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Summary 
 

Optogenetic stimulation offers powerful new ways to test the functional significance of coherent 

neuronal activity. In rodents, optogenetically stimulating specific classes of neurons has been 

shown to selectively perturb coherent neuronal dynamics. Testing the causal role of coherent 

neuronal dynamics for complex cognitive functions requires studies in non-human primates 

(NHP). How to selectively manipulate coherent dynamics in NHP, however, remains unclear 

due to lack of reliable cell-type expression. Here, we investigate neuronal dynamics in macaque 

frontal cortex when optogenetically stimulating neurons that express ChR2(H134R) pan-

neuronally. Neuronal responses to optogenetic stimulation occurred within an effective temporal 

window of excitation that varied non-linearly with stimulation parameters. Given the observed 

temporal window of excitation, we designed model-based stimulation sequences to selectively 

perturb coherent dynamics. The results provide a procedure for using optogenetic stimulation to 

test the role of coherent neuronal dynamics for complex cognitive functions. 
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Introduction 

Neuronal dynamics contain coherent temporal structure across a range of frequencies1. 

The term coherent neuronal dynamics describes fluctuations within specific temporal frequency 

bands that are revealed by correlating the time of spiking events to local field potentials (LFPs) 

using spike-field coherence2. In the primate brain, coherent neuronal dynamics have been 

implicated in the control of a range of higher cognitive functions including working memory3–5, 

decision making6–8, coordination9,10, attention11,12, and perception13,14. To go further and test the 

extent to which coherent neuronal dynamics are necessary and sufficient for complex cognitive 

functions requires causal manipulations that can selectively perturb temporal patterns of 

neuronal activity. 

Electrical and magnetic stimulation approaches have been used to precisely generate 

temporal structure in neuronal activity15–17 and study the impact of temporally patterned 

stimulation on behavior18,19.  A significant difficulty in interpreting the results of causal 

manipulations, however, is that stimulating neuronal networks can lead to a variety of non-linear 

and dynamic response properties in addition to coherent dynamics20–22. Consequently, 

simultaneous recordings of neuronal activity during stimulation are needed to confirm the impact 

of stimulation sequences on coherent neuronal dynamics. Sequences of electrical and magnetic 

stimulation pulses can generate substantial recording artifacts that are difficult to suppress, 

especially for field potentials, obscuring responses and introducing significant confounds23,24. 

Optogenetic stimulation can generate temporally-precise patterns of activity in neuronal 

populations defined for manipulation through genetic modifications25,26. Unlike electrical or 

magnetic stimulation, light-based stimulation can be used in a manner that introduces few if any 

artifacts to simultaneous electrophysiological recordings. Optogenetic stimulation has great 

potential to selectively generate neuronal dynamics27,28 and optogenetic stimulation of the 
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primate brain can perturb behavioral processes29–31. Previous work has emphasized that the 

formation and maintenance of coherent neuronal activity depends on the selective control of 

interneurons28,32. However, this work has been done in rodents, which reliably express 

optogenetic constructs in cell-type specific manner. Whether virally-mediated optogenetic 

stimulation in the NHP can test the causal role of neuronal dynamics in computation and 

behavior has not been systematically examined. 

Here, we address the problem of how to generate coherent neuronal dynamics without 

expressing optogenetic constructs in a cell-type specific manner. We start by developing a 

model for coherent neuronal dynamics. According to the model, the frequency of coherent 

activity depends shaping excitation and inhibition to yield an effective response window – the E-I 

window. The model predicts that sequences of optogenetic stimulation pulses can be designed 

to shape synaptic excitation and inhibition and generate the desired coherent activity without 

cell-type specific expression. We then did experiments to test the model predictions. We 

expressed ChR2(H134R) pan-neuronally in macaque cortex, using a synapsin promoter 

delivered by an AAV2/5 viral injection, and measured spiking and local field potential (LFP) 

responses to optogenetic stimulation. To alter the E-I window, we stimulated across a range of 

stimulation sequences with different pulse rates and pulse durations. The results demonstrate 

that coherent dynamics can be generated across a wide range of frequencies consistent with 

the E-I window model. We conclude by presenting an experimental protocol for designing 

stimulation sequences that manipulate coherent neuronal dynamics. The resulting method 

provides a path to testing the causal role of coherent neuronal dynamics in computation and 

behavior following expression of a pan-neuronal promoter.  
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Results 

Modeling stimulation-evoked coherent neuronal dynamics 
 

We define neuronal coherence as spiking that occurs coherently with simultaneously-

recorded LFP activity. When the spike times of a neuron can be predicted from fluctuations in 

LFP activity at a particular frequency, the spiking is said to be coherent at that frequency. Thus, 

neuronal coherence is defined by coherent spiking and LFP activity and can be measured by 

estimating spike-field coherence between spiking and nearby LFP activity2,3.  

 Figure 1 presents a  model of stimulation-evoked coherent neuronal dynamics. We 

model neuronal spiking according to a conditional intensity function33. In the absence of 

optogenetic stimulation, we model background spiking activity as a Poisson process with a 

constant rate, 0  (Fig. 1A). We model background LFP activity as a process with increased 

power at low frequencies–“brown noise”. For simplicity, we further assume that background LFP 

activity is uncorrelated with spiking activity. 

 Optogenetic stimulation drives spiking and LFP responses. More specifically, 

optogenetic stimulation light pulses incident on a population of transduced neurons expressing 

ChR2 depolarize the transduced neurons within the illuminated stimulation zone. Direct 

activation of the transduced neurons leads to excitatory and inhibitory synaptic currents within 

the local network of neurons. The resulting currents alter when neurons fire spikes in response 

to stimulation. Excitatory currents lead neurons to fire spikes more frequently. Inhibitory currents 

lead neurons to fire spikes less frequently. The impact of optogenetic stimulation on spiking can, 

therefore, be modeled in terms of changes in spiking probability in the conditional intensity 

function. Since we do not have access to the intracellular conductance changes in response to 

each stimulation pulse, we model the impact of each optogenetic stimulation pulse by excitatory 

and inhibitory modulations in the probability of spiking, an excitation-inhibition (E-I) window. 
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We model LFP activity in response to optogenetic stimulation as a linear sum of 

background activity and activity due to each stimulation pulse (Fig. 1B). LFP activity 

predominantly reflects summed post-synaptic potentials2,34. Therefore, we model the driven 

component of LFP activity in terms of the net E-I response following each stimulation pulse.  

We term this model of neuronal coherence the E-I window model. Since we model 

spontaneous spiking and LFP as uncorrelated, baseline activity does not contain SFC (Fig. 1C). 

Since optogenetic stimulation evokes changes in spike probability and LFP responses, this 

coupling means that the stimulation evokes spikes that are coherent with LFP activity and the 

coherence is due to the temporal dynamics, or  “shape”, of the E-I windows. (Fig. 1D). 

Therefore, according to the E-I window model, the frequency of coherent neuronal dynamics 

determined by the E-I window.  

Note that the neuronal coherence described by the E-I window model depends on 

predictability between spikes and LFP activity which is measured by spike-field coherence. This 

construction is consistent with but does not require invoking an oscillator or other phase-

consistent process. 

 

Selectively generating coherent neuronal dynamics 

According to the E-I window model, selectively changing the duration of the excitatory 

and inhibitory components of the E-I window should affect the frequency content of the driven 

coherent neuronal dynamics (Fig. 2A,B). We tested this prediction computationally. We 

modelled E-I windows as a weighted sum of excitatory and inhibitory components 
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where exc  and inh  govern the temporal dynamics of the excitatory and inhibitory components, 

respectively (Fig. 2C). To test the effect of different E-I window dynamics on coherence, we 

simulated SFC while sweeping through values for the exc  and inh  parameters. Using both 

excitatory and inhibitory components provided a wide range of driven dynamics, suggesting that 

the interaction between excitation and inhibition may allow for generating selective dynamics 

across a wider range of frequencies (Fig. 2F). Additional computational work suggested that the 

interplay of E- and I-windows was important to this result (Supplementary Fig. 1). Taken 

together, these simulation results suggest that coherent neuronal dynamics can be selectively 

generated using optogenetic stimulation to control E-I window durations, consistent with the E-I 

window model. 

 

Optogenetic stimulation robustly generates frequency-selective responses 

To test the E-I window model, we studied how pan-neuronally mediated optogenetic 

stimulation can be used to selectively generate coherent neuronal dynamics. We injected AAV5-

hSyn-ChR2(H134R)-EYFP and recorded neuronal responses in three macaque monkeys (the 

inferior and superior parietal lobules in Monkeys H and J and lateral to the post-central dimple in 

Monkey B; Fig. 3A). We observed strong viral expression at each injection site with robust 

labelling of neurons and neuropil (Fig. 3B). In vivo optogenetic stimulation consisted of one 

second long sequences of light pulses (stimulation epoch) followed by 1-3 s of no stimulation 

(baseline epoch) (Fig. 3C). Optogenetic stimulation reliably generated neural responses. These 
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responses consisted of action potentials as well as large evoked field potentials visible on an 

individual pulse basis in the raw data (Fig. 3D,E,F). 

We then measured neuronal responses to stimulation sequences composed of periodic 

and Poisson pulse trains with different pulse rates and pulse durations. Figure 4A presents 

example neuronal responses during a stimulation block with 5 ms wide pulses delivered with a 

20 pulse/s Poisson pulse train. Individual stimulation pulses drove spiking activity and evoked 

LFP responses at the stimulation site (Fig. 4Ai,ii). Stimulation drove spiking activity that was 

coherent with LFP activity at selective frequencies (Fig. 4Aiii). To quantify the response to the 

pulse train, we computed the power spectrum of LFP activity during the one second long 

stimulation period (Fig. 4Aiv). The peri-stimulation LFP power spectrum revealed a significant 

increase in power (Chi-squared test, p<0.01). 

We defined a power spectral ratio (PSR) as the ratio of the driven response to the 

baseline response and measured increases in power that extended throughout the entire 

stimulation sequence (Fig. 4Av,vi). This measure captures the linearly-dependent influence of 

optogenetic stimulation on temporal structure in the neuronal activity (see Methods). The PSR 

reveals the frequency selective increase in driven coherent neuronal activity as measured by 

LFP activity. Since driven spiking activity was not measured at all recording sites across the 

population, LFP activity provided a robust indicator of the driven coherent dynamics. 

Longer pulse durations generated longer duration changes in firing rate (Fig. 4B). 

Interestingly, LFP activity during wider pulses showed longer periods of excitation and inhibition 

and this was associated with more selective changes in SFC and LFP power spectrum. 

Therefore, stimulation sequences with different pulse durations can be used to selectively 

generate coherent neuronal dynamics, consistent with changing the E-I window duration. Thus, 
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the E-I window model predicted the relationship between the E-I windows and the stimulation-

evoked coherent neuronal dynamics. 

 

Optogenetic stimulation generates pulse duration dependent responses 

We averaged SFC across a population of recording sites with driven spiking activity in 

response to stimulation using Poisson pulse trains with 5, 10, 15, and 20 ms duration pulses 

(see Methods). SFC varied with pulse duration, consistent with the example site (Fig. 4C). In 

addition, we analyzed LFP responses across recording sites with driven evoked potentials in the 

three animals for 2, 5, 8, 10, 12, 15, 18, and 20 ms duration pulses. As with the example site, 

the frequency content of the driven LFP varied with pulse duration across the population (Fig. 

4C). 

To identify the frequency for which driven coherent activity was greatest, we fit the 

average SFC for each pulse with a polynomial (degree = 4) and identified the peak location. The 

frequency at which the maximal driven coherence decreased with pulse duration (r2 = 0.88, p = 

0.062) (Fig. 4C, red). For each stimulation condition at each recording site with evoked LFP 

responses, we summarized the PSR as a sum of Gaussians. Consistent with the SFC, the peak 

of the driven LFP, measured by the location of the peak of the first Gaussian, was dependent on 

pulse duration (r2 = 0.602, p = 6.7x10-9) (Fig. 4C, black). Longer duration pulses generated 

increases in coherent neuronal activity at lower frequencies. The center frequency of the driven 

responses did not depend on the mean pulse rate for Poisson stimulation (Supplementary Fig. 

2). These results show that the selectivity and specificity of coherent neuronal dynamics 

generated by patterned stimulation depends on the temporal window of excitation in a manner 

that is consistent across cortical regions. 
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Site specific E-I window generation 

 Observed E-I windows may differ across stimulation parameters or across stimulation 

sites with different patterns of transfection and network connections (Fig. 5A). Within a single 

stimulation site, different pulse durations generate different frequency structure of the coherent 

neuronal activity, as predicted by the E-I window model (Fig. 5B,C). Using a shorter pulse 

generates a narrower response in LFP activity. In the model, the corresponding E-I window has 

narrower excitatory and inhibitory components than for longer pulses. Using this E-I window in 

the model results in broader coherence with a peak at higher frequencies compared to the 

longer pulse. Additionally, at a different, nearby injection site or in a different subject, the ChR2 

expression pattern may differ. The observed E-I window may differ depending on how activity is 

recruited due to the specific expression pattern and local synaptic connectivity (Fig. 5D). A short 

pulse at Site B drives a narrower response in LFP activity, similar to Fig. 5C. However, in this 

case there is less overlap between excitatory and inhibitory components. As a result, stimulation 

with the same parameters at a different site can result in a different interaction between 

excitatory and inhibitory components in the network and hence different coherent neuronal 

dynamics.  

These results indicate that 1 - variability is present in the shape of the stimulation-evoked E-I 

window; 2 - different coherent neuronal dynamics can be driven at different cortical sites for the 

same stimulation parameters; and 3 - optogenetic stimulation parameters need to be selected 

for each stimulation site to generate the desired neuronal coherence.  

Model-based characterization of local response dynamics 

 In order to generalize stimulation parameters for selective generation given variability 

across response sites, we used the empirically measured E-I response for one pulse duration in 

the model to predict responses for other pulse durations. To do this, we temporally scaled the E-
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I response for a 10 ms pulse to provide an estimate of the temporal window of excitation to any 

arbitrary pulse duration (Fig. 6A). Scaling longer pulse durations, which have excitation 

windows that capture high frequency suppression, provides a better fit to experimental data than 

scaling shorter pulses (Supplementary Fig. S3). Performing simulations in the model with E-I 

windows that are temporally scaled versions of the experimental test condition produces a map 

that shows which frequencies can be generated using pulsatile Poisson stimulation (Fig. 6B). 

The E-I window model generates dynamics that match empirical results (Fig. 6B, black dots). 

Importantly, different pulse durations can be used to generate selective responses in bands 

typically associated with alpha, beta, low-gamma, and high-gamma frequencies (Fig. 6C). This 

offers a way to separately test the contribution of each of these frequency bands to behavior.   

Model-based prediction of responses to other forms of stimulation 

 The presence of site-dependent stimulation responses substantially complicates the task 

of selecting the stimulation parameters to selectively generate particular coherent neuronal 

dynamics. If the E-I window model could be used to predict responses to arbitrary stimulation 

pulse sequences, manipulating neuronal coherence would be experimentally less complex. 

Here we consider one such generalization: a quasi-periodic stimulation pulse train where the 

probability of generating a stimulation pulse is given by ( ) (1 sin(2 ))P stim Ft t      (Fig. 

7A). Periodic stimulation can be used to generate frequency selective responses. However, 

response linearity means responses to periodic stimulation trains have power at the 

fundamental frequency and its harmonics, especially at low frequencies (Fig. 7B). Quasi-

periodic stimulation can reduce the stimulation harmonic content, while preserving the response 

at the frequency of interest leading to selective drive (Fig. 7C). The quasi-periodic algorithm 

does not deliver stimulation pulses on regular intervals. Although frequency-selective drive is 

present on average across many trials, quasi-periodic stimulation may not reliably drive 

selective increases in power on individual trials with a small number of cycles. However, 
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frequency specificity is also present on a trial-by-trial basis (Fig. 7D). Therefore, a quasi-

periodic algorithm can generate frequency selective drive over short, behaviorally relevant 

periods of time. 

Quasi-periodic stimulation offers other benefits. With periodic stimulation, increasing 

stimulation intensity by stimulating more frequently can also increase the frequency of driven 

responses. By varying the modulation depth,  , of stimulation, quasi-periodic stimulation 

allows frequency-selective stimulation intensity to be controlled separately from the frequency of 

interest itself. Increasing   increases the number of stimulation pulses added preferentially at 

intervals around the period of the frequency of interest. This results in greater responses around 

the frequency of interest and not at other frequencies (Fig. 7E). Changing the frequency of 

interest is achieved by varying F in order to generate a range of behaviorally relevant 

frequencies (Fig. 7F, Supplementary Fig. 4). 

One concern highlighted by our results is that responses to square wave pulse trains 

have low power at nodes determined by the inverse of the pulse duration. Since response 

linearity predicts that responses are shaped by the pulse shape, if the pulse shape has low 

power at a given frequency, then a periodic or quasi-periodic pulse train will not drive responses 

at that frequency (Fig. 7F, green). Conversely, if the pulse shape has a peak in power at a given 

frequency, then the response will be greater compared to stimulation at other desired 

frequencies with the same pulse duration (Fig. 7F). To address this concern, the pulse duration 

should be chosen according to the desired response frequency (Fig. 7G). 
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Discussion 

Here, we used a model of spiking an LFP activity to parameterize optogenetic 

stimulation-evoked neuronal coherence in macaque cortex. We found that optogenetic 

stimulation generated selective coherent neuronal dynamics consistent with recruitment of 

excitatory and inhibitory activity. Using Poisson pulse trains, we varied pulse duration and pulse 

rate to characterize the coherent neuronal dynamics during stimulation. Our experimental 

results show that varying the pulse duration selectively alters driven coherence. Modeling 

results revealed that neuronal coherence can result from a combination of recruitment of 

excitatory and inhibitory responses in the network. Taken together, these results demonstrate 

how optogenetic stimulation in macaque cortex can be parametrically varied to selectively 

generate coherent dynamics across a range of behaviorally relevant frequencies (20-50 Hz) 

without necessarily targeting optogenetic stimulation to particular neuronal cell types. 

Pan-neuronal stimulation and mechanisms of neuronal coherence 

Previous work has used cell-type-specific optogenetic stimulation to generate coherent 

neuronal dynamics and study the effect of perturbing specific cell types on neuronal 

activity27,32,35. Direct stimulation of specific types of neurons recruits synaptically-mediated 

responses from other neurons in the network36. This recruited network activity shapes the 

frequency content of coherent neuronal dynamics37. Thus, stimulation-evoked coherence 

measured under cell-type-specific optogenetic stimulation can also reflect activity across a 

range of cell-types. Thus, although pan-neuronal optogenetic stimulation directly activates a 

heterogeneous range of cell types, stimulation-evoked coherence measured under pan-

neuronal optogenetic stimulation may reflect stimulation-evoked coherence under cell-type-

specific stimulation, albeit by activating network activity differently. 
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Parametric control for studying coherent neuronal dynamics during behavior 

Continuous stimulation and pulsatile stimulation have been used to generate frequency 

specific dynamics in order to study their effects on behavior27,32,35,38. However, for continuous 

stimulation, the frequency range of generated coherent neuronal dynamics depends on local 

network properties, typically resulting in increased gamma activity27 due interactions between 

excitatory and inhibitory neurons39 that may vary in peak frequency across subjects38. 

Additionally, pulsatile stimulation of specific cell-types may not be able to generate a range of 

frequencies despite changes in stimulation parameters28. As well as gamma frequencies, 

coherent neuronal dynamics in theta40,41, alpha42,43 and beta10,44 bands have been shown to play 

a role in neuronal computation and behavior. Studying the behavioral effects of dynamics in 

these frequency bands with causal manipulations may require additional stimulation strategies 

that allow for greater parametric control. Here we show that with pan-neuronal ChR2 

expression, frequency selectivity can be achieved by varying stimulation sequence parameters 

to create excitation windows that generate coherent neuronal dynamics across a range of 

frequencies. Therefore, it is possible that pan-neuronal pulsatile stimulation with targeted 

parameter selection can be used to generate frequency selective coherent neuronal dynamics 

across a wider range of behaviorally-relevant frequencies than cell-type specific approaches. 

Model-based selection of parameters 

The coherent response dynamics we observed are likely due to the generation of varied 

excitation windows through the choice of pulse duration. As pulse duration increased, the peak 

response frequency fell (see Fig. 4E). However, the frequency structure of the driven dynamics 

varied slightly by site, which was likely due to local variations in ChR2 expression and network 

properties. Importantly, this suggests that in order to generate response in a frequency band of 

interest, the stimulus pulse train needs to be designed while taking into account the local 
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network properties. Stimulation triggered evoked LFPs reveal the temporal structure of windows 

of excitation and inhibition45,46, which may capture the underlying network properties. The E-I 

window model uses response windows derived from experimentally measured evoked 

potentials and thus potentially accounts for intrinsic dynamics due to the local network. Using 

empirically-derived responses from one set of parameters in the E-I window model to estimate 

responses to other parameters allows for model-based, site-specific selection of pulsatile 

stimulation parameters. Additionally, the E-I window model may be useful because it allows 

alternative stimulation sequence designs to be optimized. For example, generating coherent 

dynamics may also be possible with shorter pulses using different opsins that have slower 

dynamics47, or using non-pulse-based stimulation dynamics48. The E-I window model could be 

used to predict coherent neuronal dynamics that arise from alternative forms of stimulation to 

aid in selection of opsin type and stimulation parameters for novel paradigms. 

Coherent dynamics result from linking mechanisms generating spiking and LFP 

LFP activity arises from synchronous neuronal activity that occurs due to temporally 

structured fluctuations of local excitation and inhibition39,49,50. Increases in LFP power may 

indicate either an overall increase in neuronal activity or an increase in temporally-structured 

activity2. However, if the mechanism which generates spiking is not coupled with the mechanism 

that generates LFP activity, then there will be no SFC. We found that optogenetic stimulation 

drove spiking activity that was coherent with LFP activity and was consistent with the 

stimulation-induced LFP power changes. This suggests that optogenetic stimulation provides a 

common input that couples spiking and LFP activity. Therefore, LFP responses generated by 

optogenetic stimulation are at least in part due to increases in temporally-structured, coherent 

neuronal activity resulting from parametric generation of windows of excitation and inhibition. 
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Due to the biophysics of extracellular potentials, LFP activity is most sensitive to 

postsynaptic potentials in neurons where the positive and negative current sources are 

separated to provide an open field geometry2. Thus, contributions from neurons with extended 

dendritic architectures, such as pyramidal neurons, are more heavily weighted by LFP activity. 

Additionally, pyramidal neurons typically have larger cell bodies than other cortical neurons and 

thus have more easily measurable actions potentials. Therefore, our measurement of both 

spiking activity and LFP may be biased toward contributions from pyramidal neurons, thereby 

biasing our estimate of SFC toward the relationship between postsynaptic potentials and action 

potentials of spiking neurons. Novel recording technologies that offer measurements of intra-

cellular potentials simultaneously across a large population of neurons may be necessary to 

explore the contribution of neurons with closed-field geometries. 

Mechanisms of frequency selectivity 

How do longer pulses, with increased excitation, shift coherent dynamics toward lower 

frequencies? We propose that cell-type specific recruitment of inhibition may be enhanced by 

greater excitation from longer duration pulses. Mammalian neo-cortex contains many 

interneuron sub-types51,52 which may play distinct roles in cortical computations53,54. Following 

stimulation, excitation may recruit interneuron activity across a range of these cell types39,55–57, 

but the somatostatin and PV+ subtypes likely play a preferential role in suppressing high 

frequency activity28,32,58. In particular, somatostatin interneurons that inhibit PV+ interneurons, 

could reduce gamma activity. If so, we predict that somatostatin interneurons may show an 

increase in firing rate after stimulation, and PV+ and excitatory neurons may decrease in firing 

rate due to the increased inhibition, particularly for longer pulses. The duration and degree of 

inhibition due to interneuron recruitment may also depend non-linearly on the duration and 

degree of network excitation. Additional work is needed to test this mechanism for shifts towards 

lower frequencies with loner duration excitatory windows. Recordings from identified excitatory 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/437970doi: bioRxiv preprint 

https://doi.org/10.1101/437970
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

and inhibitory neurons are necessary to assess the network recruitment of inhibition at a cellular 

level. Performing this test depends on inhibitory cell-type specificity that is currently unavailable 

in primates but may be possible using novel genetic targeting strategies31,59. Alternatively, 

biophysical models of optogenetic stimulation in large-scale, heterogeneous neural networks 

may offer predictions about cell-type specific contributions to coherent neuronal dynamics. 

In conclusion, we systematically studied neuronal responses to optogenetic stimulation 

in macaque frontal cortex. We highlight the role of designing Poisson, quasi-periodic, and other 

pulsatile stimulation sequences that generate temporal windows of excitation to recruit inhibition 

without necessarily targeting specific types of neurons. In general, our results show that 

combining experimental measures with model-based predictions can be used to study how 

optogenetic stimulation drives network dynamics across a wide range of experimental designs, 

including using different brain regions, model species, cell-type selectivity, and stimulation 

protocols. These results demonstrate that the ability to selectively generate dynamics in the 

primate brain can be useful for understanding how coherent neuronal dynamics give rise to 

behavior. 
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Online Methods: 

Animals 

Experiments were performed with two male rhesus macaques (Macaca mulatta) and one male 

cynomolgus macaque (Macaca fascicularis) All surgical and animal care procedures were 

approved by the New York University Animal Care and Use Committee and were performed in 

accordance with the National Institute of Health guidelines for care and use of laboratory 

animals. 

Injection surgery 

We performed injections of optogenetic viral vectors in two rhesus macaques (Monkeys H and 

J) and one cynomolgus macaque (Monkey B) 6-25 weeks prior to recording. One microliter of 

AAV5-hSyn-ChR2(h134R)-EYFP was injected through 26 s gauge stainless steel cannulas at a 

rate of 0.05 l/min. We made injections at 2-3 depths spaced 500-750 m across 2-4 sites per 

animal. 

Optical Stimulation 

Light power at the tip was measured prior to each experiment and varied from 16-20.5 mW. 

(510-653 mW/mm2). The fiber optic was placed on top of a thinned dura. Stimulation sequences 

were controlled by custom LabVIEW (National Instruments) code. 

Electrophysiology 

We recorded responses from injection sites with successful transduction. We recorded neural 

signals from awake, alert subjects while they were seated, head-fixed in a primate chair in a 

dark, quiet room. Neural signals were recorded on glass-coated tungsten electrodes (Alpha-

Omega, impedance: 0.8-1.2 M at 1 kHz). The electrode was attached to a microdrive (Flex 
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MT, Alpha-Omega). We recorded driven multi-unit activity and LFP responses at one site in 

each animal, and driven LFP responses without driven multi-unit activity in an additional 4 sites 

across the subjects. 

Fitting E-I Windows 

E-I windows were fit to the form  

   
! !

exc inh

exc inhAt

exc inh

At At
EI Ae

 
 

 

 

  
 
 

 

which has an excitatory and inhibitory component. The constraint exc inh   was used in order 

to ensure that excitation precedes inhibition. For the pure simulations, A , exc  and inh  were 

set to 1. To fit empirical E-I windows, all parameters were fit using a grid search to minimize the 

squared error between the modelled window and the empirical window. 

E-I Window Model 

We modelled spiking activity that was coherent with LFP activity using a Poisson point process 

with a conditional intensity function. The instantaneous firing rate was modelled as  
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where 0  is the baseline firing rate, dt  is the sampling rate. ( ) / ( )E t I t  is the time course of 

optogenetically driven E and I windows, respectively, that generates the fluctuations in the 

conditional intensity function. It is determined by convolving the E and I window with a Poisson 

process generated from the stimulus sequence parameters.  

Analysis 
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Analysis was performed in MATLAB (The Mathworks). Spectral analysis was performed using 

multi-taper methods60. 

Additional details can be found in the Supplemental Experimental Procedures 
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Figure Legends 

Figure 1. Excitation and inhibition drive coherent neuronal dynamics. (A) During 

spontaneous activity, synaptic inputs drive activity in a local network. We model spiking as being 

generated from a Poisson process with a constant rate and LFP as being generated from a 

Brown noise process. Under these assumptions, spontaneous spiking is not coherent with 

spontaneous LFP. (B) To model of optogenetic stimulation of a transfected, we simulated 

pulsatile responses generated by direct activation of ChR2 channels and synaptic activity. 

Pulsatile responses are convolved with a stimulation sequence. The summed excitatory and 

inhibitory (E-I, black) components comprise the simulated LFP. The individual E (blue) and I 

(red) windows, govern the variable spiking rate in the Poisson process which generates 

coherent spiking. (C) Spontaneous activity in the model has no spike-field coherence. (D) 

Optogenetic stimulation drives correlated fields and spiking, leading to frequency selective 

spike-field coherence. 

 

Figure 2. E-I window shape controls frequency of coherent activity. (A) Idealized 

generation of frequency selective coherent neuronal dynamics. The frequency content of the 

coherent activity varies with stimulation parameters. (B) Example coherence for various 

stimulus parameters in (A). (C) Excitation, inhibition and E-I windows with varying parameters to 

alter the duration of the windows. E-I is the sum of E and I windows. (D) Spike-field coherence 

(left) and power spectral ratio (right) that result from using the E windows from (C) in the model. 

Right, frequency of peaks in the SFC (blue) and PSR (red) for each E window. (E) The same as 

(D) using I windows. (F) The same as (D) using E-I windows. (G) Differences in the peak 

frequencies for each window duration for E(black), I (yellow) and E-I (green) windows.  
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Figure 3. Optogenetic stimulation in macaque cortex. (A) Recording locations in all animals. 

The area of the circle corresponds to the number of sites recorded in each animal. (B) Example 

injection site with YFP labeled neurons and neuropil from horizontal section. Inset: image of a 

single transduced neuron. (C) Experimental design featured a 1 s stimulation pulse sequence 

followed by 1-3 s without stimulation. (D) Example raster plot (top) and PSTH (bottom) of the 

spiking response triggered on each stimulation pulse for Poisson distributed trains of 1 ms 

pulses at 10 pulse/s rate. (E) Example broadband recording during a pulse train containing 1 ms 

pulses at 10 pulse/s rate; optogenetic stimulation (blue). Inset: Response to a single pulse. (F) 

Example multiunit filtered data from (D). Inset: Stimulation-elicited spike. 

 

Figure 4. Neuronal dynamics driven by optogenetic stimulation at an example site. (A) 

Neuronal responses to 5 ms pulse duration, 20 Hz pulse rate, periodic pulse train. (i) raster (top) 

and PSTH (bottom) of the response to single light pulses (blue). (ii) Mean evoked potential for 

all the stimulation pulses that were the last in a sequence and not preceded by a prior 

stimulation pulse within 50 ms, normalized by subtracting the value of LFP activity at the onset 

of the light. Dotted line indicates 0 mV. (iii) Spike-field coherence for multi-unit activity and LFP 

measured on the same electrode. (iv) Power spectral density (PSD) of 1 s of data during 

stimulation (black line) and spontaneous activity prior to stimulation (grey line). The dotted lines 

are error bars determined by the Chi-squared test for p=0.01. Solid gray lines above the PSD 

illustrate frequency bands where the stimulus PSD was significantly different from the 

spontaneous PSD (p<0.01). (v) Power spectral ratio showing frequency specific increases in 

power due to stimulation. (vi) Time-frequency spectrogram normalized by dividing the PSD of 

the spontaneous activity. (B) Same as (A) for 20 ms, 20 pulses/s pulse rate, Poisson pulse train. 

(C) SFC for 5 ms, 10 ms, 15 ms, and 20 ms pulse durations (20 pulses/s rate) averaged across 

all sites with driven multi-unit activity for the three subjects. (D) Normalized PSR for 2 ms, 5 ms, 

8 ms, 10 ms, 12 ms, 15 ms, 18 ms, and 20 ms (20 pulses/s rate) averaged across all sites with 
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driven LFPs for the three subjects. (E) Mean frequency of peaks for the SFC (red) and PSR 

(black) for each pulse duration across all subjects. The mean SFC peak location was measured 

from the average SFC across all animals. The PSR peak location was measured individually for 

each recording site then averaged. Error bars show the standard error of the mean. 

 

Figure 5. Site specific E-I windows generate different dynamics. (A) Transfection patterns 

and network connectivity can vary within a single injection site or across injection sites or 

subjects. (B) At the example site from Fig. 3 (Site A) a 20 ms pulse drives a longer evoked 

response in LFP activity (dotted gray). This can be modelled as an E-I window (black) with 

excitatory (blue) and inhibitory (red) components that have extended durations. Using this E-I 

window in the model results in narrow band coherent dynamics at low frequencies. (C) Same as 

(B) for Site A, with a 5 ms wide pulse. (D) Same as (C) for a different site.  

 

Figure 6. Excitation window model for mapping parameterization. (A) Example E-I window 

for a empirical data using a 10 ms pulse duration temporally scaled to simulate E-I windows for 

5 ms (blue), 20 ms (green), and 50 ms (purple) pulses. (B) Top, Simulated PSRs for 2-50ms 

pulses using an example excitation window from the 10 ms condition. Black dots show the 

actual PSR peak location from the experimental data. Bottom, same as top plotted on linear 

frequency scale. (C) Top row, PSRs for simulated responses in (B) for 5 ms, 10 ms, 20 ms, and 

50 ms pulse duration conditions. Bottom row, same as top row plotted on linear frequency scale. 

Lighter, thinner lines show PSRs for experimental data. 

 

Figure 7. Excitation window model predictions for quasi-periodic stimulation 

(A) Quasi-periodic stimulation to generate stimulation pulses according to probability P(stim) = 

β(1+αsin(2πFt))Δt. β is the baseline stimulation rate and α is the modulation depth of 

stimulation. F is the frequency of interest. Δt is the sampling rate of the simulation pulse train. 
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Increasing α increases stimulation intensity at frequency F. (B) Predicted PSR for fully periodic 

stimulation (F = 35 Hz) with 15 ms evoked potentials. Inset, Linear model prediction. (C) 

Predicted PSR for quasi-periodic stimulation (F = 35 pulse/s, α = 20, β = 5). (D) Trial-by-trial 

PSRs for the simulated responses from (C). (E) Responses when varying modulation depth α. 

Other parameters as in C. (F) Responses when varying frequency F. Other parameters as in 

(C). (G) Predicted responses using evoked potentials from 2 ms pulses for F = 65 Hz (red) 

compared with results from (C) (blue). 
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rate and LFP as being generated from a Brown noise process. Under these assumptions, spontaneous spiking is not 
coherent with spontaneous LFP. (B) To model of optogenetic stimulation of a transfected, we simulated pulsatile 
responses generated by direct activation of ChR2 channels and synaptic activity. Pulsatile responses are convolved with 
a stimulation sequence. The summed excitatory and inhibitory (E-I, black) components comprise the simulated LFP. The 
individual E (blue) and I (red) windows, govern the variable spiking rate in the Poisson process which generates coher-
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correlated fields and spiking, leading to frequency selective spike-field coherence.
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Figure 3. Optogenetic stimulation in macaque cortex. (A) Recording locations in all animals. The area of the 
circle corresponds to the number of sites recorded in each animal. (B) Example injection site with YFP labeled 
neurons and neuropil from horizontal section. Inset: image of a single transduced neuron. (C) Experimental design 
featured a 1 s stimulation pulse sequence followed by 1-3 s without stimulation. (D) Example raster plot (top) and 
PSTH (bottom) of the spiking response triggered on each stimulation pulse for Poisson distributed trains of 1 ms 
pulses at 10 pulse/s rate. (E) Example broadband recording during a pulse train containing 1 ms pulses at 10 
pulse/s rate; optogenetic stimulation (blue). Inset: Response to a single pulse. (F) Example multiunit filtered data 
from (D). Inset: Stimulation-elicited spike.
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Figure 4. Neuronal dynamics driven by optogenetic stimulation at an example site. (A) Neuronal responses to 
5 ms pulse duration, 20 Hz pulse rate, periodic pulse train. (i) raster (top) and PSTH (bottom) of the response to 
single light pulses (blue). (ii) Mean evoked potential for all the stimulation pulses that were the last in a sequence 
and not preceded by a prior stimulation pulse within 50 ms, normalized by subtracting the value of the LFP at the 
onset of the light. Dotted line indicates 0 mV. (iii) Spike-field coherence for multi-unit activity and LFP measured on 
the same electrode. (iv) Power spectral density (PSD) of 1 s of data during stimulation (black line) and spontaneous 
activity prior to stimulation (grey line). The dotted lines are error bars determined by the Chi-squared test for p=0.01. 
Solid gray lines above the PSD illustrate frequency bands where the stimulus PSD was significantly different from 
the spontaneous PSD (p<0.01). (v) Power spectral ratio showing frequency specific increases in power due to 
stimulation. (vi) Time-frequency spectrogram normalized by dividing the PSD of the spontaneous activity. (B) Same 
as (A) for 20 ms, 20 pulses/s pulse rate, Poisson pulse train. (C) Mean frequency of peaks for the SFC (red) and 
PSR (black) for each pulse duration across all subjects. The mean SFC peak location was measured from the 
average SFC across all animals. The PSR peak location was measured individually for each recording site then 
averaged. Error bars show the standard error of the mean.
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Figure 5. Site specific E-I windows generate different dynamics. (A) Transfection patterns and network 
connectivity can vary within a single injection site or across injection sites or subjects. (B) At the example 
site from Fig 3 (Site A) a 20 ms pulse drives a longer evoked response in the LFP (dotted gray). This can be 
modelled as an E-I window (black) with excitatory (blue) and inhibitory (red) components that have extended 
durations. Using this E-I window in the model results in narrow band coherent dynamics at low frequencies. 
(C) Same as (B) for Site A, with a 5 ms wide pulse. (D) Same as (C) for a different site. 
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Figure 6. Excitation window model for mapping parameterization. (A) Example E-I window for a 
empirical data using a 10 ms pulse duration temporally scaled to simulate E-I windows for 5 ms (blue), 
20 ms (green), and 50 ms (purple) pulses. (B) Top, Simulated PSRs for 2-50ms pulses using an 
example excitation window from the 10 ms condition. Black dots show the actual PSR peak location 
from the experimental data. Bottom, same as top plotted on linear frequency scale. (C) Top row, PSRs 
for simulated responses in (B) for 5 ms, 10 ms, 20 ms, and 50 ms pulse widths conditions. Bottom row, 
same as top row plotted on linear frequency scale. Lighter, thinner lines show PSRs for experimental 
data.
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Figure 7. Excitation window model predictions for quasi-periodic stimulation. (A) Quasi-periodic stimu-
lation to generate stimulation pulses according to probability P(stim) = β(1+αsin(2πFt))Δt. β is the baseline 
stimulation rate and α is the modulation depth of stimulation. F is the frequency of interest.  is the sampling 
rate of the simulation pulse train. Increasing α increases stimulation intensity at frequency F. (B) Predicted 
PSR for fully periodic stimulation (F = 35 Hz) with 15 ms evoked potentials. Inset, Linear model prediction. (C) 
Predicted PSR for quasi-periodic stimulation (F = 35 pulse/s, α = 20, β = 5). (D) Trial-by-trial PSRs for the 
simulated responses from C. (E) Responses when varying modulation depth α. Other parameters as in C. (F) 
Responses when varying frequency F. Other parameters as in C. (G) Predicted responses using evoked 
potentials from 2 ms pulses for F = 65 Hz (red) compared with results from C (blue).
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