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 2

Abstract 25 

 26 

Sensory information is encoded by populations of cortical neurons. Yet, it is unknown how this 27 

information is used for even simple perceptual choices such as discriminating orientation. To 28 

determine the computation underlying this perceptual choice, we took advantage of the robust 29 

adaptation in the mouse visual system. We find that adaptation increases animals' thresholds 30 

for orientation discrimination. This was unexpected since optimal computations that take 31 

advantage of all available sensory information predict that the shift in tuning and increase in 32 

signal-to-noise ratio in the adapted condition should improve discrimination. Instead, we find 33 

that the effects of adaptation on behavior can be explained by the appropriate reliance of the 34 

perceptual choice circuits on target preferring neurons, but the failure to discount neurons that 35 

prefer the distractor. This suggests that to solve this task the circuit has adopted a suboptimal 36 

strategy that discards important task-related information to implement a feed-forward visual 37 

computation.  38 
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Introduction 39 

 40 

Sensory processing supports the transformation of signals from the outside world into a neural 41 

code represented by the spiking activity of cortical neurons (Hubel and Wiesel, 1959; Dubner 42 

and Zeki, 1971; Desimone et al., 1984). Decades of causal and correlative studies suggest that 43 

these representations are the basis for perceptual choice (Salzman et al., 1990; Schiller, 1993; 44 

Britten et al., 1996; Hung et al., 2005). However, it is still not understood how these sensory 45 

representations are actually combined, and what information is used, to compute a perceptual 46 

choice.  47 

 48 

Here we focus on understanding how decision-making circuits compute perceptual choices 49 

about the orientation of a visual stimulus. This is a quintessential computation that relies on the 50 

representations encoded in the primary visual cortex (V1) (Glickfeld et al., 2013; Petruno et al., 51 

2013; Poort et al., 2015; Resulaj et al., 2018). Perhaps the most well-established model for how 52 

such a choice is made requires that it is implemented by a neural circuit capable of monitoring 53 

the entirety of a heterogeneously tuned cortical population to estimate absolute stimulus values 54 

(Georgopoulos et al., 1986; Pouget et al., 2003; Jazayeri and Movshon, 2006; Ma et al., 2006; 55 

Graf et al., 2011). This orientation identification strategy is attractive in that, once it is learned, 56 

the same computation can be used to generalize across multiple tasks (i.e. detection and 57 

discrimination). However, this computation likely requires complex circuits (with knowledge of 58 

the full tuning curve of each neuron) and learning rules to act upon the combined output of a 59 

diversely tuned population (Deneve et al., 1999).  60 

 61 

Instead, when faced with perceptual choices, human and animal subjects often implement task-62 

specific strategies that require less complex circuits and learning rules (Zhang et al., 2010; 63 

Fulvio et al., 2014; Yu et al., 2017; Djurdjevic et al., 2018). Such a task-specific computation 64 
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might directly evaluate the identity or level of activity within distinct neuronal ensembles, 65 

agnostic to the tuning of neurons in those ensembles, as in a linear classifier. By removing the 66 

need for an absolute stimulus estimate, the circuits that compute perceptual choice may operate 67 

faster and be more amenable to simple cellular associative learning rules. 68 

 69 

Our goal is to understand how these computational approaches are realized by biological 70 

circuits, and how sensory information is integrated by these circuits to make perceptual 71 

decisions. Stimulus-specific adaptation is a useful tool for evaluating how sensory information is 72 

used to guide perceptual choice since it has predictable effects on neuronal activity and sensory 73 

encoding (Müller et al., 1999; Dragoi et al., 2000). By sparsifying and increasing the signal-to-74 

noise of neuronal population responses, stimulus-specific adaptation is expected to increase the 75 

information about the presented orientation (Ulanovsky et al., 2003; Wark et al., 2007). In 76 

addition, if the stimulus orientation is estimated, adaptation to the distractor is also expected to 77 

improve orientation discrimination thresholds by decreasing the contribution of the distractor-78 

preferring neurons (Müller et al., 1999; Dragoi et al., 2000; Kohn and Movshon, 2004; Stocker 79 

and Simoncelli, 2006). Indeed, common perceptual illusions such as the tilt after-effect and the 80 

waterfall illusion are consistent with such repulsive effects of adaptation on tuned populations 81 

(Levinson and Sekuler, 1976; Clifford, 2002; Zavitz et al., 2016). While most effects of 82 

adaptation indicate that it will improve discrimination thresholds (Kohn, 2007), there are also 83 

examples of adaptation impairing discrimination (Regan and Beverley, 1985; Ollerenshaw et al., 84 

2014). This could be due to differences in the effects of adaptation on task-related information 85 

encoded in the cortex, or how that information is used by downstream circuits to enable 86 

behavior.          87 

 88 

We find that adaptation in mouse visual cortex increases orientation discrimination thresholds. 89 

This is surprising since the effects of adaptation that we observe on visually responsive neurons 90 
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increase the information about orientation in V1. This inconsistency between behavioral and 91 

neural results suggests that the animal fails to make use of the extra information present in the 92 

adapted population response. Indeed, both a neural decoder fit to the behavioral data and 93 

additional psychophysical experiments suggest that the animal is relying primarily on neurons 94 

that are tuned to the target stimuli. Thus, in this behavior, the underlying perceptual choice 95 

circuit does not utilize either a robust identification of stimulus orientation or an optimal task-96 

specific computation. The utilization of only the minimal necessary information, despite costs to 97 

performance, may be the result of a prioritization of rapid processing and simple learning rules.    98 

 99 

Results 100 

 101 

Adaptation has prolonged effects on the amplitude and selectivity of visual responses  102 

 103 

In order to understand how adaptation impacts sensory encoding, and therefore influences 104 

performance on an orientation discrimination task, we first sought to characterize the time 105 

course of adaptation in the mouse primary visual cortex (V1). Using video-rate two-photon 106 

imaging, we measured visually-evoked responses in layer 2/3 of V1 in alert mice transgenically 107 

expressing the calcium indicator GCaMP6 (see Methods). Mice passively viewed pairs of brief, 108 

identical static gratings (100 ms) presented at a range of inter-stimulus-intervals (ISIs: 0.25–4 s; 109 

Figure 1a). At short intervals, neurons in V1 have significantly reduced responses to the second 110 

stimulus and gradually recover (tau=592 ms) with increasing ISI (n=245 cells, 5 mice; one-way 111 

anova (p<10-17) with post-hoc Tukey HSD compared to non-adapted responses (250 ms: p<10-7; 112 

500 ms: p<10-7; 1 s: p<0.0001; 2 s: p=1.0; 4 s: p=0.96); Figure 1b-c). We do not think that this 113 

strong adaptation is an artifact of either indicator or spike rate saturation because there was no 114 

relationship between response amplitude and degree of adaptation either within (normalized 115 

dF/F after 250 ms ISI for preferred versus neighboring orientation: p=0.37; Wilcoxon rank sum 116 
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test; Figure 1d) or across cells (linear regression: r2=0.003, p=0.42; Figure 1e). Further, the 117 

degree of adaptation measured with extracellular single unit recording was similar to, though 118 

significantly stronger than, data collected with calcium imaging (two-way anova: main effect of 119 

recording method: p<0.001; Figure 1f-h). Thus, the effects of adaptation are strong and 120 

relatively long-lasting compared to the duration of the stimulus.  121 

 122 

A large component of cortical adaptation is stimulus-specific, and can thus have diverse effects 123 

that depend on the difference between a neuron’s preferred orientation and the adapter (Müller 124 

et al., 1999; Dragoi et al., 2000; Stroud et al., 2012; Patterson et al., 2013). To determine how 125 

adaptation alters orientation tuning in mouse V1, and predict how these effects might impact 126 

discrimination, we measured the orientation tuning of a population of layer 2/3 neurons with and 127 

without adaptation to a vertical grating (Figure 2a-c). Adaptation significantly reduces 128 

responses to stimuli near the adapter orientation (difference in normalized dF/F: two-way anova, 129 

main effect of orientation – p<10-6; n=241 cells, 12 mice; Figure 2d), and this effect is larger and 130 

affects a broader range of stimuli when the ISI is short (two-way anova, main effect of interval – 131 

p<0.0001; Figure 2d). Moreover, the peak responses of neurons with preferred orientations 132 

near the adapter are significantly reduced (normalized peak amplitude: two-way anova, main 133 

effect of orientation – p<10-5; main effect of interval – p<0.05; Figure 2e) and their tuning curves 134 

repelled away from the adapter (change in preferred orientation: two-way anova, main effect of 135 

orientation – p<10-24; main effect of interval – p<0.01; Figure 2f). In addition, neurons with 136 

preferred orientations orthogonal to the adapter have a significant increase in orientation 137 

selectivity index (OSI; difference from control OSI: two-way anova, main effect of orientation – 138 

p<0.01; main effect of interval – p<0.01; Figure 2g), likely due to selective adaptation of 139 

responses on the flanks of their tuning curves (Dragoi et al., 2002). Thus, adaptation alters the 140 

amplitude, preference and selectivity of neuronal responses in V1 in a manner very similar to 141 
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what has been previously observed in carnivores and primates (Müller et al., 1999; Dragoi et al., 142 

2000; Patterson et al., 2013).  143 

 144 

Orientation identification models predict that adaptation improves discrimination  145 

 146 

Theoretical investigations using optimal decoding strategies to estimate stimulus orientation 147 

predict that adaptation to distractor stimuli should improve discrimination (Clifford et al., 2001; 148 

Stocker and Simoncelli, 2006; Zavitz et al., 2016). This is because many of these strategies 149 

work by considering the activity of each neuron as some number of votes in favor of the 150 

proposition that the presented stimulus was actually the preferred stimulus of that 151 

neuron. Adaptation thus causes a reduction in the number of votes for stimulus values near the 152 

adapting stimulus resulting in a stimulus estimate that is biased away from the adapting 153 

stimulus. More generally, biases away from the adapting stimulus can result from unbalanced 154 

changes in the signal-to-noise ratio (SNR) of the population response in which SNR increases 155 

for stimulus values near to the adapting stimulus relative to those stimulus values that are 156 

further away (Stocker and Simoncelli, 2006). The effect of the bias in stimulus estimate would 157 

be to increase both hits (correct identification of targets) and false alarms (identification of 158 

distractors as targets) by repelling the stimulus value away from the distractor. In contrast, the 159 

effect of the decrease in variance is associated with an increase in hits and a decrease in false 160 

alarms, by increasing the reliability of estimates close to the adapting stimulus. 161 

 162 

To test these hypotheses, we applied the neural data collected from the mouse visual cortex to 163 

an optimal decoder of orientation. Specifically, for each dataset, we identified 10-15 well-tuned 164 

neurons and used their activity to empirically construct a probabilistic decoder of neural activity. 165 

The decoder assumes only that the posterior distribution across orientations given neural 166 

responses is von Mises (i.e. tuned to orientation) and that neural activity is linearly related to the 167 
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log of this posterior (Ma et al., 2006). Thus, we extracted the maximum of the posterior 168 

probability distribution to reliably estimate the orientation of the stimulus presented on individual 169 

trials across all adaptation conditions (Figure 3b). While adaptation did not significantly alter the 170 

bias in estimated orientation, shorter ISIs significantly decreased the variability of the estimate 171 

(250 ms vs. 750 ms: p<10-5; F-test; Figure 3b) consistent with the expectation that adaptation 172 

improves the SNR in this class of models (Clifford et al., 2001; Stocker and Simoncelli, 2006; 173 

Zavitz et al., 2016). 174 

 175 

In order to test the effects of adaptation on discrimination, instead of just stimulus estimation, we 176 

generated neurometric functions measuring the discriminability of the target and distractor 177 

stimuli. We compared the distributions of single trial estimates of stimulus orientation for each 178 

target stimulus to the distribution of estimates in response to the distractor stimulus (in the 179 

adapted condition to mimic the state of the distractor in our task). We summarized the average 180 

neurometric function as the area under the Receiver Operating Characteristic curve (auROC) 181 

statistic. In our data, the major effect of adaptation is to decrease the variance of the estimated 182 

orientation. Consistent with this, the auROC increased in the presence of adaptation for small 183 

orientation changes (250 ms vs. 750 ms: 22.5°: p<0.001; n=10 mice; paired t-test; Figure 3c) 184 

and was not significantly different for distractor stimuli (0°: p=0.14).  185 

 186 

Similarly, alternative optimal estimators that use the posterior probability distribution as the 187 

decision variable (auROC- 22.5°: p<0.0001; 0°: p=0.08 paired t-test; Figure 3d) or that assume 188 

independent Poisson statistics (auROC- 22.5°: p<0.05; 0°: p=0.19; paired t-test; Figure 3e) 189 

predict an improvement in discrimination of small orientation differences. We also tried a 190 

suboptimal orientation estimator using a population vector, and again found that adaptation 191 

decreases discrimination threshold (auROC- 22.5°: p<0.01; 0°: p=0.71; paired t-test; Figure 3f). 192 
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Thus, all variants of population-based orientation identification that we tested predict that 193 

adaptation will decrease thresholds on a discrimination task.  194 

 195 

Adaptation increases orientation discrimination thresholds 196 

 197 

To determine whether adaptation in fact improves orientation discrimination, we designed a task 198 

in which the mouse needs to use information about the orientation of visual stimuli to earn 199 

reward. In this task, head-restrained mice are trained to press a lever to initiate a trial and 200 

release it to report a target orientation (Figure 4a and Supplementary Movie 1). On each trial, 201 

the lever press triggers the serial presentation of 2-9 gratings of the same orientation 202 

(“distractors”; 100 ms duration; mice were trained with either a 0° (n=9) or 45° (n=2) distractor) 203 

in which each presentation is separated by a randomly selected ISI (250, 500, or 750 ms) that 204 

prevents the mouse from anticipating the upcoming interval. The number of distractor stimuli on 205 

each trial is also variable to prevent the mouse from anticipating the target presentation (range 206 

of differences from the distractor: 9-90°). If the mouse releases the lever within a window 200-207 

550 ms following the onset of the target stimulus, it is considered a hit; if the mouse releases the 208 

lever within the same window following a distractor stimulus, it is considered a false alarm (FA). 209 

Thus, this task allows us to compare the discrimination threshold and FA rate for stimuli 210 

following different ISIs, and therefore in different adaptation states.  211 

 212 

We find that the discrimination threshold is increased when the ISI is short (one-way anova with 213 

post-hoc Tukey HSD compared to 250 ms: 500 ms: p=0.21; 750 ms: p=0.002; n=11 mice; 214 

Figure 4b-c). Although discrimination threshold decreases with trial length (p<10-3, one-way 215 

anova; Figure 4 – figure supplement 1a), and trials with a short pre-target ISI are, by definition, 216 

shorter than those with long ISIs (p<10-13, one-way anova; Figure 4 – figure supplement 1c), 217 
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the ISI-dependent changes in threshold remain intact after matching the trial length across ISIs 218 

(two-way anova, main effect of method- all versus matched trials: p=0.18, Figure 4 – figure 219 

supplement 1d). This suggests that the effects of trial length and ISI on discrimination 220 

threshold are independent from each other. Indeed, the effect of ISI on discrimination threshold 221 

is also the same for both short and long trials (two-way anova- main effect of trial length: 222 

p=0.36; Figure 4 – figure supplement 1e). Importantly, we found that arousal state is stable 223 

across ISIs because there is 1) no significant difference in lapse rate across ISIs (250 ms: 224 

0.05±0.01; 500 ms: 0.05±0.01; 750 ms: 0.05±0.01; p=0.97; one-way anova; n=11 mice); and 2) 225 

no difference in pupil size preceding correctly detected or missed targets (p=0.87, paired t-test; 226 

n=3 mice; Figure 4 – figure supplement 2a-c) or across ISIs (p=0.96, one-way anova; n=3 227 

mice; Figure 4 – figure supplement 2d-f). We also considered the possibility that the 228 

uncertainty in the timing of stimulus appearance might be influencing the animals’ behavior, for 229 

instance by generating surprise at the appearance of stimulus earlier or later than expected. 230 

However, we found animals also have a lower threshold for longer intervals when ISIs were 231 

interleaved on a trial-by-trial rather than presentation-by-presentation basis (500 ms vs 250 ms: 232 

p=0.01, paired t-test; n=3 mice). Thus, adaptation state has an acute effect on discrimination 233 

threshold.  234 

 235 

We also find a decrease in FA rate with adaptation (one-way anova with post-hoc Tukey HSD 236 

compared to 250 ms: 500 ms: p=0.22; 750 ms: p<10-8; Figure 4d and Figure 4 – figure 237 

supplement 1b-d,f). One interpretation of the observed increase in FA rate following longer 238 

intervals is that there is an increase in impatient responses during the extended ISI. If true, this 239 

would lead to an increase in release probability shortly after the stimulus on long intervals. 240 

However, inspection of the distribution of reaction times reveals the opposite effect: the 241 

distribution of releases to distractor stimuli following short intervals had shorter latencies than 242 

those following longer intervals (one-way anova with post-hoc Tukey HSD compared to 250 ms: 243 
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mean reaction time: 500 ms: p<10-6; 750 ms: p<10-8; n=11 mice, example mouse in Figure 4e). 244 

The distributions of reaction times are consistent with there being two classes of FAs: 1) 245 

releases following distractor stimuli in which the mouse guessed that it was a target; and 2) 246 

“spontaneous” releases due to non-sensory factors (i.e. impatience). The platykurtic distribution 247 

of reaction times in the 250 ms ISI condition is a hallmark of this latter, non-sensory behavior 248 

(Tiefenau et al., 2006). In contrast, the comparatively leptokurtic distribution following the longer 249 

intervals suggests that the majority of these are stimulus-driven releases (one-way anova with 250 

post-hoc Tukey HSD compared to 250 ms: 500ms: p=0.76; 750ms: p=0.002; 22.5° target: p<10-251 

6; Figure 4g). In fact, the distribution of responses following the 750 ms ISI closely resembled 252 

the reaction time distribution when a 22.5° target stimulus was presented (one-way anova with 253 

post-hoc Tukey HSD of 750 ms ISI distractor compared to 22.5° target: p=0.07; Figure 4f-g). 254 

Notably, ISI had no effect on the distribution of responses to 22.5° targets (kurtosis- 250 ms: 255 

3.8±0.3; 500 ms: 4.1±0.4; 750 ms: 3.5±0.5; p=0.62, one-way anova), suggesting that the 256 

majority of these responses are stimulus driven in all conditions. Thus, adaptation reduces the 257 

FA rate by decreasing the likelihood of a stimulus-driven response to a distractor. 258 

 259 

In this task, adaptation decreases both hit and FA rate. Such concomitant changes in hit and FA 260 

rate are often associated with changes in bias (c) as measured using signal detection theory 261 

(Green and Swets, 1966). Indeed, adaptation does significantly increase c (22.5° target- 250 262 

ms: 1.28±0.06; 500 ms: 1.08±0.05; 750 ms: 0.75±0.06; p<10-5; one-way anova; n=11 mice). 263 

However, this is due to a reduction in the amplitude of both targets and distractors (Figure 2) 264 

thereby shifting the optimal criterion, and resulting in an increase in measured bias (Witt et al., 265 

2015). This supports the argument that adaptation increases discrimination thresholds through 266 

its effect on sensory processing in the visual cortex.   267 

 268 
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To determine whether the activity in visual cortical circuits is necessary for the behavioral effects 269 

of adaptation on discrimination, we used an optogenetic approach to transiently suppress 270 

activity in V1 on randomly interleaved trials (Figure 5a-c; see Methods). The light power was 271 

titrated to decrease hit rates for small orientation differences (22.5°- p<0.05, paired t-test, n=4 272 

mice) without affecting performance on easy trials (90°- p=0.54, paired t-test). Suppression of 273 

V1 increased the discrimination threshold for all ISIs (two-way anova, main effect of V1 274 

inhibition - p<10-8; main effect of interval – p<10-6; Figure 5d) and significantly reduced the 275 

dependence of threshold on ISI (two-way anova, main effect of V1 inhibition – p<0.01; Figure 276 

5e). Suppression of V1 also reduced the FA rate (two-way anova, main effect of V1 inhibition - 277 

p<10-5; main effect of interval – p<10-7; Figure 5f) and its dependence on ISI (two-way anova, 278 

main effect of V1 inhibition – p<0.01; Figure 5g). Importantly, there was no effect of either V1 279 

inhibition or ISI on lapse rate (control- 250 ms: 0.15±0.05; 500 ms: 0.12±0.05; 750 ms: 280 

0.16±0.04; V1 inhibition- 250 ms: 0.16±0.04; 500 ms: 0.16±0.04; 750 ms: 0.14±0.04; main effect 281 

of V1 inhibition: p=0.80; main effect of ISI: p=0.83; two-way anova). This suggests that circuits 282 

in V1 are involved in orientation discrimination (Glickfeld et al., 2013), and that adaptation state 283 

in these circuits impacts task performance.        284 

 285 

Behavioral evidence for a task-specific circuit that preferentially weights target-preferring 286 

neurons 287 

 288 

The effects of adaptation on neuronal activity and behavior are at odds with each other. The 289 

neuronal data suggests that there is increased information about the stimulus orientation under 290 

adaptation, but the mouse clearly fails to take advantage of this information in the task. 291 

However, perception is constrained not only by the information available, but also by the 292 

computation adopted for decoding that information. Thus, our goal is to infer the perceptual 293 
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choice circuit used to perform this task by identifying a computation that is consistent with the 294 

effects of adaptation on behavior: namely an increase in threshold and a decrease in FA rate.  295 

 296 

Our previous analysis suggests that the behavior is not consistent with any of the tested 297 

computations that estimate stimulus orientation (Figure 3). However, there are multiple 298 

alternate solutions that the mouse could have adopted to solve this discrimination task. One 299 

such generalist strategy might be to compare each stimulus to the one that preceded it and 300 

declare whether it is the same or different (a change detection). To test whether the mouse 301 

adopts this general strategy, we perturbed the task parameters. We tested animals trained on 302 

the task in Figure 4 on a new task where the distractor orientation could either be the trained 303 

orientation (0º) or rotated 15º or -15º from the trained orientation (randomly interleaved on a 304 

trial-by-trial basis), with the set of target orientations rotated 9-90° counter-clockwise relative to 305 

the distractor orientation (Figure 6a). If the mouse adopts the generalist change detection 306 

strategy, the psychometric curves for the three distractor conditions should be the same. This is 307 

because task difficulty depends only on the difference between the target and distractor 308 

orientations, not on the absolute distractor orientation (Figure 6b). However, we found that all 309 

six mice had lower discrimination thresholds in the 15º condition (rotated towards learned 310 

targets) when compared to the 0º condition, which in turn had lower discrimination thresholds 311 

than in the -15º condition (rotated away from learned targets; one-way anova, p<10-4, n=6 mice; 312 

Figure 6d-e). The effects on FA rates were not symmetric: all six mice had higher FA rates in 313 

the 15º condition when compared to the 0º condition (one-way anova with post-hoc Tukey HSD 314 

compared to 0º, p<0.05, n=6 mice; Figure 6e), but no difference in FA rate between the 0º and -315 

15º conditions (one-way anova with post-hoc Tukey HSD -15º compared to 0º, p=0.97). This 316 

clearly indicates that the mouse is not performing a generic change detection task.  317 

Instead, the result is more consistent with a task-specific strategy where the mouse has 318 

learned that 0º gratings are distractors while all stimuli with positive orientation are targets. This 319 
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can be accomplished by a perceptual choice circuit that more strongly weights neurons with 320 

preferred orientation close to 90º (Figure 6c).   321 

 322 

The effects of adaptation are consistent with a perceptual choice circuit that ignores 323 

distractor preferring neurons 324 

 325 

The mouse’s behavior suggests that it is using a task-specific strategy that does not require 326 

orientation identification to perform this task. Thus, we hypothesized that the perceptual choice 327 

circuit might be taking advantage of a linear combination of neuronal activity that directly 328 

separates targets from distractors. To predict how the circuit might be combining the population 329 

activity to accomplish this task-specific computation, we used a linear combination of neuronal 330 

activity (from the same subpopulations of 10-15 well-fit neurons from each data set used in 331 

Figure 3) to fit the average behavioral data in Figure 4 (Figure 7 – figure supplement 1a). 332 

Consistent with the behavioral result in Figure 6, the weights found from this fit were not equal 333 

across the population, with neurons preferring target orientations tending to have positive 334 

weights (orientation preference greater than 11.25° from the distractor: p<0.001; Student’s t-test 335 

Figure 7a). However, the weights assigned to neurons preferring stimuli closer to the distractor 336 

orientation were not significantly different from zero (orientation preference within 11.25° of the 337 

distractor: p=0.3). This was surprising since an optimal classifier should both positively weight 338 

the target orientations (to increase the probability of identifying a target stimulus) and negatively 339 

weight the distractor orientation (to decrease the probability of mistaking it for a target).  340 

 341 

To test this hypothesis, we generated an optimal task-specific decoder by training a logistic 342 

regression in the control condition to correctly discriminate distractor and target stimuli and then 343 

tested in the two adaptation conditions. Indeed, the weights found by the logistic regression 344 

were also not equally distributed across the population. As expected, neurons preferring target 345 
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orientations tended to have positive weights (p<10-5; Student’s t-test; Figure 7b), while neurons 346 

preferring stimuli closer to the distractor orientation tended to have negative weights (p<0.05). 347 

However, the logistic regression also failed to correctly predict the direction of the behavioral 348 

effects (auROC- 22.5°: p=0.06; 0°: p=0.23; Figure 7 – figure supplement 1b). The same was 349 

true when we trained the decoder on all adaptation states.  350 

 351 

This suggests that the behavior may be generated by properly, or at least positively, weighting 352 

the target neurons while largely ignoring the neurons that are tuned to the distractor. To test 353 

whether this positive weighting of the target responsive neurons is sufficient to explain the 354 

direction of the effects of adaptation on behavior, we set the weights of each neuron to one, 355 

zero or negative one according to its orientation preference. Indeed, if we generated a 356 

suboptimal weighting of inputs, where those neurons with preferences less than 30° were set to 357 

zero, while those above 30° were set to one, the decoder reliably predicted an increase in 358 

discrimination threshold and a decrease in FA rate with adaptation (auROC for 250 vs 750 ms: 359 

22.5°: p<0.01; 0°: p<0.05; paired t-test; Figure 7c). The effect is not significant, though trends in 360 

the same direction, if the threshold for positive weights is set at 60° (22.5°: p=0.15; 0°: p=0.25; 361 

paired t-test). However, any addition of negative weights to distractor preferring neurons 362 

inverted the relationship between adaptation states such that increasing adaptation predicted a 363 

decrease in threshold and no change in false alarm rate (<15°: auROC- 22.5°: p<0.01; 0°: 364 

p=0.25; <30°: auROC- 22.5°: p<0.05; 0°: p=0.19; paired t-test; Figure 7c). Thus, the observed 365 

effects of adaptation on orientation discrimination are consistent with a suboptimal computation 366 

in which the downstream perceptual choice circuit performs an all-positive integration of the 367 

population activity (Figure 7d). 368 

 369 

Discussion 370 

 371 
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In order to determine how decision-making circuits use information from orientation tuned 372 

neuronal populations, we trained the mice to perform a multi-interval, go/no-go orientation 373 

discrimination task. We find that adaptation impairs the animal’s ability to discriminate target 374 

orientations both in terms of threshold and fraction of rewarded trials (22.5° target, accounting 375 

for difference in false alarm rate: 250 ms- 24% trials rewarded; 750 ms: 34.7% trials rewarded). 376 

These behavioral data are consistent with a suboptimal computation in which the perceptual 377 

choice circuit relies on neurons that prefer target stimuli but fails to appropriately negatively 378 

weight neurons that prefer the distractor. This suggests that the brain is not always optimal, and 379 

may instead be more opportunistic in its approach for solving perceptual tasks. 380 

 381 

In this study we use the term optimal to describe the computation purely from the perspective of 382 

the best possible use of the information present in the network that can be extracted linearly. 383 

Indeed, the optimal computation (using the neuronal weights from the logistic regression) does 384 

significantly better on our discrimination task than the suboptimal computation (using the 385 

neuronal weights from the behavioral fit) that discards the activity of distractor-preferring 386 

neurons (percent correct- optimal: 97%; suboptimal: 90%; p<10-6). Thus, the finding that the 387 

brain favors a suboptimal computation to discriminate orientation may tell us something about 388 

the constraints of the circuit. All of the optimal computations that we considered, including 389 

orientation estimation and the task-specific logistic regression, require the negative weighting of 390 

specific populations. Such a negative weighting cannot be achieved mono-synaptically and 391 

requires a neuron-specific recruitment of inhibition and so may be more difficult to learn (Figure 392 

7d).  393 

 394 

On the other hand, the computation suggested by our neural fit to the behavioral data relies only 395 

on an excitatory, feed-forward circuit. The perceptual choice circuit may learn though 396 

experience to rely on the activity of neurons which increase their activity in response to targets. 397 
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This computation is amenable to a simple associative learning rule (Law and Gold, 2009; 398 

Znamenskiy and Zador, 2013; Xiong et al., 2015). For instance, the positive weighting of target 399 

neurons might be achieved through Hebbian long-term synaptic potentiation, while the lack of 400 

weight on the distractor neurons might be achieved through long-term depression. This 401 

proposed circuit could be directly tested by new tools that allow for the specific activation of 402 

functional subsets of neurons in behaving animals (Mardinly et al., 2018). 403 

 404 

The demonstration that the mice are using a suboptimal computation is surprising, though there 405 

is certainly precedence for this (Beck et al., 2012; Ho et al., 2012; Oh et al., 2016). It is possible 406 

that the strategy used to train the mice to perform this task, or the specific task parameters 407 

used, supported the development of this suboptimal computation. For instance, the optimal 408 

circuit imposes at least one synaptic delay and requires additional integration time in the 409 

recurrent network. The suboptimal computation may thus support the fast decision-making 410 

needed in the discrimination task. This may be a general approach for fast decision-making: 411 

there is evidence that the human cortex uses suboptimal computations that ignore distractors or 412 

weakly informative features, especially under time constraint (Ho et al., 2012; Oh et al., 2016).  413 

 414 

Notably there are multiple computations, general and task-specific, that can be used to 415 

successfully solve our discrimination task. The effects of adaptation (Figure 4) and subtle 416 

changes in distractor orientation on the animals’ performance (Figure 6) are consistent with the 417 

mice having adopted task-specific strategies for both target identification and discrimination. 418 

The finding that the mice use task-specific strategies is not surprising. Evidence from human 419 

behavioral experiments suggest that participants are likely to adopt task-specific strategies 420 

when they are trained on a small number of conditions (Fulvio et al., 2014) and experience large 421 

numbers of trials (Ramachandran and Braddick, 1973; Ball and Sekuler, 1982; Zhang et al., 422 

2010).  423 
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 424 

While the task-specific, suboptimal perceptual choice circuit is viable, it leaves the animal 425 

vulnerable to systematic error. By relying on the absolute firing rate of a subset of neurons, 426 

anything that increases firing rates can be mistaken for a target. We think that this is why the 427 

mice have a high FA rate following long intervals: the recovery from adaptation with long 428 

intervals results in larger than expected firing rates, making the animal respond as if a target 429 

had been presented (Figure 4d-g). Indeed, reducing the firing rates in V1 by optogenetic 430 

activation of inhibitory neurons results in a decrease in hit and FA rates, consistent with the 431 

hypothesis that the perceptual choice circuit is summing the total activity in this area (Figure 5f). 432 

Moreover, the disproportional decrease in FA rates (and increase in threshold) with suppression 433 

of V1 is consistent with effects of ISI on behavior acting through effects on sensory coding, and 434 

not through more cognitive mechanisms like forward masking and attentional blink (Raymond et 435 

al., 1992; Macknik and Livingstone, 1998; Alwis et al., 2016). Notably, these phenomena also 436 

tend to act on much shorter time-scales (tens of milliseconds) than intervals used in this study, 437 

making them unlikely candidates to explain the effects of ISI on behavior. Finally, the lack of 438 

effect of ISI on lapse rate also argues against a cognitive mechanism for the effects of ISI on 439 

behavior. 440 

 441 

The neuronal data that we used to generate the model predictions was collected from naïve 442 

mice that were passively viewing the visual stimuli. This was done to generate full orientation 443 

tuning curves in the adapted and unadapted conditions, as well as to avoid contamination of 444 

non-sensory signals. However, this means that the effects of training or active behavioral 445 

engagement are not included in our model predictions. Since the tuning of visual cortical 446 

neurons can be affected by visual experience (Schoups et al., 2001; Kreile et al., 2011; 447 

Goltstein et al., 2013), it is possible that our task training paradigm (abundance of 0° distractors 448 

and 90° targets, 6 day/week, >3 months) induced a change in the representation of orientation 449 
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in V1 neurons. However, the orientation identification models are designed to account for 450 

skewed distributions, and do an excellent job of predicting the orientation of the stimulus despite 451 

the over-abundance of cardinal orientation preferring neurons (Figure 3b). Thus, we do not 452 

expect that experience-dependent changes in the representation of orientation would 453 

substantially affect orientation identification models’ predictions. On the other hand, the degree 454 

of adaptation is dependent on both the number of adapters preceding the target (Figure 4 - 455 

figure supplement 1g-h) as well as task engagement (Keller et al., 2017), and therefore the 456 

mapping of the neural data onto the behavioral data may not be straightforward. Nonetheless, 457 

we were able to reliably fit the neural data to the behavioral data (Figure 7 – figure 458 

supplement 1a), suggesting that there may in fact be a linear transform of firing rates across 459 

behavioral state. 460 

 461 

Our behavioral, physiological and computational approaches reveal that the circuit adopts a 462 

suboptimal computation to solve an orientation discrimination task. This reveals that models for 463 

decoding sensory signals must be rigorously tested with experiments, and that the perceptual 464 

choice circuit may not always be optimized for the best use of available information. In this case, 465 

while ignoring important information leaves the mouse vulnerable to the effects of adaptation, it 466 

enables both fast associative learning and fast decision making via a simple feedforward circuit.  467 

 468 

Methods 469 

Animals. All animal procedures conformed to standards set forth by the NIH, and were 470 

approved by the IACUC at Duke University. 33 mice (both sexes; 3-24 months old; singly and 471 

group housed (1-4 in a cage) under a regular 12-h light/dark cycle; C57/B6J (Jackson Labs 472 

#000664) was the primary background with up to 50% CBA/CaJ (Jackson Labs #000654)) were 473 

used in this study. Ai93 (tm93.1(tetO-GCaMP6f)Hze, Jackson Labs #024103; n = 4) and Ai94 474 
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(tm94.1(tetO-GCaMP6s)Hze, Jackson Labs #024104; n = 8) were crossed to EMX1-IRES-Cre 475 

(Jackson Labs #005628) and CaMK2a-tTA (Jackson Labs #003010) to enable constitutive 476 

GCaMP6 expression for in vivo imaging experiments. Pvalb-cre (tm1(cre)Arbr, Jackson Labs 477 

#008069; n = 13), VGAT-ChR2-EYFP (Slc32a1-COP4*H134R/EYFP, Jackson Labs #014548; n 478 

= 3) and Emx1-IRES-Cre (tm1(cre)Krj, Jackson Labs # 005628; n = 2) were crossed to C57/B6J 479 

mice for in vivo extracellular electrophysiology (n = 4) and behavior (n = 14) experiments. Gad2-480 

IRES-cre (Gad2tm2(cre)Zjh, Jackson Labs #010802; n = 2) and C57/B6J (n = 1) mice were crossed 481 

to CBA/CaJ for eye-tracking experiments.    482 

 483 

Cranial window implant. Dexamethasone (3.2 mg/kg, s.c.) and Meloxicam (2.5 mg/kg, s.c.) 484 

were administered at least 2 h before surgery. Animals were anesthetized with ketamine (200 485 

mg/kg, i.p.), xylazine (30 mg/kg, i.p.) and isoflurane (1.2-2% in 100% O2). Using aseptic 486 

technique, a headpost was secured using cyanoacrylate glue and C&B Metabond (Parkell), and 487 

a 5 mm craniotomy was made over the left hemisphere (center: 2.8 mm lateral, 0.5 mm anterior 488 

to lambda) allowing implantation of a glass window (an 8-mm coverslip bonded to two 5-mm 489 

coverslips (Warner no. 1) with refractive index-matched adhesive (Norland no. 71)) using 490 

Metabond.  491 

The mice were allowed to recover for one week before habituation to head restraint. 492 

Habituation to head restraint increased in duration from 15 min to >2 h over 1-2 weeks. During 493 

habituation, imaging and electrophysiology sessions, mice were head restrained while allowed 494 

to freely run on a circular disc (InnoWheel, VWR). Wheel revolutions were monitored with a 495 

digital encoder. 496 

 497 

Visual stimulation. Visual stimuli were presented on a 144-Hz LCD monitor (Asus) calibrated 498 

with an i1 Display Pro (X-rite). The monitor was positioned 21 cm from the contralateral eye. 499 

Circular 30° gabor patches containing static sine-wave gratings (0.1 cycles per degree) 500 
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alternated with periods of uniform mean luminance (60 cd/m2). Visual stimuli for imaging, 501 

electrophysiology and behavior experiments were controlled with MWorks (http://mworks-502 

project.org). 503 

 Three visual stimulus protocols were used for imaging experiments: 1) Paired-pulse, 504 

same orientation (Figure 1); 2) Paired pulse, different orientation (Figure 2); and 3) Six-pulse, 505 

random interval, random target (Figure 4 – figure supplement 1g). In protocol 1 (n = 5 mice), 506 

two static, 100 ms sine-wave gratings of the same orientation (0°, 30°, 60°, 90°, 120°, or 150°) 507 

were successively presented with a variable inter-stimulus interval (ISI: 0.25, 0.5, 1, 2, or 4 s) 508 

and an inter-trial interval (ITI) of 4s. Measurement of adaptation was averaged across all 509 

orientations, except in Figure 1d. In protocol 2 (n = 12 mice), a static, 100 ms sine-wave vertical 510 

grating (0°; “adapter”) was followed by a 100 ms grating (“test”) of varying orientation (0°, 22.5°, 511 

45°, 67.5°, 90°, 112.5°, 135°, or 157.5°) after a variable ISI (250 or 750 ms), with an ITI of 8 s.  512 

On 30% of trials, the first stimulus was omitted to measure the non-adapted (control) tuning 513 

curve. In protocol 3 (n = 3 mice), five static, 100 ms vertical sine-wave gratings were 514 

successively presented followed by a 100 ms grating of varying orientation (30° or 90°), with an 515 

ITI of 8 s. ISIs (250, 500 or 750 ms) were selected on a presentation-by-presentation basis.  516 

 For electrophysiology experiments only protocols 1 (n=4 mice) and 3 (n=4 mice) were 517 

used. Stimuli were the same as in the imaging protocols except 1) only one orientation (0°) was 518 

used in protocol 1, and the ITI was 10s; and 2) the targets in protocol 3 were 22.5° and 90°, and 519 

the number of baseline presentations preceding the target was also randomized from 2-9 with 520 

ITI of 4 s. For all stimulus protocols, all orientations and interval conditions were randomly 521 

interleaved. 522 

 523 

Retinotopic mapping. Retinotopic maps generated from either intrinsic autofluorescence or 524 

GCaMP signals. For intrinsic autofluorescence imaging, the brain was illuminated with blue light 525 

(473 nm LED (Thorlabs) or 462 ± 15 nm band filter (Edmund Optics)), and emitted light was 526 
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measured through a green and red filter (500 nm longpass). Images were collected using a 527 

CCD camera (Rolera EMC-2, Qimaging) at 2 Hz through a 5x air immersion objective (0.14 528 

numerical aperture (NA), Mitutoyo), using Micromanager acquisition software (NIH). Stimuli 529 

were presented at 4-6 positions (drifting, sinusoidal gratings at 2 Hz) for 10 s, with 10 s of mean 530 

luminance preceding each trial. Images were analyzed in ImageJ (NIH) to measure changes in 531 

fluorescence (dF/F; with F being the average of all frames) to identify primary visual cortex (V1) 532 

and the higher visual areas. GCaMP imaging followed an identical procedure except light was 533 

collected with a bandpass filter (520 ± 18 nm) and total trial duration was reduced to 10 s. 534 

Vascular landmarks were used to identify targeted sites for imaging, electrophysiology and 535 

optogenetics experiments.   536 

 537 

Viral injection. We targeted V1 in Pvalb-cre mice (n=2) for expression of Channelrhodopsin2 538 

(ChR2). Dexamethasone (3.2 mg/kg, s.c.) was administered at least 2 h before surgery and 539 

animals were anesthetized with isoflurane (1.2-2% in 100% O2). The coverslip was sterilized 540 

with 70% ethanol and the cranial window removed. A glass micropipette was filled with virus 541 

(AAV5.EF1.dFloxed.hChR2.YFP (UPenn CS0384)), mounted on a Hamilton syringe, and 542 

lowered into the brain. 50 nL of virus were injected at 250 and 500 µm below the pia (30 543 

nL/min); the pipette was left in the brain for an additional 10 minutes to allow the virus to infuse 544 

into the tissue. Following injection, a new coverslip was sealed in place, and an optical cannula 545 

(400 µm diameter; Doric Lenses) was attached to the cranial window above the injection site. 546 

Optogenetic behavioral experiments were conducted at least two weeks following injection to 547 

allow for sufficient expression.  548 

 549 

Two-photon calcium imaging. Images were collected with a two-photon microscope controlled 550 

by Scanbox acquisition software (Neurolabware). Excitation light (920 nm) from a Mai Tai eHP 551 

DeepSee laser (Newport) was directed into a modulator (Conoptics) and raster scanned onto 552 
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the brain with a resonant galvanometer (8 kHz, Cambridge Technology) through a 16X (0.8 NA, 553 

Nikon) or 25X (1.05 NA, Nikon) water immersion lens. Average power at the surface of the brain 554 

was 30-50 mW. Frames were collected at 30 Hz (256 lines) for a field of view of ~700 x 400 μm 555 

on a side. Emitted photons were directed through a green filter (510 ± 42 nm band filter 556 

(Semrock)) onto GaAsP photomultipliers (H10770B-40, Hamamatsu). Images were captured at 557 

a plane 207 ± 4 μm below the pia (range 180-250 μm). Frame signals from the scan mirrors 558 

were used to trigger visual stimulus presentation for reliable alignment with collection. 559 

 560 

Eye-tracking. Images were collected at 30 Hz with a Genie Nano CMOS camera (Teledyne 561 

Dalsa) using a 695 nm LP filter (Midopt) controlled by Scanbox acquisition software. IR 562 

illumination (920 nm) was provided from the two-photon laser through the cranial window.  563 

 564 

Extracellular electrophysiology. Electrophysiological signals were acquired with a 32-site 565 

polytrode acute probe (either A4x8-5mm-100-400-177-A32 (4 shanks, 8 site/shank at 100 μm 566 

spacing) or A1x32-Poly2-5mm-50s-177-A32, (1 shank, 32 sites, 25 μm spacing), NeuroNexus) 567 

through an A32-OM32 adaptor connected to a Cereplex digital headstage (Blackrock 568 

Microsystems). Unfiltered signals were digitized at 30 kHz at the headstage and recorded by a 569 

Cerebus multichannel data acquisition system (Blackrock Microsystems). Visual stimulation 570 

synchronization signals were also acquired through the same system via a photodiode directly 571 

monitoring LCD output. 572 

 On the day of recording, the cranial window was removed, and a small durotomy 573 

performed to allow insertion of the electrode into V1. A ground wire was connected via a gold 574 

pin cemented in a burrhole in the anterior portion of the brain. The probe was slowly lowered 575 

into the brain (over the course of 15 min with travel length of around 800 μm) until the most 576 

superficial recording site was in the brain and allowed to stabilize for 45 - 60 min before 577 

beginning recordings. A fluorescent dye (diI, Life Technologies) was painted on the back of the 578 
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probe prior to recording and the probe position was thus confirmed post hoc in histological 579 

sections.  580 

  581 

Behavioral task. Animals were water scheduled and trained to discriminate orientation by 582 

manipulating a lever. The behavior training and testing occurred during the light cycle. We first 583 

trained mice to detect full-field, 90° orientation changes from a static grating. Most mice (n=12) 584 

were trained with a 0° distractor; however, 2 mice were trained with a 45° distractor. On the 585 

initial days of training, mice were rewarded for holding the lever for at least 400 ms (required 586 

hold time) but no more than 20 s (maximum hold time). At the end of the required hold time, the 587 

target grating appeared and remained until the mouse released the lever (or the maximum hold 588 

time expired). Typically, within two weeks of training, the mice began releasing the lever as 589 

soon as the target appeared. Once the animals began reliably responding to the target stimulus, 590 

we added a random delay between lever press and the target presentation to discourage 591 

adoption of a timing strategy. Over the course of the next few weeks, the task was made harder 592 

by (in roughly chronological order): 1) increasing the random delay, 2) decreasing the target 593 

stimulus duration and reaction time window, 3) removing the stimulus during the ITI, 4) shrinking 594 

and moving the stimuli to more eccentric positions, 5) adding a mean-luminance ISI to mask the 595 

motion signal in the transition from distractor to target, and finally 6) reducing the difference 596 

between the distractor and the target. Delays after errors were also added to discourage lapses 597 

and early releases.  598 

 In the final form of the task, each trial was initiated when the ITI had elapsed and the 599 

mouse had pressed the lever. Trial start triggered the presentation of a 100 ms static sinusoidal, 600 

gabor patch (30° in diameter, positioned at an eccentricity of 30° - 40° in azimuth and 0° - 10° in 601 

elevation) followed by an ISI randomly selected on a presentation-by-presentation basis (250, 602 

500 or 750 ms). For a subset of mice (n=3), the ISI was fixed for a given trial but randomly 603 

interleaved on trial-by-trial basis (250 or 500 ms). The target appeared with a random delay (flat 604 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/433722doi: bioRxiv preprint 

https://doi.org/10.1101/433722
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

distribution) after the first two presentations on each trial and was randomly selected from a 605 

fixed set of values around each animal’s threshold. Mice received water reward if they released 606 

the lever within 100-650 ms (sometimes extended to 1000 ms) after a target occurred. However, 607 

for calculating hit and false alarm (FA) rate (Figures 4, 5 and 6), we use a narrower reaction 608 

window (200-550 ms) to ensure that the majority of the releases in this window are due to 609 

stimulus driven responses and have independent reaction windows for adjacent stimuli with 610 

short ISIs. Mice were initially trained with a constant distractor stimulus (Figure 4 and 5) and 611 

were later tested with randomly interleaved distractor orientations (the trained orientation and 612 

stimuli -15° and +15° from the trained orientation) selected on a trial-by-trial basis (Figure 6).  613 

 Of the 11 mice presented in Figure 4, some (n=5) were initially trained with a single (250 614 

ms) ISI, whereas others (n=6) were immediately introduced to having the fully interleaved 615 

condition (presentation-by-presentation selection of one of three ISIs). Training history had no 616 

significant effect on the relationship between ISI and threshold (two-way anova; main effect of 617 

ISI (p<0.005); main effect of training (p=0.41)). Notably, the incorporation of targets close to the 618 

distractor occurs during the final stages of training; thus, the mice learn relatively late in training 619 

that the targets lie within only one quadrant of orientation space. Nonetheless, the FA rates from 620 

the variable baseline task (Figure 6) reveal that the mice understand this contingency: if the 621 

mice continued to use the strategy learned when there was only a 90° target, then the 15° and -622 

15° distractors should have similar FA rates.   623 

For optogenetic stimulation (Figure 5), we delivered blue light to the brain though the 624 

cannula from a 473 nm LED (Thorlabs) or a 450 nm laser (Optoengine) and calibrated the total 625 

light intensity at the entrance to the cannula (0.1 - 0.3 mW). On randomly interleaved trials, the 626 

light was turned on at the time of lever press and remained on until lever release. Behavioral 627 

control was done with MWorks, and custom software in MATLAB (MathWorks) and Python 628 

(http://enthought/com).  629 

 630 
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Data processing.  631 

Image processing and analysis. All image processing and analysis was performed in MATLAB. 632 

The image stack was registered to a stable, average field of view using sub-pixel registration 633 

methods to correct for motion along the imaged plane (x-y motion). For segmentation of visually 634 

driven neurons, we used semi-automated segmentation algorithms to select regions of interest 635 

(cell masks) from the average change in fluorescence (dF/F, where F is the average 636 

fluorescence in the 20 frames (~660 ms) preceding the first stimulus in each trial) evoked in 637 

response to each stimulus type. Fluorescence time courses were generated by averaging all 638 

pixels in a cell mask. Neuropil signals were removed by first selecting a shell around each 639 

neuron (excluding neighboring neurons), estimating the neuropil scaling factor (by maximizing 640 

the skew of the resulting subtraction), and removing this component from each cell’s time 641 

course.  642 

 Visually evoked responses were measured as the difference in the dF/F before (baseline 643 

window: average of three frames (~100 ms) around stimulus onset) and during the response 644 

(response window: average of three frames around the peak response; window was selected 645 

separately for each experiment to account for variability in response latencies and indicator 646 

kinetics). “Responsive cells” were chosen as having statistically significant visually evoked 647 

responses to at least one of the stimulus types (bonferroni-corrected paired t-test) or all stimuli 648 

(paired t-test), and the maximum derivative in the dF/F occurred before the end of the response 649 

window (to eliminate cells strongly driven by the removal of the stimulus). Using these criteria, 650 

245/279, 473/587, and 202/239 cells were included for visual stimulation protocols 1-3, 651 

respectively. All measurements are the average of at least 7 trials of the same type. 652 

 Cells imaged in protocol 2 (paired-pulse, different orientation) were further selected 653 

based on the reliability of their orientation tuning. Responses in the control (no adapter) 654 

condition were fit with a Von Mises function:  655 

� � ������������	

��
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where B is the baseline firing rate, R is the modulation rate, κ is the concentration, and μ is the 656 

preferred orientation. To measure the reliability of the fit, the fit was repeated 1000 times 657 

resampling trials with replacement. Only cells for which 90% of the bootstrapped fits were within 658 

22.5° of the original fit were included in further analysis (241/473 cells). 659 

Analysis of the effects of adaptation on tuning (e.g. the preferred orientation and the 660 

orientation selectivity index (OSI); Figure 2e-g) were derived from the von Mises fit to the data. 661 

OSI was measured as: 662 

��� 	  �
��� 
 �����

�
��� � �����

 

where Rpref is the cell’s response at the preferred orientation (Pref: maximum of the fit) and Rorth 663 

is the response to the orthogonal orientation. In the case that Rorth was negative, it was set to 0. 664 

Cells were grouped according to the distance of their preferred orientation from the adapter 665 

(cells that prefer 22.5° and 157.5° were in the same group; Figure 2e-g). 666 

 For protocols 1 and 3, each cell’s responses were normalized to the average response 667 

to the first stimulus. For protocol 2, each cell’s responses were normalized to Rpref. 668 

 669 

Electrophysiology processing and analysis. Individual single units were isolated using the 670 

SpyKing CIRCUS package (http://spyking-circus.readthedocs.io/en/latest/). Raw data were first 671 

high pass filtered (> 500 Hz) and spikes were detected when a filtered voltage trace crossed 672 

threshold (9-13 median absolute deviations computed on each channel). A combination of 673 

density-based clustering and template matching algorithms were used to automatically cluster 674 

the spikes. The resulting clusters were then inspected and adjusted manually using a MATLAB 675 

GUI. Clusters with refractory period violations (< 2 ms, >1% violation) in the auto-correlogram 676 

and that were not stable across the whole recording session were discarded from the dataset. 677 

Clusters were combined if they met each of three criteria by inspection: 1) similar waveforms; 2) 678 

coordinated refractory periods in the cross-correlogram; 3) similar inter-spike interval distribution 679 
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shape. Unit position with respect to the recording sites was calculated as the average of all site 680 

positions weighted by the waveform amplitude of each site. All the subsequent analysis was 681 

performed in MATLAB. 682 

Local field potential (LFP) and current source density analysis (CSD). For LFP recording, 683 

the extracellular raw signal was band pass filtered from 1 to 200 Hz and downsampled to 10 684 

kHz. The CSD was computed from the average LFP by taking the discrete second derivative 685 

across the electrode sites that were linearly spaced across cortical depth, and interpolated to 686 

produce a smoothed visually driven CSD profile. This analysis transformed the LFP signal into 687 

the locations of current sources and sinks, revealing a patterned laminar distribution of sinks in 688 

V1 after the visual onset: an initial sink in layer 4 (latency: ~50 ms), followed by a sink in layer 689 

2/3 and finally a weak and sustained sink in layer 5. Therefore, guided by the visually-evoked 690 

CSD map, retrospective histology, and relative depth of recordings relative to the pia surface, 691 

layer 2/3 units were identified and chosen for comparison with the two-photon imaging dataset.  692 

 Visually-evoked responses of each unit in layer 2/3 of V1 were measured based on 693 

average peri-stimulus time histograms (PSTHs, bin size: 20 ms) over repeated presentations 694 

(>25 trials) of the same stimulus. Response amplitudes were measured on a trial-by-trial basis: 695 

by subtracting the firing rate at the time of the visual stimulus onset from the value at the peak of 696 

the average PSTH within a window of 0-100 ms after the visual onset. “Responsive cells” were 697 

chosen as having statistically significant visually-evoked responses (first baseline response, 698 

averaged over 0-100 ms before the visual onset, vs visually-evoked responses, averaged over 699 

0-100 ms after the visual onset; paired t-test; this analysis window excluded off-responsive units 700 

from analysis). For protocol 1, we only included the responsive units that had no significant 701 

difference in response to the first stimulus (the adapter) across five ISIs (one-way ANOVA). 702 

Similarly, for protocol 3, we included responsive units for the analysis of the normalized firing 703 

rate binned by cycle numbers (Figure 4 - figure supplement 1h). Using these criteria, 30/39 704 

and 17/25 layer 2/3 cells were included for visual stimulation protocols 1 and 3, respectively. 705 
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 706 

Behavior processing and analysis. 707 

All behavioral processing and analysis were performed in MATLAB. All trials were categorized 708 

as either an early release, hit, or miss based on the time of release relative to target onset: 709 

responses occurring earlier than 100 ms after the target were considered early releases; 710 

responses occurring between 200 and 550 ms after a target were considered hits; failures to 711 

respond before 550 ms after the target were considered misses. Behavioral sessions were 712 

manually cropped to include only stable periods of performance and were further selected 713 

based on the following criteria: 1) at least 50% of trials were hits; and 2) less than 35% of trials 714 

were early releases. Based on these criteria, the data in Figure 4 included 17± 3 sessions 715 

(range: 5-46) for each mouse with an average of 6348 ± 815 trials per mouse (range: 2593-716 

11857); the data in Figure 5 included 24 ± 5 (range: 11-35) sessions for each mouse with 7524 717 

± 1582 trials (range: 5021-11710), respectively; and the data in Figure 6 included 20 ± 5 718 

sessions (range: 6-40) for each mouse with an average of 4904 ± 941 trials per mouse (range: 719 

2284 - 8236).   720 

Hit rate was computed from the number of hits and misses for each stimulus type: 721 

��
 ��
� 	  ��

��
 � ���� 

Lapse rates were measured as (1-Hit rate) for 90° targets. Most mice had low lapse 722 

rates (11/11 mice were below 10%) for the task in Figure 4. However, as mice age their 723 

reaction times become slower, thereby inflating the lapse rate; we think that this effect explains 724 

the increased lapse rate during optogenetic suppression of V1 (only 1/4 mice were below 10% 725 

in Figure 5).  726 

Hit rates across stimulus types were fit with a Weibull function to determine 727 

discrimination thresholds (50% of the upper asymptote to account for lapse rate). No correction 728 
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was made for FA rate. Threshold CIs were estimated via nonparametric bootstrap resampling 729 

trials with replacement.  730 

All distractor stimulus presentations were categorized as either a CR or a FA: responses 731 

occurring between 200 and 550 ms after a distractor stimulus were considered FAs; 732 

presentations where the mouse held the lever for at least 550 ms after the distractor stimulus 733 

were considered CRs. FA rate was computed from the total number of FAs and CRs in the 734 

session: 735 

�� ��
� 	  ��
�� � �� 

Signal detection theory (Green and Swets, 1966) was applied to calculate sensitivity (d’) 736 

and bias (c) given the measured hit and FA rate as follows:   737 

�� 	  ����
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�� 
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�� 
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where Z is the inverse of the cumulative distribution function of the normal Gaussian 738 

distribution.  739 

For matching the trial length across ISIs (Figure 4 – figure supplement 1d), trial length 740 

was first binned every 0.5 s within the range of 1.2 - 6.2 s (for hits and misses) and 1.2 - 4.2 s 741 

(for FAs and CRs) respectively. Within each bin, the same number of trials were chosen for all 742 

ISIs to ensure the average trial length was not significantly different. The selected trial number 743 

for each bin was determined by the minimum number of trials across ISIs in that bin for each 744 

mouse. 745 

For calculating fraction of rewarded trials (Prew) given the 22.5°- Hit and FA rates of each 746 

ISI (250 and 750 ms), we first simulated 1000 trials where the 22.5° target is presented after six 747 

distractor 0°presentations. For a known FA rate, we calculated the fraction of early trials (Pearly) 748 
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that were unrewarded assuming every 1/FA number of distractor presentations would generate 749 

an early release. Then the Prew was calculated as follow: 750 

���� 	 �1 
 ���������  

Eye-tracking processing and analysis. All eye-tracking data was analyzed in MATLAB. The size 751 

of the pupil on each frame was extracted using the built-in function imfindcircles. Pupil size was 752 

normalized to the maximum radius measured during the session and quantified as the average 753 

measured in a 250 ms window preceding the target stimulus. 754 

 755 

Modeling. For all modeled decoders, neurons imaged in different mice were analyzed 756 

separately and only datasets with at least 10 well-fit neurons (using the criteria above) were 757 

included in these analyses (10/12 experiments).  As a result, error bars in Figures 3, 7 and 758 

associated supplements represent standard error of the mean across data sets.   759 

 Log likelihood functions were generated using two methods: The first followed the 760 

equation(Jazayeri and Movshon, 2006): 761 

!"#$�%�  	  & '�!"#(��%�  
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�

� � �

 
�

� � �

 

where N is the number of neurons in the population, fi(Θ) is each neuron’s normalized tuning 762 

function and ni is each neuron’s response to a given stimulus. The tuning functions were 763 

obtained from well-fit, responsive neurons, in the non-adapted condition (under the assumption 764 

that the decoder is unaware of the effects of adaptation(Seriès et al., 2009)), and were used to 765 

predict the likelihood of the stimulus given single trial responses (ni) that varied with adaptation.  766 

 Because our neuronal data does not adhere to the assumptions that spiking is Poisson 767 

and independent, we also used a second more empirical method based upon the assumption 768 

that our population of neurons represented von Mises over orientation using a linear PPC(Ma et 769 

al., 2006). This approach assumes that the likelihood function takes the form: 770 
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 771 

where n0 is assumed to be 1 and the ai’s and bi’s are discovered by maximizing the likelihood of 772 

the empirically observed joint distribution of the presented stimulus and the neural response.  773 

This results in a convex optimization problem which we solved using gradient ascent. Because 774 

this method is prone to overfitting resulting in poor cross-validation performance when the 775 

number of units greatly exceeds the number of trials per condition, in datasets with more than 776 

15 well-fit neurons, we used only the 15 best-fit neurons (as measured by their 90% CI).  As a 777 

control, we also preprocessed our neural data using principle component analysis and 778 

eliminated all but the 15 dominant modes of variability and refit the empirically generated log 779 

likelihood. This had no effect on our results. The number 15 was chosen to optimize 780 

performance on the cross validated data set, however, we note that choosing values between 781 

12 and 16 did not substantially change our results.     782 

 The single-trial log likelihood functions were then used to determine either the MAP 783 

estimate (Method 1: Figure 3e; Method 2: Figure 3b-c) or the posterior probability distribution 784 

(“optimal decoder”: Figure 3d). We also used a standard population vector decoder to estimate 785 

the orientation (Figure 3f). For this decoder a preferred stimulus value, θi, was extracted from a 786 

parameterized fit to the tuning curve of each well-fit unit. Estimated orientation for each trial was 787 

then obtained from the equation: 788 

 789 

% 	 �'#!��& '� *+,- �%��
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�

� 

 790 

Logistic regression was performed using MATLAB’s glmfit routine with a binary 791 

observation set to be 1 when the presented stimulus was not vertical (the adapter orientation). 792 
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Estimate biases were computed by taking the mean estimate as a function of stimulus 793 

and adaptation condition. Because there was no clear trend in estimate standard deviation as a 794 

function of presented orientation, we computed estimate variance in each adaptation condition 795 

by removing the bias associated with each stimulus value and concatenated the resulting 796 

estimate residuals into a single vector. In order to account for differences in the information 797 

content of each data set, estimate variances (and standard deviations) were normalized by the 798 

variance of the control condition of each data set (35±14 degrees). We then concatenated the 799 

resulting normalized residuals from each data set into a single data set to measure the mean 800 

and associated standard error of the residual variances; these measures are shown in the inset 801 

of Figure 3b.          802 

To compute the auROC we treated our estimates of orientation (or in the case of the 803 

optimal decoder and logistic regression: the probability that the orientation was not the adapter 804 

orientation) as decision variables and computed false positives and correct detections for 400 805 

uniformly sampled values of the decision criterion chosen to span all observed values of the 806 

decision variable. For the sum decoder we simply treated the total population activity on each 807 

trial as the decision variable. The auROC was then computed numerically using the trapezoid 808 

rule.   809 

Note that in all cases we report only cross-validated results (using leave one out cross-810 

validation in the control condition). This is because parameters of our neural decoders were all 811 

fit using only the control condition and not our two adaptation conditions. The only exception to 812 

this is for the calculation of neuronal weights using the logistic regression; in this case, to make 813 

it comparable to the estimation of neuronal weights from the fit to the behavior, we trained the 814 

decoder on the 750 and 250 ms conditions. The results for all decoders were largely unchanged 815 

if we obtained parameters from either the 750 ms condition or all conditions simultaneously and 816 

cross-validate using a leave one out procedure. However, we note that logistic regression 817 

weights are not sensitive to this choice of training data sets.  818 
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 To determine the properties of a neural decoder capable of fitting our behavioral data we 819 

summarized the behavioral data in the two adapted conditions for the 11 animals used in Figure 820 

4. Since different orientations were sampled for each of the mice, we performed a spline fit of 821 

each psychometric function and averaged across all animals (Figure 7 – figure supplement 822 

1a). For each neuronal dataset we assumed that behavior was generated by sampling from a 823 

posterior distribution that had the form of a logistic regression, i.e.:  824 
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where n0 is once again assumed to be 1 and Z is the normalizer. The ai’s were then determined 825 

by minimizing the symmetrized Kullback-Leibler divergence between the average of this 826 

neurally predicted detection probability raised to some power and the behaviorally observed 827 

detection probability across stimulus and adaptation conditions. Once again, we used gradient 828 

descent to perform this optimization. These behaviorally generated weights strongly correlated 829 

with the weights discovered by applying logistic regression (correlation coefficient=0.54) and the 830 

resulting mean squared error between the neurally generated psychometric curves and the 831 

behaviorally observed ones was 2e-4.   832 

In order to assess the degradation in performance that results from use of a suboptimal 833 

decoder we computed percent correct in the following way.  First the weights obtained from the 834 

behavioral model and logistic regression model fit to the 250 and 750 conditions were used to 835 

generate a set of decision variables for each data set and stimulus condition. A task relevant 836 

measure of percent correct was computed from these values by mimicking the statistics of the 837 

behavioral task (i.e. distractors are 8 times more common than targets and target stimulus 838 

values are uniformly distributed) for a range of potential decision criteria. The optimal decision 839 

criterion was selected by determining which provided the maximum value of percent correct.  840 

This resulted in two values for optimal percent correct, one for the behavioral weights and one 841 
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for the logistic regression weights for each data set.  Average and standard deviations for these 842 

percent correct values were then computed across data sets. 843 

 844 

Statistical analysis.  845 

Data were tested for normality using a Lilliefors test. While all behavioral measures and auROC 846 

estimates were normally distributed, distributions of neuronal responses were not. Thus, in the 847 

case that two distributions were compared we used a t-test in behavioral measures and 848 

auROCs, and a Wilcoxon rank sum test for neuronal responses; however, since ANOVA and 849 

post hoc Tukey HSD tests have been shown to be robust to non-normality (Driscoll, 1996), 850 

these tests were used for all data. Sample sizes were not predetermined by statistical methods, 851 

but our sample sizes of the neurons and behavior animals are similar to other studies. Data 852 

collection and analysis were not performed blind to experimental conditions, but all visual 853 

presentation conditions in either calcium imaging, extracellular recording or behavior testing are 854 

randomized. Moreover, the strength and timecourse of adaptation on neuronal responses was 855 

measured using two methods (Figure 1) with data collected by two experimenters.  856 

 857 

Data and code availability.  858 

All relevant data and code will be made available via GitHub and Globus.   859 
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 1002 

Figure Legends 1003 

 1004 

Figure 1 - Layer 2/3 neurons in mouse V1 undergo strong adaptation.  1005 

(a) Schematic of in vivo two-photon calcium imaging and visual stimulus protocol. Head-1006 

restrained mice passively view presentation of pairs of iso-oriented stimuli. ISI- inter-stimulus 1007 

interval; ITI- inter-trial interval. (b) Average fluorescence traces (dF/F) from an example neuron 1008 

to pairs of iso-oriented gratings separated by increasing ISIs (top to bottom). (c) Summary of the 1009 

average amplitude of the second stimulus normalized to the amplitude of the first stimulus for 1010 

each ISI for all cells (n = 245, 5 mice). Data were fit with a single exponential decay with τ = 592 1011 

ms. (d) Average normalized dF/F (250 ms ISI) and average dF/F in response to the first 1012 

stimulus for preferred (black) and neighboring (gray) orientations. (e) Average normalized dF/F 1013 

(250 ms ISI) for cells binned by their response to the first stimulus. (f-h) Same as a-c, for in vivo 1014 

extracellular recording (n=30 cells, 4 mice). FR-firing rate. Error bars are SEM across cells. 1015 

 1016 

Figure 2 - Adaptation changes the orientation tuning and preference of layer 2/3 neurons 1017 

in mouse V1.  1018 

(a) Schematic of in vivo two-photon calcium imaging and visual stimulus protocol. Head-1019 

restrained mice passively view presentation of pairs of stimuli with varying orientations and 1020 

intervals. (b) Average dF/F from an example cell to eight different orientations (rows) without 1021 
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adaptation (left column: Control) or after 750 (middle column) or 250 ms (right column) recovery 1022 

from adaptation to a vertical (0°) grating. (c) Average orientation tuning curves for the neuron in 1023 

b measured in control (top, black) and after 750 (middle, dark gray) or 250 ms (bottom, light 1024 

gray) recovery from adaptation. Average responses (error bars are SEM across trials) in each 1025 

condition were fit with a von Mises function. (d) Summary of the average difference in dF/F 1026 

(each cell normalized to its own peak response without adaptation) as a function of stimulus 1027 

distance from the adapter (n = 241 cells, 12 mice) after 750 (dark gray) or 250 ms (light gray) 1028 

recovery from adaptation. Error bars are SEM across cells. (e) Summary of the average 1029 

normalized peak dF/F as a function of the distance of the cells' preferred orientation from the 1030 

adapter. Cells are binned by their preferred orientation (determined from the peak of the fit in 1031 

control conditions) into three groups: less than 20°, between 20° and 70°, and more than 70° 1032 

from the adapter (n = 58, 110 and 73 cells). (f) Summary of the average change in preferred 1033 

orientation as a function of the distance of the cells' preferred orientation from the adapter. 1034 

Positive shift indicates repulsion and negative shift indicates attraction relative to the adapter. 1035 

(g) Summary of the average change in orientation selective index (OSI) as a function of the 1036 

distance of the cells' preferred orientation from adapter. Positive change indicates increased 1037 

selectivity and negative change indicates decreased selectivity relative to control. 1038 

 1039 

Figure 3 - Feature identification models predict that adaptation improves discrimination.  1040 

(a) Schematic of the orientation identification model in which the orientation of each stimulus is 1041 

identified through a population code to determine its maximum likely orientation. The likelihood 1042 

is determined by scaling each neuron's basis function (see Methods) to the amplitude of its 1043 

response, ni, to a given test stimulus and then summing across the population. The peak of this 1044 

likelihood function is the estimated orientation. (b) Average estimate of orientation as a function 1045 

of the difference of the test stimulus from the adapter after 750 (dark gray) or 250 (light gray) ms 1046 

recovery from adaptation (n = 10 mice). Error bars are SEM across experiments. Inset- average 1047 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/433722doi: bioRxiv preprint 

https://doi.org/10.1101/433722
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

standard deviation in estimate of orientation, normalized to control, as a function of adaptation 1048 

state. (c) Summary of the average auROC, found by estimating the presented orientation, as a 1049 

function of stimulus distance from the adapter after 750 or 250 ms recovery from adaptation. (d-1050 

f) Same as c, for the average posterior probability (d), the independent Poisson estimator (e), 1051 

and the population vector (f). 1052 

 1053 

 1054 

Figure 4 - Adaptation decreases hit and false alarm rates on an orientation discrimination 1055 

task.  1056 

(a) Schematic of behavioral setup and trial progression. Head restrained mice press a lever to 1057 

initiate a trial, triggering the repeated presentation of a vertically oriented grating (100 ms) with a 1058 

randomly interleaved ISI (250 (light gray), 500 (gray) or 750 (dark gray) ms); the mouse must 1059 

release the lever within a short window following the presentation of a non-vertical grating to 1060 

receive a reward. (b) Hit rate for an example mouse in which target orientations were sorted 1061 

according to the preceding ISI. Data are fit with a Weibull function; vertical lines denote 1062 

threshold, error bars are 95% confidence intervals. (c) Summary of the threshold across ISIs. 1063 

Open circles are the average of all mice (n = 11 mice), connected gray lines are individual mice; 1064 

error bars are SEM across mice. (d) Summary of the average FA rate across mice. Inset: 1065 

schematic illustrating the window for a FA. (e) Cumulative histogram of reaction times for early 1066 

releases relative to the time of distractor stimulus onset sorted according to the preceding ISI; 1067 

same mouse as in b. Vertical lines represent react window used to calculate FA rate. (f) 1068 

Cumulative histogram of reaction times for early releases following a 750 ms interval (dark gray; 1069 

same data as in e for comparison) or a 22.5° target (dotted line; including all ISIs). Note the 1070 

similarity in the shape of the distribution. (g) Summary of the average kurtosis of the reaction 1071 

time distributions across mice for the three intervals and the 22.5° target (including all ISIs). 1072 

 1073 
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Figure 4 – figure supplement 1 - The effect of adaptation on behavior is independent of 1074 

trial length.  1075 

(a) Discrimination threshold as a function of trial length (bin size: 0.5 s). Values are normalized 1076 

by the value at the first bin (center: 0.95 s). Shaded area is the SEM across 11 mice. (b) Same 1077 

as a, for FA rate. (c) Summary of the change in threshold (normalized to 250 ms ISI, gray 1078 

shades, right y-axis) and FA rate (non-normalized, green shades, left y-axis) as a function of 1079 

average trial length. Note that by definition, the trial length for a FA is shorter than a hit. Error 1080 

bars are SEM across 11 mice. (d) Same as c, but only including trials with matched length 1081 

across ISIs. Note that there is no difference in average trial length across ISIs for discrimination 1082 

threshold (p=0.83, one-way anova) and FA rate (p=0.24, one-way anova). (e) Summary of the 1083 

change in threshold, normalized to the threshold in the 250 ms condition, as a function of ISI, for 1084 

short (2-4 distractor presentations; black) or long (6-8 distractor presentations; gray) trials. (f) 1085 

Same as e, for FA rate. (g) Normalized response amplitude to repeated presentations of 1086 

distractors, as measured with Ca2+ imaging. Error is SEM across cells. (h) Same as g, 1087 

measured with electrophysiology. 1088 

 1089 

Figure 4 – figure supplement 2 - No relationship between pupil size and outcome or ISI.  1090 

(a) Average time course of pupil radius for an example mouse normalized to the maximum 1091 

radius measured during the experiment and aligned to time of stimulus target onset for hit 1092 

(black) and miss (red) trials. Note the increase in pupil size after the target on hit trials, likely 1093 

due to reward. Shaded error is +/- SEM across trials. (b) Histogram of average pupil size (in a 1094 

250 ms window preceding the target) for each hit (black) and miss (red) trial from same mouse 1095 

as in a. P-value is from an unpaired t-test. (c) Summary of average normalized pupil radius for 1096 

each mouse (gray circles) and across mice (black circles) by outcome. Errorbars are SEM 1097 

across mice; p-value is from a paired t-test. (d) Average time course of normalized pupil radius 1098 

divided by ISI. Same mouse and conventions as in a. (e) Histogram of average pupil size for 1099 
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trials divided by ISI; same conventions as in b. (f) Summary of average normalized pupil radius 1100 

for each mouse (gray circles) and across mice (black circles) by ISI.  Errorbars are SEM across 1101 

mice; p-value is from a one-way anova. 1102 

 1103 

Figure 5 - V1 is required for discriminating orientation and partially accounts for the 1104 

dependence of behavior on adaptation.  1105 

(a) Schematic of behavioral setup and trial progression. V1 inhibition was achieved via 1106 

optogenetic excitation of ChR2-expressing inhibitory interneurons using VGAT-ChR2 (n = 2) 1107 

and PV::Cre-AAV.flex.ChR2 (n = 2). (b) Hit rate on randomly interleaved control (black) and V1 1108 

inhibition (blue) trials, averaged across all ISIs, for an example VGAT-ChR2 mouse; same 1109 

conventions as in Figure 4b. (c) Same as b, for FA rate. (d) Summary of the average threshold 1110 

for control and V1 inhibition by ISI (n = 4 mice). Error bars are SEM across mice. (e) Summary 1111 

of change in threshold, normalized to the threshold in the 250 ms condition, for each ISI. (f-g) 1112 

Same as d-e, for FA rate. 1113 

 1114 

Figure 6 - Behavior is inconsistent with a general change detection strategy, but can be 1115 

explained by a task-specific circuit with biased weights.  1116 

(a) Schematic of the trial progression. For each trial, the distractor (Dist) orientation could be 15° 1117 

(orange), 0° (black) or -15° (green). The target orientations are 9° to 90° counter-clockwise from 1118 

the distractor orientation. (b) If the mouse adopts a general change detection strategy, the 1119 

discrimination threshold should be similar across different distractor orientations. (c) If the 1120 

mouse adopts a task-specific strategy that discriminating a learned quadrant of target 1121 

orientation space (positive orientations), the discrimination threshold would be lower for 15° 1122 

distractor and higher for -15° distractor when compared to 0° distractor. Inset: schematic of 1123 

biased weights across neurons tuned for positive orientations. (d) Hit rate for an example 1124 

mouse in which target orientations were sorted according to the distractor orientations. (e) 1125 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/433722doi: bioRxiv preprint 

https://doi.org/10.1101/433722
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46

Summary of the average change in the threshold (left) and FA rate (right) for each distractor 1126 

orientation relative to the 0° condition across mice. Open circles are the average of all mice (n = 1127 

6 mice), small filled circles are individual mice; error bars are SEM across mice. 1128 

 1129 

Figure 7 - Predicted weights are biased and positive.  1130 

(a) Summary of weights found by a fit to the behavioral data as a function of neuron orientation 1131 

preference. (b) Same as a, for weights found by a logistic regression. (c) Summary of the 1132 

average auROC as a function of stimulus distance from the adapter after 750 (dark gray) or 250 1133 

(light gray) ms recovery from adaptation, found by a weighted sum of neuronal activity (n = 10 1134 

mice). Rows: Positive weight for neurons with orientation preference greater than 30° (top) or 1135 

60° (bottom); Columns: Negative weight for neurons with orientation preferences less than 15° 1136 

(middle) or 30° (right), or no negative weights (left). Insets show weighting scheme for each 1137 

panel. Error bars are SEM across experiments. (d) Proposed perceptual choice circuits for 1138 

suboptimal (left) and optimal (right) computations. Orientation tuned neurons converge onto the 1139 

decoder with excitatory weights biased towards target-preferring neurons. We propose that mice 1140 

adopt a suboptimal computation implemented in a feed-forward excitatory circuit that lacks 1141 

lateral inhibition from distractor-preferring neurons.  1142 

 1143 

Figure 7 – figure supplement 1 - Logistic regression cannot account for effects of 1144 

adaptation on behavior.  1145 

(a) Fit (red) of the neural data to the behavioral data; hit rates are responses to targets 1146 

(orientations > 0°) and distractors (0°) after 750 (dark gray) or 250 (light gray) ms recovery from 1147 

adaptation.  (b) Summary of the average auROC, found via logistic regression, as a function of 1148 

stimulus distance from the adapter (n = 10 mice).  1149 

 1150 

 1151 
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two-photon calcium imaging and visual stimulus protocol. Head-restrained mice passively view presentation of pairs of 

stimuli with varying orientations and intervals. (b) Average dF/F from an example cell to eight different orientations (rows) 

without adaptation (left column: Control) or after 750 (middle column) or 250 ms (right column) recovery from adaptation to 

a vertical (0°) grating. (c) Average orientation tuning curves for the neuron in b measured in control (top, black) and after 

750 (middle, dark gray) or 250 ms (bottom, light gray) recovery from adaptation. Average responses (error bars are SEM 

across trials) in each condition were fit with a von Mises function. (d) Summary of the average difference in dF/F (each cell 

normalized to its own peak response without adaptation) as a function of stimulus distance from the adapter (n = 241 cells, 

12 mice) after 750 (dark gray) or 250 ms (light gray) recovery from adaptation. Error bars are SEM across cells. (e) 

Summary of the average normalized peak dF/F as a function of the distance of the cells' preferred orientation from the 

adapter. Cells are binned by their preferred orientation (determined from the peak of the fit in control conditions) into three 

groups: less than 20°, between 20° and 70°, and more than 70° from the adapter (n = 58, 110 and 73 cells). (f) Summary of 

the average change in preferred orientation as a function of the distance of the cells' preferred orientation from the adapter. 

Positive shift indicates repulsion and negative shift indicates attraction relative to the adapter. (g) Summary of the average 

change in orientation selective index (OSI) as a function of the distance of the cells' preferred orientation from adapter. 

Positive change indicates increased selectivity and negative change indicates decreased selectivity relative to control.

-0.4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/433722doi: bioRxiv preprint 

https://doi.org/10.1101/433722
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

a b

 Presented ori (deg)
E

st
. 

o
ri
 (

d
e

g
) 750 ms

250 ms

x x x

n1 n2 n3

basis
function

sensory
response

Log likelihood function

S

Ori (deg)
-90 -45 0 45 90

-90

-45

0

45

90

90450

|Test - Adapter| (deg)

c

0

5

10

S
D

Optimal estimate d
750 ms
250 ms

1.0

a
u

R
O

C

0.6

0.8

0.4

90450

|Test - Adapter| (deg)

Optimal decoder

Feature identification models predict that adaptation 

improves discrimination. (a) Schematic of the orientation 

identification model in which the orientation of each 

stimulus is identified through a population code to 

determine its maximum likely orientation. The likelihood is 

determined by scaling each neuron's basis function (see 

Methods) to the amplitude of its response, n , to a given test i
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(b) Average estimate of orientation as a function of the 
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(dark gray) or 250 (light gray) ms recovery from adaptation 

(n = 10 mice). Error bars are SEM across experiments. 

Inset- average standard deviation in estimate of orientation 
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average auROC, found by estimating the presented 

orientation, as a function of stimulus distance from the 

adapter after 750 or 250 ms recovery from adaptation. (d-f) 
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Figure 4
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Adaptation decreases hit and false alarm rates in an orientation discrimination task. (a) Schematic of behavioral 

setup and trial progression. Head restrained mice press a lever to initiate a trial, triggering the repeated presentation of a 

vertically oriented grating (100 ms) with a randomly interleaved ISI (250 (light gray), 500 (gray) or 750 (dark gray) ms); the 

mouse must release the lever within a short window following the presentation of a non-vertical grating to receive a reward. 

(b) Hit rate for an example mouse in which target orientations were sorted according to the preceding ISI. Data are fit with a 

Weibull function; vertical lines denote threshold, error bars are 95% confidence intervals. (c) Summary of the threshold 

across ISIs. Open circles are the average of all mice (n = 11 mice), connected gray lines are individual mice; error bars are 

SEM across mice. (d) Summary of the average FA rate across mice. Inset: schematic illustrating the window for a FA. (e) 

Cumulative histogram of reaction times for early releases relative to the time of distractor stimulus onset sorted according 

to the preceding ISI; same mouse as in b. Vertical lines represent react window used to calculate FA rate. (f) Cumulative 

histogram of reaction times for early releases following a 750 ms interval (dark gray; same data as in e for comparison) or a 

22.5° target (dotted line; including all ISIs). Note the similarity in the shape of the distribution. (g) Summary of the average 

kurtosis of the reaction time distributions across mice for the three intervals and the 22.5° target (including all ISIs).
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Figure 4 – figure supplement 1
The effect of adaptation on behavior is 

independent of trial length. (a) Discrimination 

threshold as a function of trial length (bin size: 0.5 s). 

Values are normalized by the value at the first bin 

(center: 0.95 s). Shaded area is the SEM across 11 

mice. (b) Same as a, for FA rate. (c) Summary of the 

change in threshold (normalized to 250 ms ISI, gray 

shades, right y-axis) and FA rate (non-normalized, 

green shades, left y-axis) as a function of average trial 

length. Note that by definition, the trial length for a FA 

is shorter than a hit. Error bars are SEM across 11 

mice. (d) Same as c, but only including trials with 

matched length across ISIs. Note that there is no 

difference in average trial length across ISIs for 

discrimination threshold (p=0.83, one-way anova) 

and FA rate (p=0.24, one-way anova). (e) Summary 

of the change in threshold, normalized to the 

threshold in the 250 ms condition, as a function of ISI, 

for short (2-4 distractor presentations; black) or long 

(6-8 distractor presentations; gray) trials. (f) Same as 

e, for FA rate. (g) Normalized response amplitude to 

repeated presentations of distractors, as measured 
2+ with Ca imaging. Error is SEM across cells. (h) Same 

as g, measured with electrophysiology.
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Figure 4 – figure supplement 2
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No relationship between pupil size and outcome or ISI. (a) Average time 

course of pupil radius for an example mouse normalized to the maximum 

radius measured during the experiment and aligned to time of stimulus target 

onset for hit (black) and miss (red) trials. Note the increase in pupil size after 

the target on hit trials, likely due to reward. Shaded error is +/- SEM across 

trials. (b) Histogram of average pupil size (in a 250 ms window preceding the 

target) for each hit (black) and miss (red) trial from same mouse as in a. P-

value is from an unpaired t-test. (c) Summary of average normalized pupil 

radius for each mouse (gray circles) and across mice (black circles) by 

outcome. Errorbars are SEM across mice; p-value is from a paired t-test. (d) 

Average time course of normalized pupil radius divided by ISI. Same mouse 

and conventions as in a. (e) Histogram of average pupil size for trials divided 

by ISI; same conventions as in b. (f) Summary of average normalized pupil 

radius for each mouse (gray circles) and across mice (black circles) by ISI.  

Errorbars are SEM across mice; p-value is from a one-way anova.
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example mouse
VGAT-ChR2

V1 is required for discriminating orientation and partially accounts for the dependence of behavior on adaptation. 

(a) Schematic of behavioral setup and trial progression. V1 inhibition was achieved via optogenetic excitation of ChR2-

expressing inhibitory interneurons using VGAT-ChR2 (n = 2) and PV::Cre-AAV.flex.ChR2 (n = 2). (b) Hit rate on randomly 

interleaved control (black) and V1 inhibition (blue) trials, averaged across all ISIs, for an example VGAT-ChR2 mouse; 

same conventions as in Figure 4b. (c) Same as b, for FA rate. (d) Summary of the average threshold for control and V1 

inhibition by ISI (n = 4 mice). Error bars are SEM across mice. (e) Summary of change in threshold, normalized to the 

threshold in the 250 ms condition, for each ISI. (f-g) Same as d-e, for FA rate.
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Figure 6
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Behavior is inconsistent with a general change 

detection strategy, but can be explained by a task-

specific circuit with biased weights. (a) Schematic of the 

trial progression. For each trial, the distractor (Dist) 

orientation could be 15° (orange), 0° (black) or -15° (green). 

The target orientations are 9° to 90° counter-clockwise 

change from the distractor orientation. (b) If the mouse 

adopts a general change detection strategy, the 
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distractor orientations. (c) If the mouse adopts a task-

specific strategy that discriminating a learned quadrant of 

target orientation space (positive orientations), the 

discrimination threshold would be lower for 15° distractor 

and higher for -15° distractor when compared to 0° 

distractor. Inset: schematic of biased weights across 

neurons tuned for positive orientations. (d) Hit rate for an 

example mouse in which target orientations were sorted 

according to the distractor orientations. (e) Summary of the 

average change in the threshold (left) and FA rate (right) for 

each distractor orientation relative to the 0° condition 

across mice. Open circles are the average of all mice (n = 6 

mice), small filed circles are individual mice; error bars are 

SEM across mice.
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Summary of weights found by a fit to the behavioral data 

as a function of neuron orientation preference. (b) Same 

as a, for weights found by a logistic regression. (c) 

Summary of the average auROC as a function of 

stimulus distance from the adapter after 750 (dark gray) 

or 250 (light gray) ms recovery from adaptation, found by 

a weighted sum of neuronal activity (n = 10 mice). Rows: 

Positive weight for neurons with orientation preference 

greater than 30° (top) or 60° (bottom); Columns: Negative 

weight for neurons with orientation preferences less than 

15° (middle) or 30° (right), or no negative weights (left). 

Insets show weighting scheme for each panel. Error bars 

are SEM across experiments. (d) Proposed perceptual 

choice circuits for suboptimal (left) and optimal (right) 

computations. Orientation tuned neurons converge onto 

the decoder with excitatory weights biased towards 

target-preferring neurons. We proposed that mice adopt 

a suboptimal computation implemented in a feed-forward 
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Figure 7 – figure supplement 1
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