [23,24]. 275

Transcranial stimulation is often used to enhance neural oscillations [25,26]. [27] showed that transcranial 276

alternating current stimulation (tACS) with sawtooth waves is more effective at enhancing alpha-frequency 277

oscillations than tACS with sinusoidal waves; whether tACS predominantly excites interneurons or principal cells 278

depends on the intensity of stimulation [28]. Our work suggests that, given an excitatory intensity, tACS 279

stimulation with square waves (i.e., periodic pulses) could be even more effective at enhancing neural oscillations. 280

Furthermore, the relationship between natural and resonant frequencies suggests an experimental protocol for 281

maximally activating a region using a fixed excitatory intensity: first, apply a continuous pulse of direct current 282

stimulation (tDCS) while recording EEG to identify the natural frequency of a target region; then, use 283

equal-intensity tACS at the same or slightly higher frequency. This approach would enable maximal activation of 284

a region near its preferred frequency following a single direct current stimulation. It also provides more specific 285

activation of target regions with corresponding resonant properties. The protocol could be validated 286

experimentally by comparing the tDCS response to a set of tACS responses with different stimulation frequencies. 287

The natural frequency could be computed as the beta/gamma frequency (i.e., potential frequencies for 288

inhibition-paced network oscillators) with peak EEG power following tDCS, while the resonant frequency is the 289

tACS stimulation frequency maximizing EEG power around the stimulation frequency. The same protocol could 290

be performed using transcranial magnetic stimulation (TMS) and rhythmic TMS. 291

Gating: Selecting outputs based on preferred frequencies. We have also shown that, while peak PC 292

firing determines maximum spike output in a network with one PC population, it is population frequency that 293

determines whether responses to asynchronous activity will be suppressed in PC populations competing through 294

IN-mediated lateral inhibition. This enables exclusive response to oscillatory inputs, demonstrated in this work 295

with one PC population driven by an fpop-maximizing oscillatory input and the other by an asynchronous input 296

(Fig 3). It is the output population oscillating faster in response to external oscillations that dominates control of 297

the interneuron population from cycle to cycle and which effectively suppresses the opposing response to 298

asynchronous drive. 299

Asynchronous activity does not necessarily reflect background noise [29]; whether it is signal or noise, our 300

work suggests resonant oscillatory activity may be given priority over it. PFC models of working memory (WM) 301

often include item representations maintained in asynchronous, persistent activity [30, 31], and a similar encoding 302

state has been implemented in neuromorphic hardware [32]. However, working memory items have also been 303

found to be phase-locked to high-frequency beta rhythms [14], and spiking models of WM items in oscillatory 304

states have been developed [31, 33, 34]. We hypothesize that WM representations, maintained in superficial layers 305

of PFC [35], can encode items in both asynchronous and oscillatory states, and that the latter are given priority 306

due to the resonant properties of the deep output layer that we investigated in this work. As we have shown, a 307

deep layer PC population driven by a fpop-resonant oscillatory item in a superficial WM buffer would suppress 308

the response in PC populations driven by items in an asynchronous state. 309

In the PC/IN network, increasing feedforward inhibition decreases the PC response to asynchronous and 310

oscillatory inputs. For sufficiently strong feedforward inhibition, the PC/IN network is transformed into a 311
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bandpass filter that responds exclusively to sinusoidal inputs with a frequency near the r̄PC-resonant frequency 312

of the network (see Methods for a comparison of filter properties given sine vs. square wave inputs); in this case, 313

asynchronous inputs have no effect on the PC population. [10] used an IN network with firing rate resonance and 314

sinusoidal input to deliver bandpass-creating feedforward inhibition to a PC population; in their case, the 315

bandpass PC response depended further on a phase lag between the excitatory input and feedforward inhibition 316

at the r̄IN -resonant frequency. With this setup, they show how bandpass filters can be used to de-multiplex 317

target signals from a mixture of converging inputs. The prefrontal PC/IN network could similarly de-multiplex 318

signals given bandpass-creating feedforward inhibition and sinusoidal input. 319

Modulation: Tuning the output and preferred input frequencies. [36] showed that the resonant 320

frequency can be tuned by changing the connection weights among excitatory and inhibitory populations (i.e., 321

”rewiring the network topology”). Here, we show that the resonant and natural frequencies of similar networks 322

can be tuned dynamically by changing the strength of an oscillatory input or the baseline excitation in the 323

output PC population. The latter can be tuned through neuromodulation (Fig 6C) (e.g., modulation of 324

potassium currents in PFC by dopamine [37] and acetylcholine [38]) or external applied currents (Fig 6D) 325

representing modulatory signals with asynchronous spiking. 326

One consequence of the dependence of the natural output frequency on input firing rate (Fig 5C) is that 327

PC/IN networks with strong feedback inhibition can operate as variable-frequency oscillators. If a PC/IN 328

network outputs to a bank of band-pass filter networks with different center frequences, this could enable input 329

rate-based control of which filter network is activated. In this scenario, a PC/IN network driven by asynchronous 330

spiking would effectively perform a firing rate-to-oscillation frequency conversion that could be used to route 331

signals to select elements of a downstream filter bank. The fact that the output frequency depends on the time 332

constant of feedback inhibition means that correspondence between output and center frequencies could be 333

facilitated by matching interneuron types in the converter and filter networks. Furthermore, the 334

variable-frequency response could potentially serve encoding of slowly-varying asynchronous signals using 335

pulse-frequency modulation [39] or participation in a phase-locked loop. Such systems would need to account for, 336

or be invariant to, the concurrent amplitude modulation of the PC/IN network. The fact that the output 337

rhythms are sparse (i.e., only a fraction of PCs spike on every cycle) makes the signal energy efficient and 338

potentially suitable for use in neuromorphic engineering [40,41]. 339

Together, these results demonstrate flexibility of neural processing provided by extrinsic tuning of PC/IN 340

oscillator properties. 341

Relation to other work 342

Resonance phenomena have been studied in neural systems at multiple scales. Peaks in the single neuron 343

membrane potential response to subthreshold oscillatory inputs have been studied in terms of the interplay 344

between intrinsic ion currents [9]; their ability to influence spiking has been demonstrated in single neurons [42]; 345

and relationships between subthreshold resonance and the natural network frequency of electrically coupled 346

excitatory cells have been shown [43]. Our PC model, in isolation, exhibits subthreshold resonance at delta 347

frequencies ( 2Hz) (S1 Fig A) that translates into an input strength-independent spiking resonance at the same 348

frequency for suprathreshold inputs (S1 Fig B-C). The addition of strong feedback inhibition suppresses the 349

spiking response to delta-frequency inputs while a higher-frequency, input strength-dependent spiking resonance 350

emerges in response to strong inputs (S1 Fig D). We have explored this higher-frequency resonance in this work 351

and shown how it depends on the strength of input (S1 Fig Ei-ii) and the time constant of feedback inhibition (S1 352

Fig Eiii). 353

The mechanism that determines the precise value of fPC
R in the inhibition-based PC/IN oscillator is not fully 354

understood. Insight into the locking of an inhibition-based IN network oscillator to periodic drive with 355

heterogeneous phases has been obtained using a timing map [18]; a similar analysis might provide insight in the 356

present case of a PC/IN network locking preferentially to a particular periodic drive with heterogeneous spike 357

times but is beyond the scope of this work. The work in [18] and our results suggest the value of fPC
R is related 358

to the number of PC spikes that are necessary to engage INs on a given cycle. Changing the network size while 359

keeping the synaptic strengths constant did not affect fPC
R (compare 2Bi to S4 Fig). This is in contrast to work 360
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showing that resonant frequency in a network model of Wilson-Cowan oscillators depended strongly on network 361

size [44]. Further work is needed to understand the differences between resonances in spiking versus 362

activity-based networks. 363

[11] showed that strong feedback inhibition is required for firing rate resonance in integrate-and-fire networks 364

of excitatory and inhibitory cells driven by sinusoidal inputs; they also showed that stronger inputs increase 365

resonant frequencies. We have reproduced these qualitative findings in a more detailed network model and 366

extended the results by showing how firing rate resonance relates to the natural and peak oscillation frequencies 367

in the strong-input regime, and how they all depend on other properties of the oscillatory input (i.e., waveform 368

and spike synchrony). Compared to the integrate-and-fire networks (S3 Fig), the prefrontal network exhibited 369

lower natural and resonant frequencies. [45] showed that heterogeneity of PC intrinsic properties in a PC/IN 370

network produces a range of resonant frequencies that supports combining, instead of selecting, inputs. In 371

contrast, our PC population is homogeneous, and the network produces more selective responses favoring outputs 372

with fpop-resonant inputs. See Methods for a comparison of output measures used in this and other studies of 373

spiking resonance. [46] investigated the response of an inhibition-paced IN population to physiologically-relevant 374

periodic pulse inputs, but their work did not include PC cells or examine resonance. 375

Limitations and future directions 376

The model investigated in this work made the following simplifications: no NMDA synapses, usage of all-to-all 377

connectivity between PCs and INs, no PC-to-PC or IN-to-IN connectivity, and the lack of noise driving INs. 378

Preliminary simulations demonstrated that probabilistic connectivity, weak noise, and weak NMDA synapses did 379

not disrupt the results. For strong noise to INs, additional IN-to-IN feedback inhibition is necessary to 380

synchronize the IN population. Furthermore, IN-to-IN and PC-to-PC connectivity have been shown to modulate 381

resonant frequencies [36]. We suspect the main requirement for our results to hold is that the network is in a 382

regime that produces a natural oscillation in response to an asynchronous input to the PCs (i.e., external noise to 383

INs must be weak enough, feedback inhibition strong enough, and PC-to-IN drives strong and fast enough for a 384

fraction of spiking PC cells to control IN activity from cycle to cycle). 385

Another important limitation of the present work pertains to the role of modulatory intrinsic currents. We 386

have focused on regimes where PCs are roughly regular spiking and INs are fast spiking. More work is needed to 387

understand how the dynamics reported here would be affected by PCs that are intrinsically bursting (as observed 388

in deep layers of cortex and thalamus) and INs exhibiting low-threshold spiking. Furthermore, our account of the 389

effects of knocking out modulatory currents is limited to effects on overall activity levels across the PC 390

population. In contrast, work by [47] shows that modulatory currents can impact the cycle-to-cycle probability of 391

individual cells participating in the population rhythm. 392

Conclusions 393

The work reported here has introduced a distinction between time-averaged firing rate resonance in excitatory 394

PCs and inhibitory INs that arises when inputs are strong. We have also introduced a new form of network 395

resonance observed in strongly-driven inhibition-based PC/IN oscillators, called population frequency resonance 396

that depends on firing rate resonance in INs; and demonstrated its importance for suppressing responses to 397

asynchronous activity. These results have also made a significant contribution to understanding how PC/IN 398

networks with strong feedback inhibition are affected by task-modulated changes in oscillatory inputs, in general, 399

and why beta rhythms are so frequently associated with prefrontal activity. 400

Materials and methods 401

Network models 402

The network model represents a cortical output layer with 20 excitatory principal cells (PCs) connected 403

reciprocally to 5 inhibitory interneurons (INs). Hodgkin-Huxley (HH) type PC and IN models were taken from a 404

computational representation of a deep layer PFC network consisting of two-compartment PCs (soma and 405
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dendrite) with ion channels producing INaF , IKDR, INaP , IKs, ICa, and IKCa currents (µA/cm2) and fast 406

spiking INs with channels producing INaF and IKDR currents [48] (Fig 7A; see figure caption for channel 407

definitions). IN cells had spike-generating INaF and IKDR currents with more hyperpolarized kinetics and faster 408

sodium inactivation than PC cells, resulting in a more excitable interneuron with fast spiking behavior [48]. In 409

the control case, PC and IN cell models were identical to those in the original published work [48] while network 410

connectivity was adjusted to produce natural oscillations (not in [48]), as described below, and the number of 411

cells in the network was decreased to enable exploration of larger regions of parameter space while remaining 412

large enough to capture the dynamics of interest for this study; however, the same resonant frequencies were 413

obtained in simulations using the original network size (S4 Fig). Knockout experiments were simulated by 414

removing intrinsic currents one at a time from the PC cell model. All cells were modeled using a 415

conductance-based framework with passive and active electrical properties of the soma and dendrite constrained 416

by experimental considerations [49]. Membrane potential V (mV) was governed by: 417

Cm
dV

dt
= −Iinp(t, V )−

∑
Iint −

∑
Isyn (1)

where t is time (ms), Cm = 1 µF/cm2 is the membrane capacitance, Iint denotes the intrinsic membrane currents 418

(µA/cm2) listed above, Iinp(t, V ) is an excitatory current (µA/cm2) reflecting inputs from external sources 419

described below, and Isyn denotes synaptic currents (µA/cm2) driven by PC and IN cells in the network. We 420

chose to explore the prefrontal model as part of a larger project on prefrontal oscillations. We confirmed the 421

generality of our qualitative results using a leaky integrate-and-fire (LIF) model; see the caption of S3 Fig for 422

details on the LIF model. We explored single cell and minimal network versions of our HH type model to 423

investigate potential relationships between single cell and network resonances; details on these simulations can be 424

found in the caption of S1 Fig. 425

Figure 7. Architecture of output networks. (A) Diagram showing feedforward excitation from external
independent Poisson spike trains to the dendrites of 20 two-compartment (soma, dend) principal cells (PCs)
receiving feedback inhibition from a population of 5 fast spiking interneurons (INs). All PC and IN cells have
biophysics based on rat prelimbic cortex (Ion channel key: NaF = fast sodium channel; KDR = fast delayed
rectifier potassium channel; NaP = persistent sodium channel; Ks = slow (M-type) potassium channel; Ca =
high-threshold calcium channel; KCa = calcium-dependent potassium channel). (B) Diagram showing a
rhythmically-driven target population of PC cells (PCT) competing with an asynchronously-driven distractor
population (PCD) through a shared population of inhibitory IN cells.

The output layer had either one or two populations of PC cells with each output population receiving either 426

one or two input signals. Input frequency-dependent response profiles were characterized using a network with 427

one input and one output (Fig 7A). Competition between the outputs of parallel pathways was investigated using 428

a network with two homogeneous output populations receiving one input each while interacting through a shared 429

population of inhibitory cells (Fig 7B). 430
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Network connectivity 431

PC cells provided excitation to all IN cells, mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 432

(AMPA) currents. IN cells in turn provided strong feedback inhibition mediated by γ-aminobutyric acid 433

(GABAA) currents to all PC cells. This combination of fast excitation and strong feedback inhibition is known to 434

generate robust network oscillations in response to tonic drive [12,13]. AMPA currents were modelled by: 435

IAMPA = gAMPAs(V − EAMPA) (2)

where V is the postsynaptic membrane voltage, gAMPA is the maximal synaptic conductance, s is a synaptic 436

gating variable, and EAMPA = 0 mV is the synaptic reversal potential. Synaptic gating was modeled using a 437

first-order kinetics scheme: 438

ds

dt
= H(Vpre)

1− s
τr
− s

τd
(3)

where Vpre is the presynaptic membrane voltage, τr = 0.4 ms and τd = 2 ms are time constants for 439

neurotransmitter release and decay, respectively, and H(V ) = 1 + tanh(V/4) is a sigmoidal approximation to the 440

Heaviside step function. GABAA currents are modeled in the same way with EGABA = −75 mV and τd = 5 ms. 441

Maximum synaptic conductances for PC cells were (in mS/cm2): GABAA (.1); for IN cells: AMPA (1). 442

External inputs 443

Each PC cell received independent Poisson spike trains (Fig 8) with time-varying instantaneous rate λ(t) (sp/s) 444

and time-averaged rate rinp = 〈λ〉; spikes were integrated in a synaptic gate sinp with exponential AMPAergic 445

decay contributing to an excitatory synaptic current Iinp = ginpsinp(V − EAMPA) with maximal conductance 446

ginp (mS/cm2). Input signals were modeled by collections of spike trains with the same instantaneous 447

rate-modulation. A given input signal to a PC output population can be interpreted as conveying rate-coded 448

information from a source population in a particular dynamical state. 449

Signals from sources in different dynamical states were generated by modulating instantaneous rates λ(t) 450

according to the activity patterns exhibited by populations in those states. Signals from source populations in an 451

asynchronous state were modeled by Poisson spike trains with constant rate λ(t) = rinp (Fig 8A) whereas signals 452

from sources in an oscillatory state were modeled using periodically-modulated instantaneous rates (Fig 8B). 453

Signals with sine wave modulation had λ(t) = rinp(1 + sin(2πfinpt))/2 parameterized by rinp (sp/s) and rate 454

modulation frequency finp (Hz). Sinusoidal modulation causes spike synchrony (the interval over which spikes 455

are spread within each cycle) to covary with frequency as the same number of spikes become spread over a larger 456

period as frequency decreases. Thus, we also investigated oscillatory inputs with square wave modulation in order 457

to differentiate the effects of synchrony and frequency while maintaining the ability to compare our results with 458

other work. Square wave rate-modulation results in periodic trains of spikes with fixed synchrony (pulse packets) 459

parameterized by rinp (sp/s), inter-pulse frequency finp (Hz), and pulse width δinp (ms). δinp reflects the 460

synchrony of spikes in the source population with smaller values implying greater synchrony; decreasing δinp 461

corresponds to decreasing the duty cycle of the square wave. For the square wave input, we chose to hold 462

constant rinp so that across frequencies the only significant change is in the patterning of spikes and not the total 463

number of spikes; this results in larger pulses being delivered to postsynaptic PCs at lower frequencies as would 464

be expected if lower frequencies are produced by larger networks [50]. If the number of spikes per cycle was fixed, 465

instead, as would be the case for a given input population with iFR fluctuating more rapidly and all cells spiking 466

on every cycle, then the mean strength of the input would increase with frequency, and its effect on resonance 467

would no longer be comparable to a sinusoidal input with increasing frequency. The consequence of holding the 468

number of spikes per cycle fixed for a square wave input is discussed further below and related to the results for 469

fixed-mean square waves in S8 Fig. 470

All principal cells in the output layer received additional asynchronous inputs representing uncorrelated 471

background activity from 100 cells in other brain areas spiking at 1 sp/s. Notably feedforward inhibition was 472

excluded from the present work so that asynchronous inputs were maximally effective at driving PC cells. The 473

effects of adding feedforward inhibition and conditions under which each case holds are considered in the 474

Discussion. Control values for input parameters were rinp = 1000 sp/s (corresponding to a source population 475

with 1000 projection neurons spiking at 1 sp/s); δinp = 1 ms (high synchrony), 10 ms (medium synchrony), or 19 476
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Figure 8. Input network activity. (A) Asynchronous Poisson input with (i) constant instantaneous rate
rinp and (ii) raster for 100 input cells with rinp = 10 sp/s (equivalent to 1 input cell with rinp = 1000 sp/s). (B)
Poisson inputs with oscillatory instantaneous rate-modulation. (i) Instantaneous rate modulated by low
synchrony square wave, parameterized by pulse width δinp and inter-pulse frequency finp. (ii) raster plot
produced by square wave input. (iii) High synchrony, square wave rate-modulation. (iv) sine wave modulation,
parameterized by frequency finp. (C) Output measures for the PC/IN network. (i) Diagram of a PC/IN network
receiving an input from (B). (ii) Plots showing the instantaneous firing rate (iFR) computed for each population
using Gaussian kernel regression on the spike raster. Time-averaged firing rates are defined by the mean iFR for
each population. (iii) Power spectrum showing how population frequency is defined by the spectral frequency
with peak power in the iFR.
.

ms (low synchrony), and ginp = .0015 mS/cm2. High synchrony inputs are similar to strong, periodic spikes while 477

medium and low synchrony inputs distribute spikes uniformly over intervals comparable to sine waves at 100 Hz 478

and 53 Hz, respectively. 479

In simulations probing resonant properties, the input modulation frequency finp was varied from 1 Hz to 50 480

Hz (in 1 Hz steps) across simulations. In simulations exploring output gating among parallel pathways, input 481

signals had the same mean strength (i.e., rinp); this ensures that any difference between the ability of inputs to 482

drive their targets resulted from differences in the dynamical states of the source populations and not differences 483

in their activity levels. 484

Data analysis 485

For each simulation, instantaneous output firing rates, iFR, were computed with Gaussian kernel regression on 486

population spike times using a kernel with 6 ms width for visualization and 2 ms for calculating the power 487

spectrum. Mean population firing rates, r̄PC and r̄IN , were computed by averaging iFR over time for PC and 488
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IN populations, respectively; they index overall activity levels by the average firing rate of the average cell in the 489

population (Fig 8Ci-ii). The frequency of an output population oscillation, fpop, is the dominant frequency of the 490

iFR oscillation and was identified as the spectral frequency with peak power in Welch’s spectrum of the iFR (Fig 491

8Ciii, S7 Fig). As defined, fpop usually reflects the rhythmicity of internal spiking; however, when nested 492

oscillations are present at low frequencies, fpop may reflect either internal or external rhythm frequencies (see Fig 493

4D for a raster plot and PC iFR, Fig 4B for a fpop response profile, and S7 Fig for an iFR power spectrum with 494

nested oscillations). This ambiguity does not interfere with our study of resonance at higher frequencies where 495

the signal has a single dominant frequency; however, a disambiguating measure of population frequency would be 496

necessary to study regimes in which multiple frequencies are strongly present (e.g., strong, low-frequency, 497

low-synchrony periodic inputs). The natural frequency fN of the output network was identified as the population 498

frequency fpop produced in response to an asynchronous input. 499

Our measure of spiking activity in the strongly-driven network differs from measures used in work on 500

resonance in weakly-driven networks [10,11,42]. In the weakly-driven (i.e., linear) regime, the iFR amplitude 501

scales linearly with the input and can serve as a measure for detecting resonance. However, in the strongly-driven 502

regime that we explore, iFR may scale nonlinearly with the input; in the case of high-synchrony inputs, iFR 503

amplitude saturates below the resonant frequency (i.e., all cells spike once on every cycle), and it has a more 504

complicated profile and scaling with input strength in other cases. [51] has explored spiking resonance in a 505

strongly-driven single cell and defined a measure called spike frequency that is roughly equivalent to the 506

time-averaged firing rate. We have chosen to use a similar measure, the time-averaged iFR, r̄∗, to capture overall 507

increases or decreases in the amount of spiking produced in the strongly-driven network. 508

Qualitatively, r̄PC profiles differ for the PFC PC/IN network with strong feedback inhibition depending on 509

the waveform of the periodic input (Fig 9). Weak sinusoidal inputs produce band-pass responses like those 510

observed in [10,11] (Fig 9Ai; S1 Fig D-Ei, blue curve). Increasing the strength of those inputs produces an 511

all-pass regime in which inputs at all frequencies elicit a response, although a resonant peak remains (Fig 9Aii; S1 512

Fig D-Ei, black curve). In contrast, a weak square wave with mean input held constant across frequencies 513

produces a low-pass response due to the larger input pulses at low frequencies (Fig 9Bi). However, the curve still 514

exhibits a peak that occurs at the same input frequency as for the sine wave given equal-strength input. Finally, 515

a weak square wave with pulse amplitude held constant produces a high-pass response due to the increasing input 516

strength that occurs with an increasing number of pulses (Fig 9Ci). Increasing the strength of square wave inputs 517

also moves the network into an all-pass regime (Fig 9Bii, Cii), but only the fixed-mean square wave exhibits a 518

resonant peak (Fig 9Bii). In this work, we focus on the sine and square wave cases where mean input strength is 519

held fixed and resonance is well-defined in physiologically-relevant frequency ranges. 520

Across simulations varying input frequencies, statistics were plotted as the mean ± standard deviation 521

calculated across 10 realizations. Input frequency-dependent plots of mean firing rates and population frequencies 522

will be called response profiles. The time-averaged firing rate resonant frequencies, fPC
R and f INR , are the input 523

frequencies at which global maxima occurred in the r̄PC and r̄IN firing rate profiles, respectively. Similarly, the 524

resonant input frequency, fpopR , maximizing output oscillation frequency was found from peaks in fpop population 525

frequency profiles, excluding the peaks that are due to nested oscillations in response to strong, low-frequency, 526

low-synchrony periodic drives. 527

Simulation tools 528

All models were implemented in Matlab using the DynaSim toolbox [52] (http://dynasimtoolbox.org) and are 529

publicly available online at: http://github.com/jsherfey/PFC_models. Numerical integration was performed 530

using a 4th-order Runge-Kutta method with a fixed time step of 0.01 ms. Simulations were run for 2500ms and 531

repeated 10 times. The network was allowed to settle to steady-state before external signals were delivered at 400 532

ms. Plots of instantaneous responses begin at signal onset. The first 500 ms of response was excluded from 533

analysis, although including the transient did not alter our results significantly. 534
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Figure 9. Cartoon profiles of time- and population-averaged PC firing rates in response to
different types of oscillatory inputs. (A) Response to sinusoidal drive. (i) Weak input produces a
band-pass filter (BPF) response with spikes driven by near-resonant frequencies and only a fraction of cells
spiking on every cycle. (ii) Strong input produces an all-pass response with a resonant peak. B) Response to
fixed-mean square wave drive. (i) Weak input produces a low-pass filter (LPF) response with spikes driven by all
frequencies below a resonant peak and all cells spiking on every cycle. (C) Response to fixed-amplitude square
wave drive. (i) Weak input produces a high-pass filter (HPF) response. (ii) Strong input produces an all-pass
response without a well-defined resonant peak.
.

Supporting Information 535

S1 Fig 536

Comparison of types of resonance in the single PC and PC/IN networks. (A) After removing 537

background noise to allow for subthreshold fluctuations, subthreshold resonance in the voltage fluctuation was 538

observed at 2 Hz in a single principal cell (PC) driven by a weak sinusoidal drive (rinp = .1 kHz). Example 539

voltage traces are shown in response to asynchronous input and sinusoidal inputs at f = 1 Hz, 2 Hz, and 5 Hz. 540

The amplitude of voltage fluctuation, Vmax − Vmin is plotted versus input frequency, and the peak is marked 541

with a × symbol. (B) After the input strength was increased to a slightly suprathreshold level (rinp = .1 kHz), 542

suprathreshold spiking resonance was observed at the same 2 Hz frequency in a single PC. Example voltage 543

traces are shown in response to asynchronous input and sinusoidal inputs at f = 1 Hz, 2 Hz, and 5 Hz. The 544

time-averaged firing rate (FR) is plotted versus input frequency, and the peak is marked with a + symbol. This 545

suggests that the subthreshold resonance translates to suprathreshold resonance in the linear regime. (C) (i) FR 546

profile showing that as the strength of sinusoidal input is increased further to rinp = .8 kHz and 1 kHz, spiking 547

resonance in the single PC remains at the same frequency and multiple bumps in time-averaged firing rate 548

emerge at higher frequencies. The dotted circle marks the frequency at which an input strength-dependent bump 549

in firing rate occurs (in the single PC) that is closest to the global maxima in the network. (ii) The scatter plot 550
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shows the continuity between the input strength-independent subthreshold and suprathreshold resonances in the 551

single PC. (D) Response of a minimal PC/IN network with one PC and one IN. Strength of the PC → IN 552

synapse was increased so that a spike in the single PC elicited a spike in the IN, and the background noise was 553

removed for comparison with the resonant response of the single PC. (i) PC firing rate profiles in the minimal 554

network given sinusoidal inputs with suprathreshold input strength rinp = .3, .8, 1 kHz. Feedback inhibition 555

suppressed the resonant peak at 2 Hz and led to the response at higher frequency being resonant (marked with a 556

closed circle). (ii) Scatter plot showing that the FR resonance in the PC (marked with a blue circle) and IN 557

(marked with a red triangle) occur at the same input frequency and scale with the strength of input. (iii) Scatter 558

plot showing that the FR resonant frequency decreases as the duration of inhibition increases. (E) Response of 559

the full PC/IN network. Background noise was removed for comparison with the single PC and minimal network 560

cases. (i) PC firing rate profiles in the full network given sinusoidal inputs with suprathreshold input strength 561

rinp = .3, .8, 1 kHz. Feedback inhibition driven by a population of PCs produced lower time-averaged firing rates 562

in the average cell and increased the resonant frequency; the increase in resonant frequency may be due to a 563

mechanism similar to that explored in [18]. (ii) Scatter plot showing that FR resonant frequencies in the PC 564

(marked with a blue circle) and IN (marked with a red triangle) populations increase with input strength. 565

Comparison to the profiles in (i) reveals that the FR resonant frequencies of PC and IN populations separate 566

when the network moves from a band-pass to all-pass regime (i.e., with natural oscillation generated by 567

equal-strength asynchronous drive). (iii) Scatter plot showing that FR resonant frequencies decrease in the full 568

network as the duration of inhibition increases. 569
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570

571
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S2 Fig 572

Separation of fPC
R and f INR requires a PC population with heterogeneous spike times. (A) 573

Time-averaged firing rate profiles of PC (blue) and IN (red) cells in a minimal PC/IN network with one PC and 574

one IN given high synchrony, square wave input. The IN can spike only when the PC spikes which causes their 575

firing rates to peak in response to the same input frequency. (B) Time-averaged firing rate profiles of PC (blue) 576

and IN (red) populations in the full PC/IN network given high synchrony, square wave input. The IN cells 577

continue spiking after the firing peaks in the PC population because even a subset of PCs spiking on every cycle 578

of the input is sufficient to engage all the INs. 579

580

S3 Fig 581

Input frequency-dependent output response profiles in integrate-and-fire networks. Qualitative 582

features of the PFC network model were reproduced in a simpler PC/IN network model with leaky 583

integrate-and-fire (LIF) neurons. (top) Firing rate profile for PC (blue) and IN (red) populations. (bottom) 584

Population frequency profile for PC and IN populations. Peak population frequency occurs at the input 585

frequency maximizing IN activity (i.e., feedback inhibition). LIF neurons were modeled with membrane potential 586
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V (mV) governed by: dV
dt = −Iinp(t, V )− gl(V − El)− gsyn(V − Esyn) where t is time (ms), gl = 0.1, El = −65 587

mV, Iinp(t, V ) is an excitatory current (µA/cm2) reflecting inputs from external sources described in the 588

Methods section, and Isyn denotes synaptic currents (µA/cm2) with double exponential conductances driven by 589

other populations. When the membrane potential reaches the threshold of 0 mV, the voltage is reset and held at 590

-65 mV for a refractory period of 3 ms. There were 25 PCs and 5 INs. For PCs, synaptic inputs were inhibitory 591

with gsyn = 0.1, Esyn = −80 mV, 2 ms decay and 0.4 rise time constants. For INs, synaptic inputs were 592

excitatory with gsyn = 0.03, Esyn = 0 mV, 10 ms decay and 0.2 rise time constants. Inputs to the LIF network 593

were the same as the more detailed PFC network described in the Methods section except that ginp = .00375 594

mS/cm2 and gnoise = 0.0056 mS/cm2. 595

596

S4 Fig 597

Time-averaged firing rate resonance in the PFC network with 100 PCs and 37 INs. (A) Firing rate 598

profile for PC (blue) and IN (red) populations in a PFC network with 100 PCs and 37 INs. All parameters of the 599

model were kept fixed relative to the control model except the number of cells per population was increased. 600

Note that the resonant frequencies are the same as in the control model with 20 PCs and 5 INs. (B) Raster plots 601

showing maximal PC spiking at finp = fPC
R and maximal IN spiking (with less PC spiking) at finp = f INR . 602
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603

S5 Fig 604

Suppression of response to asynchronous activity occurs within one cycle of the target oscillating 605

more quickly. (A) Diagram showing a target PC population, PCT, driven by an asynchronous input during 606

period T1 then a medium-synchrony oscillatory input at the 28 Hz fpop-resonant frequency during period T2 in 607

competition with a distractor PC population, PCD, driven by an equal-mean asynchronous input during both 608

periods. (B) Raster plot showing that no suppression of either population occurs when their population 609

frequencies are the same during period T1 but that PCD is suppressed within a cycle of PCT oscillating more 610

quickly during period T2. 611

612

S6 Fig 613

Suppression of response to asynchronous activity does not occur when the natural frequency 614

equals the population frequency of the target. (A) Diagram showing a target PC population, PCT, 615

driven by medium-synchrony oscillatory input at the 28 Hz fpop-resonant frequency in competition with a 616

distractor PC population, PCD, driven by a higher-rate asynchronous input that produces a 28 Hz natural 617

oscillation. (B) Raster plot showing that synchronous spiking occurs in both populations with time-averaged 618

firing rates that would be expected in each population given their inputs in the absence of competition. (C) 619
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Plots showing the (top) input, (middle) mean population voltage, and (bottom) instantaneous firing rate for (left) 620

PCT and (right) PCD populations. 621

622

S7 Fig 623

Example iFR power spectra used for the determination of population frequency. (A) Response to 8 624

Hz sinusoidal drive. (i) Nested oscillations in the PC iFR. (ii) Power spectrum with peaks at both the external 625

driving frequency and frequency of internally-generated, nested oscillations. Low-synchrony square wave inputs 626

can also produce nested oscillations. Across realizations, different frequencies may have peak power, which results 627

in ambiguity when fpop is defined as the frequency with peak power. However, this does not affect the current 628

study because nesting only occurs at frequencies well below the time-averaged firing rate peaks of ongoing 629

inhibition-based oscillations investigated in this work. (B) Response to 25 Hz sinusoidal drive. (i) PC population 630

with instantaneous firing rate locked to the period of the input; this occurs for intermediate frequencies of a 631

sinusoidal input and all frequencies of a high-synchrony square wave input up to the IN firing rate resonant 632

frequency. (ii) Power spectrum with peaks at the external driving frequency and its harmonics. (C) Response to 633

50 Hz sinusoidal drive. (i) PC population with instantaneous firing rate paced by the network’s internal time 634

constants; this occurs for driving frequencies above the IN firing rate resonant frequency. (ii) Power spectrum 635

with prominent peaks at the internally-generated, natural frequency and its harmonics as well as a much smaller 636

peak at the external driving frequency. The response to 50 Hz square wave drive, independent of the degree of 637

input synchrony, exhibits a similar asymptotic behavior. 638

639
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640

S8 Fig 641

Relationship between resonance with fixed-mean square waves and responses to fixed-amplitude 642

square waves. (A) Response to fixed-amplitude square wave with pulse amplitude fixed to rp = 4 kHz for all 643

driving frequencies. (i) Firing rate (FR) profile for medium-synchrony square waves. Given fixed pulse amplitude, 644

mean input strength increases with input frequency, proportionally to (pulse amplitude) × (inter-pulse frequency) 645

× (pulse width), as an increasing number of 4 kHz pulses occur in the same period of time; 4 kHz corresponds to 646

the amplitude of a fixed-mean square wave pulse when rinp = 1 kHz and finp = 25 Hz. FRs peak at higher 647

frequencies than in response to a fixed-mean square wave. (ii) Plot showing (1) the resonant frequency of peak 648

PC FR given fixed-mean square waves for different drive strengths, rinp (black), (2) the fixed-amplitude input 649

frequencies corresponding to different drive strengths (blue), and (3) a vertical line marking the fixed-amplitude 650

drive strength at the first peak of PC FR in (Ai). The intersection of these curves shows that the first peak in 651

the fixed-amplitude FR profile in (Ai) occurs when the mean strength for a given finp establishes an input 652

strength-dependent FR resonant frequency (determined using fixed-mean square waves) that matches the input 653

frequency. (B) Same as (A) except the pulse amplitude was fixed to rp = 5 kHz for all driving frequencies. 5 kHz 654

corresponds to the amplitude of a fixed-mean square wave pulse when rinp = 1 kHz and finp = 20 Hz. (i) Firing 655

rates peak at an even higher input frequency. (ii) Compared to (Aii), the blue curve shifted to the right because 656

every frequency is associated with a higher mean firing rate when the pulse amplitude increases. The frequency 657

at which the peak occurs in (Bi) corresponds to the mean input strength marked with a vertical line. As in (A), 658

the intersection of the three curves shows that the first peak in the fixed-amplitude FR profile in (Bi) occurs 659

when the input frequency equals the FR resonant frequency given the mean input strength associated with a 660

fixed-amplitude square wave at that input frequency. These results suggest that when pulse amplitude is fixed, as 661

in the fixed-mean case, the resonant frequency increases with mean input strength. However, the mean input 662

strength increases with input frequency when pulse amplitude is fixed, leading to a more complicated relationship 663

between input frequency and local maxima in the response profile for fixed-amplitude square wave inputs. 664
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