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Artificial Neural Networks (ANN) are increasingly

successful in solving tasks long considered hallmarks

of cognition in Biological Neural Networks (BNN),

such as visual discrimination, playing Go and navi-

gation1–7. While the design of ANNs has been in-

spired by discoveries in BNNs8, it is controversial

whether both network types utilize the same fun-

damental principles and hence if ANNs can serve

as models of animal cognition9. However, if repre-

sentations and algorithms are shared between BNNs

and ANNs, then the analysis of processing in ANNs

could lead to fundamental insights into their biologi-

cal counterparts.

Here, we generated and trained a deep convolu-

tional neural network to solve a heat gradient navi-

gation task using the behavioral repertoire of larval

zebrafish. We found that these behavioral constraints

led to striking similarities in temperature processing

and representation in this ANN with biological cir-

cuits and neural dynamics underlying heat avoidance

in larval zebrafish10. This includes stimulus repre-

sentation in ON and OFF types as well as ANN units

showing adapting and sustained responses. Impor-

tantly, ANN performance critically relied on units

representing temperature in a fish-like manner while

other nodes were dispensable for network function.

We next used the accessibility of the ANN to un-

cover new features of the zebrafish BNN. We identi-
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fied a novel neuronal response type in the zebrafish

brain that was predicted by the ANN but escaped

detection in previous brain wide calcium imaging ex-

periments. Finally, our approach generalized since

training the same ANN constrained by the C. elegans

motor repertoire resulted in distinct neural represen-

tations that match closely features observed in the

worm.

Together, these results emphasize convergence of

ANNs and BNNs on canonical representations and

that man made ANNs form a powerful tool to under-

stand their biological counterparts.

Artificial neural networks have traditionally been used to

study the emergence of both representations and cogni-

tion from networks of simple, interconnected units11,12.

Here, we used a comparative approach to contrast rep-

resentation and computation in artificial and biologi-

cal neural networks performing heat gradient naviga-

tion. To study possible convergence of representations

between artificial and biological neural networks, we cre-

ated an ANN that solves a heat gradient navigation task.

Specifically, we designed a branched, convolutional neu-

ral network processing sensory and behavioral history

experienced over the past four seconds of exploring a

temperature gradient (Figure 1a-d). We used rectifying

linear units in the convolutional and hidden layers of the

network to mimic neural rectification.

The multi-layered feed-forward structure of the net-

work and usage of temporal convolution was inspired
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Figure 1: A deep convolutional network for gradient navigation
a) Location of temperature modulated neurons (blue) in the zebrafish brain and sensory trigeminal ganglia. Temperature modulated
neurons in a main processing area in the hindbrain are highlighted in green.
b) Schematic of the task accomplished by the deep network. Given temperature and movement history in a heat gradient, the network
predicts the resting temperature resulting from different behavior selections (stay, move straight, turn left, turn right).
c) Zebrafish neuronal response types in the hindbrain region highlighted in a). Top panel: Adapting “Fast ON” (red) and non-
adapting “Slow ON” (orange) neurons. Bottom panel: Adapting “Fast OFF” (green) and non-adapting “Slow OFF” (blue) neurons.
Temperature stimulus presented to larval zebrafish depicted in black on top.
d) Structure of the convolutional deep network for zebrafish temperature prediction. Curves on top depict example network input of
the training dataset. Conv: Convolutional layer, ReLu indicates that network uses rectifying linear units, Drop: Indicates dropout
used during training.
e) Log of the squared error in temperature predictions (256 red, 512 orange, 1024 blue) on a test data set after the indicated number
of training steps (dashed vertical lines demarcate training epochs).
f) Evolutionary algorithm to learn weights that allow manipulation of bout frequency based on the output of the temperature branch
(left panel) and progression of heat gradient navigation error as average distance from desired temperature across generations (right
panel). Error-bars are bootstrap standard error across 20 evolved networks. Generation 7 highlighted in grey and last generation in
blue for comparison with g) and h).
g) For fully trained predictive network in generation 0 (orange), evolved generation 7 (grey) and network after completed evolution
(blue) the average swim frequency produced by temperature in the gradient. Shading indicates bootstrap standard error across 20
networks.
h) Occupancy in a radial heat gradient of naive (black), trained (orange) and evolved (blue) networks. Dashed vertical line at 26 ◦C
indicates desired temperature. Shading indicates bootstrap standard error across 20 networks.
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by general models of sensorimotor processing. We how-

ever did not match connectivity in the ANN to larval

zebrafish circuitry to avoid constraining network repre-

sentations by anatomy and to instead limit constraints

to the goal of heat gradient navigation and the available

motor repertoire. Previously, we observed heat respon-

sive neurons that encode the direction of temperature

change in the larval zebrafish hindbrain (Figure 1c, Fast

ON and Fast OFF) which could be used for a simple

form of prediction. We therefore designed our network

to predict the temperature reached after enacting one

of four possible zebrafish behavioral elements: Stay in

place, swim straight, turn left or turn right. Impor-

tantly, this design choice is biologically plausible given

the importance of behavioral forward models in decision

making13–16 and allowed for supervised learning which

greatly increased training efficiency compared to an ap-

proach directly reinforcing behavioral elements depend-

ing on navigation success.

We trained the ANN using backpropagation on

training data that was generated from a random walk

through a radial heat gradient by drawing swims

from distributions observed during realistic zebrafish

heat gradient navigation17. We used drop-out18 for

regularization during training to mimic redundancy and

noise generally observed in biological neural networks

(BNNs). We compared training success in networks

with different hidden layer sizes (256, 512 or 1024 units

per layer), and since performance on a test dataset sat-

urated with 512 hidden units per layer (Figure 1e), we

chose this layer size for our ANN. Such networks success-

fully predicted the temperatures reached after typical

swims with average errors < 0.1 ◦C. To transform this

prediction into gradient navigation, we implemented a

simple rule that favors those behaviors that bring the

virtual fish closer to a set target temperature (Figure

S1a). Invocation of this rule after training indeed

led to efficient gradient navigation with an average

distance from the target temperature of 2.4 ◦C com-

pared to an average distance of 4.6 ◦C in naive networks.

After designing and training an ANN performing heat

gradient navigation we sought to compare computa-

tion and stimulus representation within the ANN and

the corresponding BNN. Previously, we characterized

the computations underlying behavior generation dur-

ing heat perception in larval zebrafish using white noise

temperature stimuli17. This approach allowed us to de-

rive behavioral “filter kernels” that describe how larval

zebrafish integrate temperature information to generate

swim bouts (inset Figure 2a). These filter kernels re-

vealed that larval zebrafish integrate temperature infor-

mation over timescales of 500 ms to decide on the next

swim and that they extract a derivative of the temper-

ature stimulus as reflected in the 0-crossing of the filter

(inset Figure 2a). The filter kernels furthermore indi-

cated that swims were in part controlled by a strong

OFF response just before the start of a bout. For com-

parison we now presented white noise temperature stim-

uli to the ANN and similarly computed filter kernels as

behavior triggered averages for straight swims and turns

(Figure 2a). These bear striking resemblances to the

larval zebrafish filter kernels17. Namely, even though

no explicit constraints on integration timescales were

given to the ANN, the behavior triggered averages re-

veal that most information is integrated over timescales

less than a second, akin to larval zebrafish integration

timescales (Figure S2b). This is likely the result of the

ANN adapting to the average swim frequency of lar-

val zebrafish used in the training data. Indeed, reduc-

ing the baseline swim frequency in the training data to

0.5 Hz elongates filter timescales, while an increase to

2 Hz heightens the filter peaks close to the swim start

(Figure S2c). The ANN furthermore computes both a

derivative and an integral of temperature and, notably,

behavior is also influenced by a strong OFF response

right before the start of a swim (arrowhead in Figure

2a). These are all hallmarks of larval zebrafish tem-

perature processing. Furthermore as in zebrafish, the

OFF response before the swim-start is more strongly

modulated for turns than straight swims (Figure 2a), a

strategy that zebrafish likely use to favor straight swims
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Figure 2: The network learns a zebrafish-like neural representation
a) White noise analysis of behavior induced by the network depicting the average stimulus in the last second preceding a swim. Straight
swim kernel orange, turn kernel blue. Inset shows zebrafish kernels for comparison with long straight bout kernel in blue and medium
turn kernel in orange. Arrowhead indicates OFF response just before swim start in zebrafish and networks.
b) Fish-like ON cell types revealed in the network when presenting the same temperature stimulus as presented to larval zebrafish
(depicted on top for reference). Adapting Fast ON cells (red) and non-adapting Slow ON cells (orange). Compare with Figure 1c top
panel.
c) Fish-like OFF cell types revealed in the network. Adapting Fast OFF cells (green) and non-adapting Slow OFF cells (blue). Compare
with Figure 1c bottom panel.
d) Another cell type present in the network, “integrating OFF cells” (purple) can be used as a regressor (top panel) to identify the
same, previously unidentified, cell type in zebrafish data (bottom panel, shading indicates bootstrap standard error across 146 zebrafish
neurons).
d’) The newly identified zebrafish cells cluster spatially, especially in a tight rostral band of the cerebellum (arrow). Top panel: Dorsal
view of the brain (anterior left, left side bottom). Bottom panel: side view of the brain, anterior left, dorsal top). Scale bars: 100µm.
e) Connectivity weights between layer 1 neuron types in the temperature branch (along x-axis) feeding into the indicated types of
layer 2 neurons (panels). Fish-like types are indicated by corresponding colored bars and the three remaining non-fish like clusters are
indicated by thinner gray bars on the right side. Errorbars indicate standard deviation.
Shading indicates bootstrap standard error across 20 networks in all panels.

over turns when temperature approaches cooler, more

favorable conditions17. As expected, the swim triggered

averages are completely unstructured in naive networks

(Figure S2a).

In the BNN of larval zebrafish we previously described

a critical set of temperature encoding cells in the hind-

brain consisting of ON and OFF type cells sensitive to

absolute temperature levels on the one hand and changes

in temperature on the other10 (Figure 1c). Interest-

ingly, spectral clustering across ANN units revealed a

very similar representation in the temperature naviga-

tion ANN (Figure S2d-e). This included four prominent

types. Two of which mimicked Fast ON and Slow ON

activity found in the larval zebrafish hindbrain (Figure

2b) while another two paralleled Fast OFF and Slow

OFF activity (Figure 2c). This similarity in stimulus

encoding highlights convergence in representation and

information processing between larval zebrafish and the

designed ANN.

Encouraged by these similarities we tried to use other

prominent response types found in the ANN to iden-

tify heat processing cells in the larval zebrafish brain

that may have been missed by previous clustering ap-

proaches. In particular, the ANN contained two abun-
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dant response types that were quite different from cell

types previously described in larval zebrafish: A group of

ON-OFF units responding to both stimulus on- and off-

set (Figure S2f) as well as a type that we termed “inte-

grating OFF” as it was most active at low temperatures

and integrated over successive temperature decreases

(Figure 2d). We used the responses of these cell types

as regressors to search the larval zebrafish brain data

for cells with highly correlated responses. We couldn’t

identify cells that matched the response properties of the

ON-OFF type since the most highly correlated cells in

larval zebrafish rather resembled slow ON cells (Figure

S2f). However, there was a group of cells with activ-

ity closely resembling the integrating OFF type (Figure

2d). Importantly, these cells clustered spatially in the

larval zebrafish brain, where most of them were located

in a tight band in the rostro-dorsal cerebellum (Figure

2d’, arrow). This anatomical clustering strongly sup-

ports the idea that these cells indeed form a bona-fide

heat responsive cell type.

As in larval zebrafish we furthermore observed a clear

asymmetry between encoding in ON and OFF type cells

such that OFF cells were not the simple inverse of their

ON cell counterparts (Figures 1c, 2b-c). Since our ANN

used rectifying linear units which just like biological neu-

rons cannot encode negative firing rates we wondered

if this constraint caused this asymmetry. We therefore

trained a set of networks in which we exchanged the

activation function for the hyperbolic tangent function

which results in an encoding that is symmetric around 0

(Figure S3a). These networks learned to predict temper-

atures and hence navigated heat gradients just as well

as networks with rectifying linear units (Figure S3b-c)

but remarkably they represented heat stimuli in a very

different manner. Namely, OFF units in this network

type were the exact mirror image of ON units (correla-

tion r < −0.99 for all pairs), which resulted in an overall

simpler representation (Figure S3d-e). This notion of a

simpler representation was supported by the fact that

the first 4 principal components explained 99 % of the

response variance across all cells in hyperbolic tangent

networks while 7 principal components were needed in

rectifying linear networks (Figure S3f). This suggests

that the biological constraint of only transmitting posi-

tive neural responses shapes representations in ON and

OFF type channels and increases required network com-

plexity.

By design the connectivity of the ANN was not

matched to the connectivity in the BNN of larval ze-

brafish, however analysis of connectivity weights be-

tween the hidden layers in the temperature branch of

the network showed that zebrafish-like types receive on

average stronger inputs from other zebrafish-like types

than from non-fish types (Figure 2e). This suggests that

zebrafish-like response types form a sub-network within

the ANN.

The observed representations could be a general solu-

tion to navigational tasks that use time varying inputs

or they could be specific to thermotaxis. To disam-

biguate these hypotheses we designed a network variant

that has the exact same structure but a behavioral goal

akin to phototaxis19–21. This network variant receives

as input a history of angles to a lightsource and has the

task of predicting the angular position after the same

swim types used in the thermotaxis network (Figure

S4a-b). We found that it efficiently learned to fixate a

light-source and comparing cell responses between the

thermotaxis and phototaxis networks revealed a much

simpler stimulus representation in the latter (Figure

S4c-e), arguing that such stimulus representations are

not emergent features of networks trained to perform

navigation but rather depend on the specific task at

hand.

After discovering clear parallels in representation and

computation between ANNs and BNNs for thermal nav-

igation we wanted to test the importance of the common

response types for ANN function. Artificial neural net-

works are generally robust to random deletions of units

and we expected this to specifically be the case in our

ANNs as they were trained using dropout. Indeed, ran-

dom removal of as much as 85 % of all units in the tem-
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Figure 3: Ablations and retraining reveal importance of zebrafish like cell types
a) Effect of random unit ablations on gradient navigation performance as fraction within 1 ◦C of desired temperature. Shown is
performance for naive, fully trained and for random ablations of the indicated fraction of units in the temperature branch for zebrafish
networks. Inset depicts location for all ablations.
b) Occupancy in radial heat gradient for trained zebrafish networks (black) and after ablations of the indicated cell types (colored
lines).
c) Quantification of gradient navigation performance as fraction within 1 ◦C of desired temperature for naive and trained zebrafish
networks as well as after ablations of the indicated cell types identified in larval zebrafish (colored bars) and those types not identified
in fish (“Non-fish”), grey bars. Ablations are ordered according to severity of phenotype.
d) Effect on gradient navigation of ablating all types identified in zebrafish (blue line) or all non-fish types (red line). Note that these
are non-evolved networks to allow retraining analysis. Trained performance shown in black for reference. Since fish-like deletions would
remove more units from the network overall than non-fish like deletions (63 vs. 29 % of all units) we matched the amount of ablated
units in our non-fish ablations by additionally removing a random subset of units.
e) Log of the squared error in temperature predictions of networks on the test data set after ablating all fish-like types in the temperature
branch when either retraining weights in the temperature branch (red line) or in the mixed branch (blue line). Inset indicates retraining
locations.
f) Effect of re-training networks after ablating all zebrafish like neurons. Re-training was either limited to the temperature branch (red
line) or the mixed branch (blue line). Solid grey line visualizes trained and dotted grey line ablated performance.
g-h) Recovered fraction of individual cell types after retraining the temperature branch (red bars) or after retraining the mixed branch
(blue bars). Insets depict retraining locations.
g) Cell type fractions in temperature branch.
h) Cell type fractions in mixed branch.
Shading and error bars in all panels indicate bootstrap standard error across 20 networks.

perature processing branch had only a small influence

on gradient navigation performance (Figure 3a). How-

ever, specific deletion of all Slow ON or Fast OFF like

cells in the network, contrary to Fast ON, Slow OFF

and Integrating OFF deletions, had a strong effect on

temperature navigation (Figure 3b-c). Indeed, the Slow

ON and Fast OFF types also have the highest predictive

power on heat induced behaviors in the larval zebrafish

hindbrain10. Overall, deletion of any zebrafish like type

in the network had a larger effect on gradient navigation

performance than deleting individual types not found in

larval zebrafish (Figure 3c) indicating a relatively higher

importance of fish-like types. Strikingly, deleting all

fish-like types in the temperature branch of the ANN

nearly abolished gradient navigation while performance

was hardly affected when deleting all non-fish types (Fig-

ure 3d). This demonstrates that fish-like response types

are of critical importance for gradient navigation.
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To test whether the network could adjust to the

absence of fish-like representations we performed

localized retraining of the heat-navigation ANN, re-

stricting updates to either the temperature branch

of the network or the mixed branch that integrates

temperature and movement information. One epoch

of retraining improved network performance in both

cases but retraining of the temperature branch led to

considerably better prediction and gradient navigation

performance compared with retraining of the mixed

branch (Figure 3e-f). This difference indicates that

while the temperature branch still transmits some us-

able information after the ablation of all fish-like types,

the resulting representation of temperature is lacking

information required for efficient navigation. To gain

better insight into the consequences of retraining the

network, we analyzed the distribution of response types

in the temperature and mixed branch in the retrained

networks. When retraining the temperature branch,

fish-like types emerged at the expense of non-fish

types giving further credence to their importance for

temperature prediction and navigation (Figure 3g). Not

surprisingly retraining of the temperature branch led to

the reappearance of most fish-like types in the mixed

branch as well (Figure 3h), again at the expense of non-

fish types. Retraining the mixed branch however failed

to re-generate most of the fish-like types indicating that

these cannot be re-synthesized from information carried

by non-fish types (Figure 3h). The only exceptions

to this were Slow-OFF and Integrating-OFF cells

which are the two cell types that receive fairly strong

inputs from non-fish like types to begin with (Figure 2e).

To test whether our approach of behaviorally constrain-

ing an ANN generalizes to other species, we created

a network variant using the behavioral repertoire dis-

played by C. elegans performing heat gradient naviga-

tion22. The network had the same structure and task

as the original network, predicting temperature after a

movement (Figure 4 a-b) and was trained on a random

walk through a heat gradient employing a C. elegans

behavioral repertoire.

Just like the zebrafish heat navigation ANN, the C.

elegans ANN learned to predict temperatures when

using a C. elegans behavioral repertoire (Figure 4c) and

hence was able to navigate a heat gradient effectively

(Figure 4d). Navigation performance was in fact better

than for the zebrafish ANN (compare Figures 1h and

4d) which likely is a consequence of the expanded

behavioral repertoire, especially the ability of trajectory

reversals by executing pirouettes. We did not add

an evolutionary algorithm to train changes in crawl

frequency or speed since such behavioral modulation by

temperature is not observed in the worm22. Comparing

responses in the temperature branches of zebrafish and

C. elegans ANNs using principal component analysis

revealed overlapping as well as divergent responses

(Figure 4e). This partial overlap also became apparent

when clustering cells from both networks and directly

comparing the highest correlated clusters (Figure S5c-i).

Here some clusters show near identical responses while

other response types are exclusive to one of the two

ANNs. Importantly, we could identify response types

that represent temperature similarly to cells previously

described in C. elegans (Figure S5a-b). This included

a strongly adapting cell type that was most sensitive

to changes in temperature similar to the C. elegans

AFD neuron (Figure 4f)23,24. Another cell type on

the other hand largely reported absolute temperature

levels as has been suggested for the AWC and AIY

neurons (Figure 4f)25. While the C. elegans ANN was

as robust to random unit deletions as the zebrafish

ANN (Figure S5k) it was considerably more sensitive to

single cell type ablations. Removal of AFD like neurons

severely reduced gradient navigation performance

and especially affected cryophilic bias (Figure 4g), as

reported for C. elegans itself26. A weaker phenotype

was observed when ablating AWC/AIY like neurons

(Figure 4g-h) whose role in C. elegans thermotaxis is

less well established27. The overall stronger dependence

of network performance on individual cell types suggests

a less distributed representation in the C. elegans ANN
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Figure 4: A network for C. elegans thermotaxis
a) Architecture of the C. elegans deep convolutional network. Note that the architecture is the same as in Figure 1d except for the
predictive output which is matched to the behavioral repertoire of C. elegans.
b) Schematic of the task of the C. elegans ANN: The network uses a 4s history of experienced temperature and generated behaviors to
predict the resting temperature after a C. elegans behavior (Continue moving, pirouette, sharp turn, small left turn, small right turn).
c) Log squared error of temperature predictions on test data set during training.
d) Occupancy in a radial heat gradient of naive (black) and trained (orange) C. elegans networks. Dashed vertical line at 26 ◦C indicates
desired temperature.
e) Comparison of all unit responses in the temperature branch of the zebrafish and C. elegans heat gradient ANN in PCA space when
presenting the same time varying stimulus used in Figure 2b to both networks. The first four principal components capture > 95 % of
the variance. Plots show occupational density along each PC for the zebrafish network (blue) and the C. elegans network (orange).
f) Responses of two C. elegans like cell types when presenting a temperature ramp depicted in black on top. The red type shows
adapting responses like the AFD neuron while the orange type reports temperature level as suggested for the AWC/AIY neurons.
g) Occupancy in radial heat gradient for trained C. elegans networks (black) and after ablations of the indicated cell types (colored
lines).
h) Quantification of gradient navigation performance as fraction within 1 ◦C of desired temperature for naive and trained C. elegans
networks as well as after ablations of the indicated cell types. Ablations are ordered by severity of phenotype.
i) Responses of two C. elegans cell types the ablation of which results in strong gradient navigation phenotypes (k) to the same
temperature ramp presented in f).
Shading and error bars in all panels indicate bootstrap standard error across 20 networks.

compared to the zebrafish ANN which was also mirrored

in even sparser inter-type connectivity (Figure S5l).

This may well be reflected in the animals themselves

and in fact a recent paper applied a control theory
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paradigm to suggest links between C. elegans body

bends and single motor neurons28.

Parallel distributed processing models, such as ANNs,

have been used extensively to model behaviorally in-

ferred cognitive processes and predict their algorithmic

implementation11,12 and more recently parallels between

neural processing in the ventral visual stream and image

classification ANNs have been discovered29,30. Here, we

extended these approaches by constraining neural net-

work models using a heat gradient navigation task and

species specific behavioral repertoire and subsequently

comparing processing in the ANN to a zebrafish whole

brain imaging dataset.

In summary we could show that processing and repre-

sentation in the thermotaxis ANN bears striking similar-

ities to BNN representations in zebrafish and C. elegans

depending on the available motor repertoire. This in-

cludes a clear parallel in stimulus representation between

zebrafish hindbrain neurons and the zebrafish ANN on

the one hand and response similarities between neu-

rons known to be important for C. elegans heat gradi-

ent navigation and the corresponding ANN on the other

hand. This strongly argues that stimulus representa-

tions in BNNs and ANNs converged on a canonical solu-

tion throughout evolution and training respectively and

that stimulus representations are likely constrained by

behavioral goals and motor repertoires12.

Using this approach specifically allowed us to form

testable predictions about the larval zebrafish and C.

elegans BNN. This led to the identification of a novel

heat response type in the larval zebrafish cerebellum. At

the same time the differential effects of deleting fish-like

types on navigation performance allows for the gener-

ation of testable hypotheses about the relative impor-

tance of individual cell types in the zebrafish BNN es-

pecially since the two most important response types

in the ANN (Slow ON and Fast OFF) are also most

strongly implicated in temperature processing in larval

zebrafish10. Virtual ablations also make strong predic-

tions about the role of two OFF cell types in thermal

navigation of C. elegans (Figure 4i). OFF type cells

have so far not been implicated in C. elegans thermal

navigation but recent whole brain imaging data in re-

sponse to thermal stimuli suggests that thermosensitive

OFF types do exist in C. elegans31.

The strong parallel between ANNs and BNNs implies

that artificial networks with their greater amenability to

analysis and manipulation over BNNs can serve as pow-

erful tools to derive neural principles underlying cogni-

tion in biological brains.
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Materials & Methods

All neural networks were implemented in Tensorflow32

using Python 3.6. All data analysis was performed in

Python 3.6 using numpy, scipy and scikit learn33 as well

as matplotlib and seaborn for plotting.

Behavior generation

All simulations were run at an update frequency of 100

Hz. Since zebrafish swim in discrete bouts, network pre-

dictions were only evaluated whenever swim bouts were
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instantiated. This occurred at a baseline frequency of

1 Hz (i.e. with a probability of 0.01 given the update

frequency). Even though C. elegans moves continuously,

behavioral modules are only selected with slow dynam-

ics22. Hence to reduce computational load, models and

behavior selections were only evaluated with a frequency

of 0.1 Hz (i.e. with a probability of 10−4 given the up-

date frequency).

Zebrafish Zebrafish behavioral parameters were

based on swim bouts enacted by freely swimming larval

zebrafish during heat gradient navigation17. When the

selected behavior was “stay” the virtual fish stayed

in place for one update cycle. For all other choices

displacements were drawn at random in mm according

to:

d ∼ Γ(2.63, 7.25)/9 (1)

Turn angles (heading changes) for the three swim types

were drawn at random in degrees according to:

∆aStraight ∼ N (0, 2) (2)

∆aLeft ∼ N (−30, 5) (3)

∆aRight ∼ N (30, 5) (4)

Each behavior was implemented such that each swim

lasted 200 ms (20 timesteps). The heading change was

implemented within the first frame while the displace-

ment was evenly divided over all frames. This differs

from true zebrafish behavior, where heading changes

precede displacements as well but where both occur with

distinct acceleration and deceleration phases.

The goal of these choices was to approximate larval

zebrafish behavior rather than faithfully capture all dif-

ferent swim types.

C. elegans C. elegans behavioral parameters were

based on freely crawling worms navigating temperature

gradients22. When the selected behavior was “continue”

or while no behavior was selected, the virtual worm was

crawling on a straight line with heading jitter. The per-

timestep displacement was drawn in mm according to:

d ∼ N (16, 5.3)/(60 ∗ 100) (5)

The per timestep heading jitter (random walk in heading

direction space) was drawn in degrees according to:

∆ajitter ∼ N (0, 10−3) (6)

The other behaviors, pirouettes, sharp turns and shal-

low left or right turns were implemented as heading an-

gle changes together with displacement drawn from the

distribution above enacted over a total time of 1s. The

heading angle changes were drawn in degrees at random

as follows:

∆aPirouette ∼ N (180, 10) (7)

∆aSharpturn ∼ N (±45, 5) (8)

∆aLeft ∼ N (−10, 1) (9)

∆aRight ∼ N (10, 1) (10)

Again, the goal of these choices was to approximate C.

elegans movement statistics during heat gradient navi-

gation rather than faithfully recapitulating the full be-

havioral repertoire.

Artificial neural networks

Structure All networks had the same underlying ar-

chitecture: Each input consisted of a 2D matrix, with

4 s of temperature, speed and delta-heading history at a

simulation frame rate of 100 Hz. The first network oper-

ation was a mean-pooling, binning the inputs to a model

frame rate of 5 Hz, the same frame rate at which larval

zebrafish imaging data during heat stimulation was pre-

viously analyzed. After pooling, the inputs were split

into the temperature, speed and delta-heading compo-

nents and each component was fed into an identically

constructed branch.

The input branches were designed with 40 linear rec-

tifying convolutional layers each, that each learned one

1D filter over the whole 4s of history (20 weights). Con-

volution was performed such that only one output dat-
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apoint per filter (the full dot-product of the filter with

the input) was obtained. These 40 outputs were sub-

sequently passed through two hidden layers with 512

(or 256 or 1024) rectifying linear units. The outputs of

all branches were subsequently concatenated and passed

through another set of three hidden layers with 512 (or

256 or 1024) hidden units each before being fed into a

linear output layer. This output layer consisted either of

4 linear units (for zebrafish networks) or 5 linear units

(for C. elegans networks). The purpose of the output

layer was to compute the temperature (or angle to a

light source) 500 ms after enacting the chosen swim type

in the case of zebrafish networks or 1 minute of straight

continuous movement after enacting the chosen behavior

in the case of C. elegans networks.

Training data generation and network training

For both zebrafish and C. elegans training data was gen-

erated by randomly choosing behavioral modules accord-

ing to the statistics given above without any influence

of temperature on behavioral choices. For training data

generation the virtual animals explored two types of cir-

cular arenas with a radius of 100 mm each: In one arena,

temperature increased linearly from 22 ◦C at the center

to 37 ◦C at the periphery, while in the other arena the

gradient was reversed. Training datasets were gener-

ated from the random walks through these arenas by

simulating forward from each timestep for each possi-

ble behavioral choice. This way the true temperatures

resulting from each behavioral choice were obtained to-

gether with the experienced temperature and behavioral

history. For the zebrafish phototaxis ANN, the same

strategy was employed but instead of recording temper-

ature history and prediction, the angle to a light-source

in the center of one arena with a radius of 100 mm was

calculated. For each network type a test-data set was

generated in the same manner to be able to evaluate

prediction performance.

Networks were trained using stochastic gradient de-

scent on mini-batches consisting of 32 random samples

each. Notably, training was not successful when ran-

domly mixing training data from both arena types. Ev-

ery training epoch was therefore split into two halves

during each of which only batches from one arena type

training dataset were presented. We used an Adam op-

timizer [learningrate = 10−4, β1 = 0.9, β2 = 0.999, ε =

10−8] during training34, optimizing the squared loss be-

tween the network predicted temperature and the true

temperature in the training dataset. Test batches were

larger consisting of 128 samples each, drawn at random

from both arena types.

Network weights were initialized such that gradient

scales were kept constant across layers according to35 by

being drawn from a uniform distribution on the interval:[
−
√

6

Nin +Nout
,

√
6

Nin +Nout

]
(11)

where Nin is the number of units in the previous and

Nout the number of units in the current layer. For train-

ing regularization, we applied drop-out in all hidden lay-

ers, with a probability of 0.5 as well as weight decay,

penalizing the squared sum of all weights in the network

(α = 10−4). Networks were trained for 10 full epochs.

Navigation The networks were used for heat gradi-

ent (or light) navigation in the following manner: For

trained zebrafish networks each timestep had a proba-

bility of 0.01 of triggering a behavior (baseline movement

frequency of 1 Hz - after evolution this probability de-

pended on the output of p(Move), see below). For C.

elegans networks the probability of triggering a behav-

ior was set to 10−4, resulting in a frequency of 0.1 Hz. If

a timestep was not selected, zebrafish networks stayed

in place while C. elegans networks continued to move as

per the statistics above.

At each behavior evaluation, the preceding 4 s of sen-

sory history as well as speed and delta-heading history

were passed as inputs to the network. The network was

subsequently used to predict the temperatures resulting

from each possible movement choice (or the light angle in

case of the phototaxis network). The goal temperature

was set to be 26 ◦C and behaviors were ranked according

to the absolute deviation of the predicted temperature

from the goal temperature. For zebrafish networks, the
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behavior with the smallest deviation was chosen with a

probability of 0.5, the 2nd ranked with a probability of

0.25 and the last two each with a probability of 0.125.

For C. elegans networks, the highest ranked behavior

was chosen with a probability of 0.5 the second highest

with probability 0.2 and the remaining three behaviors

with probability 0.1 each.

The chosen behavior was subsequently implemented

according to the statistics above. Evaluations only re-

sumed after a behavioral module was completed. When-

ever a behavior would move a virtual animal outside the

circular arena, the behavioral trajectory was reflected at

the boundary.

Evolutionary algorithm to optimize control of

swim frequency A set of 512 weights was used to give

the zebrafish networks control over swim frequency. A

dot-product between the activations a of the last layer of

the temperature branch of the network and these weights

w was transformed by a sigmoid function to yield a swim

frequency between 0.5 Hz and 2 Hz, by computing swim

probabilities between 0.005 and 0.02 according to:

p(Swim) =
0.015

1 + eaw
+ 0.005 (12)

To learn a set of weights w that would optimize gradient

navigation performance an evolutionary algorithm was

used as follows:

1. Initialize 512 weight vectors, w ∼ N (0, 1)

2. For each weight vector run gradient simulation us-

ing it to control p(Swim)

3. Rank weight vectors according to average deviation

from desired temperature

4. Pick 10 networks with lowest error and 6 networks

at random

5. Form 16*16 mating pairs, mating each network with

each other and with itself

6. For each mating pair generate two child vectors by

randomly picking each vector element with proba-

bility 0.5 from either parent

7. Add random noise to each child vector, ε ∼
N (0, 0.1)

8. The 512 created child vectors form the next gener-

ation. Repeat from step 1.

Evolution was performed for 50 generations. The aver-

age across all 512 weight vectors in the final generation

was used to control swim frequency during gradient nav-

igation.

Data analysis

For all thermotaxis network groups (Zebrafish ReLu and

Tanh as well as C. elegans) a total of 20 networks were

initialized and trained and all presented data is an aver-

age across these networks. For the phototaxis network

a total of 14 networks was trained.

White noise analysis For white noise analysis ze-

brafish networks were presented with randomly drawn

temperature stimuli. As during navigation simulations

networks enacted behaviors based on temperature pre-

diction at a frequency controlled by p(Move). The stim-

ulus used for white noise presentation was modeled after

the stimulus used previously in freely swimming larval

zebrafish17, however since there was no water buffering

changes in temperature, the stimulus was switched at

shorter intervals and the probed temperature space was

larger as well. This allowed for fewer samples overall to

result in well-structured filters. Stimulus temperatures

in ◦C were drawn from a Gaussian distribution:

T ∼ N (32, 6.8) (13)

Temperature values were switched at random times with

intervals in ms drawn from a gaussian distribution as

well:

δt ∼ N (50, 10) (14)

As during navigation simulations, the executed behav-

iors were used to derive the behavioral history input to

the network during the simulations. For each network

107 timesteps were simulated and the average temper-
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atures in the 4 s preceding each turn or straight swim

were computed.

Unit response clustering All clustering was per-

formed on the temperature branch of the networks.

To cluster artificial neural network units into response

types, the same temperature stimulus was presented

to the networks that was previously used to analyze

temperature representation in larval zebrafish and the

same clustering approach was subsequently employed as

well10. Specifically, the pairwise correlations between all

unit responses across all networks of a given type were

calculated. Subsequently spectral clustering was per-

formed with the correlation matrix as similarity matrix

asking for 8 clusters as this number already resulted in

some clusters with very weak responses, likely carrying

noise. The cluster means were subsequently used as re-

gressors and cells were assigned to the best-correlated

cluster with a minimal correlation cutoff of 0.6. Cells

that did not correlate with any cluster averages above

threshold were not assigned to any cluster.

For C. elegans ANN units the same stimulus was used

for clustering and temperature ramp responses were dis-

played for these obtained clusters.

To assign units in the mixed branch to clusters in the

analysis of the retraining experiments, the same tem-

perature stimulus was presented to the zebrafish ANN

while speed and delta-heading inputs were clamped at 0.

Correlation to cluster means of the temperature branch,

again with a cut-off of 0.6, was subsequently used to

assign these units to types.

Connectivity Connectivity was analyzed between the

first and second hidden layer of the temperature branch.

Specifically, the average input weight of a clustered type

in the first layer to a clustered type in the second layer

was determined. The average weight as well as standard

deviation across all networks and units was determined.

If the standard deviation of a connection was larger than

the average weight, the weight was set to 0.

Ablations and re-training of neural networks

Network ablations were performed by setting the acti-

vations of ablated units to 0 irrespective of their input.

Retraining was performed using the same training data

used to originally train the networks, and evaluating pre-

dictions using the same test data set. During retraining,

activations of ablated units were kept at 0 and weight

and bias updates of units were restricted to either the

hidden layers in the temperature branch or in the mixed

branch.

To identify unit types in the temperature or mixed

branch after ablation or re-training, correlations to the

corresponding cluster averages were used while present-

ing the same temperature stimulus used for clustering

to the temperature branch and clamping the speed and

delta-heading branch to 0.

Comparison of representations by PCA To com-

pare stimulus representations across all units and net-

works, our standard temperature stimulus was presented

to all networks. Units from all networks and the types

to compare (zebrafish thermal navigation vs. zebrafish

phototaxis or zebrafish vs. C. elegans thermal naviga-

tion) were pooled and principal component analysis was

performed across units. The first four principal com-

ponents captured more than 95 % of the variance in all

cases and were therefore used for comparison by evaluat-

ing the density along these principal components across

network types.

Identification and mapping of zebrafish response

types Since the same temperature stimulus used for

clustering network responses was previously presented

to head embedded larval zebrafish10 the cluster average

responses were used as regressors to probe the larval ze-

brafish dataset. All neurons with a response correlated

> 0.6 to these regressors was considered part of the re-

sponse type (but we note that even when increasing or

decreasing this threshold no neurons could be identified

that matched the ON-OFF type).

To map these neurons back into the zebrafish brain

we made use of the reference brain mapping generated
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in the imaging study.

Code and data availability

The full source code of this project will be made available

on github and all training data will be deposited upon

final acceptance of the manuscript.
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Supplemental Figures

Figure S1: Network mechanics and evolution
a) Schematic representation of how network predictions are transformed into behavioral selections during navigation.
b-d) Example of p(Swim) weight evolution process on one network.
b) Navigation error as average deviation from the desired temperature across all weight vectors in each generation. Error bars indicate
standard deviation, generation 7 highlighted in grey and generation 49 in blue.
c) Heatmap of all weight vectors in the indicated generations. Note the progressive increase in similarity.
d) Pairwise correlations between all weight vectors in the indicated generations. Note the convergence on one solution during the
evolutionary process.
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Figure S2: Characterization of zebrafish heat gradient navigation network
a) Stimulus triggered averages for straight swims (orange) and turns (blue) when presenting white noise temperature stimuli to naive
networks. Dashed vertical line indicates time of swim.
b) Stimulus triggered averages for straight swims (orange) and turns (blue) when presenting white noise temperature stimuli to fully
trained and evolved networks. Dashed vertical line indicates time of swim.
c) Stimulus triggered averages summed across all behaviors when training the models on training data with a baseline movement
frequency of 0.5 Hz (blue), 1 Hz (orange) or 2 Hz (green).
d) Average responses of all clusters to the heat stimulus depicted on top. Left two panels depict the four ON types present in the
network, right two panels the four OFF types. Note that the brown ON type in the bottom left panel hardly response to the stimulus.
e) Fraction of units contained in each cluster as well as fraction of units not belonging to any cluster (NC).
f) The ON-OFF cell type present in the network, (teal) was used as a regressor (top panel) to identify the most closely matched
cell types in zebrafish data (bottom panel, shading indicates bootstrap standard error across 1707 zebrafish neurons). Note that the
identified zebrafish neurons do match network responses and in particular lack the OFF response present in the ON-OFF network type.
Shading and error bars in all panels indicate bootstrap standard error across 20 networks.
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Figure S3: Influence of network activation function on temperature representation
a) Top: Illustration of the ReLu activation function used in the networks of this paper except this figure. This activation function
suppresses negative activations, similar to real neurons which cannot have negative firing rates. Bottom: Illustration of the Tanh
activation function used for comparison, which is symmetric around 0, reporting both positive and negative responses.
b) Log of the squared error in predictions on test data after the indicated number of training steps (dashed vertical lines demarcate
training epochs) for the zebrafish heat navigation network with ReLu units (grey, replotted from Figure 1) and the same network with
Tanh units.
c) Occupancy in a radial heat gradient of naive Tanh (black), trained Tanh (orange) and trained Relu (grey, replotted from Figure 1)
networks. Dashed vertical line at 26 ◦C indicates desired temperature.
d) Average responses of all clusters in Tanh network to the heat stimulus depicted on top. Left two panels depict the four ON types
present in the network, right two panels the four OFF types. Note that the OFF types in this case are just mirror-symmetric to the
ON types.
e) Fraction of units contained in each cluster as well as fraction of units not belonging to any cluster (NC). Error bars indicate bootstrap
standard error across 20 networks. Note that the corresponding, mirror-symmetric OFF types are just as prevalent as their cognate
ON types.
f) Cumulative explained variance by principal components across all network units in 20 independently trained networks for ReLu units
(grey) and Tanh units (orange). Dashed grey lines indicates 99 % of variance explained which is reached with 4 principal components
in Tanh and 7 in ReLu networks.
Shading and error bars in all panels indicate bootstrap standard error across 20 networks.
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Figure S4: A network emulating zebrafish phototaxis
a) Structure of the convolutional deep network for zebrafish phototaxis. Note that the architecture as exactly the same as in Figure
1d, only the input and prediction variables are angles instead of temperature.
b) Schematic of the task of the phototaxis ANN: The network uses information about a 4s history of the relative angle to a light source
and behavioral history to predict the angular position of the light source after different behavior selections.
c) Log squared error of predictions on test data set during training.
d) Performance when using the phototaxis network to favor behaviors that make a virtual fish face a light source (0 degree angular
position) before (black line) and after training (orange line). Shading indicates bootstrap standard error across 14 networks.
e) Comparison of all unit responses in the temperature branch of the zebrafish heat gradient ANN and the phototaxis ANN in PCA
space when presenting the same time varying stimulus used in Figure 2b to both networks. The first four principal components capture
> 95 % of the variance. Plots show occupational density along each PC for the gradient network (blue) and the phototaxis network
(orange).
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Figure S5: Characterization of C. elegans heat gradient navigation network
a) Average responses of all clusters to the heat stimulus depicted on top. Left two panels depict the three ON types present in the
network, right two panels the five OFF types.
b) Fraction of units contained in each cluster as well as fraction of units not belonging to any cluster (NC). Error bars indicate bootstrap
standard error across 20 networks.
c-j) Comparison of zebrafish and C. elegans thermotaxis network response clusters. Each plot shows the average response of the
indicated zebrafish network cluster (blue) and C. elegans network cluster (orange) with the coefficient of determination depicted on
top. Pairs are ordered by decreasing correlation.
k) Effect of random unit ablations on gradient navigation performance as fraction within 1 ◦C of desired temperature. Shown is
performance for naive, fully trained and for random ablations of the indicated fraction of units in the temperature branch for C. elegans
networks. Error bars indicate bootstrap standard error across 20 networks.
l) Connectivity weights between layer 1 neuron types in the temperature branch (along x-axis) feeding into the indicated types of
layer 2 neurons (panels). Types identified in Figure 4 are indicated by corresponding colored bars and the remaining four clusters are
indicated by thinner gray bars on the right side. Error bars indicate standard deviation.
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