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ABSTRACT 

In light of increased co-prescription of multiple drugs, the ability to discern and predict drug-drug 

interactions (DDI) has become crucial to guarantee the safety of patients undergoing treatment with 

multiple drugs. However, information on DDI profiles is incomplete and the experimental determination 

of DDIs is labor-intensive and time-consuming. Although previous studies have explored various feature 

spaces for in silico screening of interacting drug pairs, no method currently provides reliable predictions 

outside of their training sets. Here we demonstrate for the first time targets of adversely interacting drug 

pairs are significantly more likely to have synergistic genetic interactions than non-interacting drug pairs. 

Leveraging genetic interaction features and a novel training scheme, we construct a gradient boosting-

based classifier that achieves robust DDI prediction even for drugs whose interaction profiles are 

completely unseen during training. We demonstrate that in addition to classification power—including 

the prediction of 432 novel DDIs—our genetic interaction approach offers interpretability by providing 

plausible mechanistic insights into the mode of action of DDIs. 
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INTRODUCTION 

Drug-drug interactions (DDIs) refer to the unexpected pharmacologic or clinical responses due to the co-

administration of two or more drugs 1. With the simultaneous use of multiple drugs becoming 

increasingly prevalent, DDIs have emerged as a severe patient safety concern over recent years 2. 

According to The Center for Disease Control and Prevention (CDC), the percentage of Americans taking 

three or more prescription drugs in the past 30 days increased from 11.8% in 1988-1994 to 21.5% in 

2011-2014, and the occurrence of polypharmacy, defined as the concurrent use of five or more drugs, 

increased from 4.0% to 10.9% within the same time period 3,4. Polypharmacy is especially common 

among elderly people, affecting 42.2% of Americans aged 65 years and older, exposing them to a higher 

risk of adverse DDIs. Indeed, DDIs were estimated to be responsible for 4.8% of hospitalization in the 

elderly,  a 8.4-fold increase compared to the general population 5. Overall, DDIs contribute to up to 30% 

of all adverse drug events (ADEs) 6 and account for about 74,000 emergency room visits and 195,000 

hospitalizations each year in the United States alone 3. Therefore, it has become a medical imperative to 

identify and predict interacting drug pairs that lead to adverse effects. 

 In order to facilitate identification of interacting drug pairs, a number of in vitro and in vivo 

methods have been developed. For example, drug pharmacokinetic parameters and drug metabolism 

information collected from in vitro pharmacology experiments and in vivo clinical trials can be used to 

predict interacting drug pairs 7,8. However, these methods are labor-intensive and time-consuming, and 

are thus not scalable to all unannotated drug pairs 9. In the past decade, machine learning-based in silico 

approaches have become a new direction for predicting DDIs by leveraging the large amount of 

biological and phenotypic data of drugs available. The advantage of machine learning-based approaches 

lies in their ability to perform large-scale DDI prediction in a short time frame. So far, various features 

have been explored for building DDI prediction models, including similarity-based features and network-

based features, among others. Similarity-based features characterize the similarity of the two drugs at 

question in terms of chemical structure, side effect profile, indication, target sequence, target docking, 

ATC group, etc. 10–24. Network-based features exploit the topological properties of the drug-drug 
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interaction network or the protein-protein interaction network, which relates to DDIs through drug-target 

associations 16,25–27. While these methods have yielded important information about DDIs, few methods to 

date have been able to provide insight into the molecular mechanisms of drug-drug interactions. 

To this end, in this study, we employ the genetic interaction between genes that encode the targets 

of two drugs as a novel feature for predicting interacting drug pairs that cause adverse drug reactions. We 

show that targets of adversely interacting drugs tend to have more synergistic genetic interactions than 

targets of non-interacting drugs. Exploiting this finding, we apply a machine learning framework 

(Supplementary Fig. 1) and build a gradient boosting-based classifier for adverse DDI prediction by 

integrating genetic interaction and three widely used features – indication similarity, side effect similarity 

and target similarity. We show that our model provides accurate DDI prediction even for pairs of drugs 

whose interaction profiles are completely unseen during training. Furthermore, we find that excluding the 

genetic interaction features significantly decreases the performance of our model. Through genetic 

interactions, our method provides insight into the mode of action of drugs that lead to adverse 

combinatory effects. 

 

RESULTS 

Genetic interaction profiles provide complementary information for distinguishing interacting and non-

interacting drugs 

In order to explore the separating power of various features to distinguish adversely interacting drug pairs 

from non-interacting drug pairs, we constructed a high-confidence set of adversely interacting drug pairs 

from all DDIs labeled “the risk or severity of adverse effects can be increased” in DrugBank 28 

(Supplementary Table 1). This resulted in a set of 117,045 adversely interacting drug pairs involving 

2,261 drugs. 2,195,023 non-interacting drug pairs were generated by taking all other combinations of 

these drugs before removing any drug pair that has been reported in DrugBank, TWOSIDES 29 or a 

complete dataset of DDIs compiled from a variety of sources 30. Furthermore, we required that all 

features, including indication similarity, side effect similarity, target sequence similarity and genetic 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/455006doi: bioRxiv preprint 

https://doi.org/10.1101/455006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

interaction, should be available for each drug pair. After this filtering step, 1,113 adversely interacting 

drug pairs and 11,313 non-interacting drug pairs involving 262 drugs remained.  

 Interacting and non-interacting drug pairs exhibit different distributions in terms of the four 

groups of properties that we investigated. Indications and side effects of drugs were mapped to four levels 

of the MedDRA hierarchy 31 (Fig. 1a). At every level, adversely interacting drugs are associated with 

significantly more similar side effects as well as indications than non-interacting drugs (Fig. 1b-c, 

Supplementary Fig. 2a-b). On another front, target similarity was calculated by aligning the sequences 

of the protein targets with the Smith-Waterman algorithm 32. Since a drug may have multiple protein 

targets, aggregation was performed by taking the minimum, mean, median or maximum alignment score 

for each drug pair (Fig. 1d). As expected, the maximum, mean and median target similarity between 

targets of adversely interacting drug pairs are significantly higher than those of non-interacting drug pairs 

(Fig. 1e). Interestingly, interacting drug pairs manifest a significantly lower minimum target similarity 

than non-interacting drug pairs (Fig. 1e). This could be due to the fact that interacting drugs possess a 

higher number of protein targets combined, thereby having a higher change of targeting vastly different 

targets (Supplementary Fig. 3a). These results establish indication similarity, side effect similarity and 

target similarity as informative predictors of adverse DDIs.  

Genetic interaction refers to deviation from the expected phenotype when two genes are 

simultaneously mutated 33. The combined phenotype can be less severe than expected, as in the case of 

buffering interactions, or it can be more extreme than expected, as in the case of synergistic interactions 

34. Since binding of drugs modulates the function of their targets, the genetic interaction between protein 

targets of two drugs might be associated with their joint effects. On this account, we investigated whether 

targets of adversely interacting drugs and targets of non-interacting drugs display divergent genetic 

interaction profiles. For each pair of drugs, we mapped their protein targets to the corresponding yeast 

homologs and obtained genetic interaction scores between the yeast genes from a global yeast genetic 

interaction network 35. When the minimum, mean, median or maximum genetic interaction score was 

taken for targets of each drug pair, adversely interacting drugs showed significantly lower scores than 
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non-interacting drugs irrespective of the aggregation function applied (Fig. 1f, Supplementary Fig. 2c). 

This trend can be recapitulated using a recently published human genetic interaction dataset 

(Supplementary Fig. 3b). Furthermore, genetic interaction provides complementary information that is 

not captured by target similarity, indication similarity, or side effect similarity, as seen from their poor 

correlation (Supplementary Fig. 4). Therefore, genetic interaction profiles of drug targets provide new 

information as a predictor of adverse DDIs. 

 

Building a machine learning model for predicting adverse DDIs 

To divide drug pairs into a training set and a test set for building a machine learning model, most previous 

studies randomly split their data with a specified ratio 10,16,17,19,22,23,36,37, without considering the fact that 

drugs appearing in both sets may carry extra information about their interaction propensity. Considering 

the scenario of predicting interactions of drugs without prior information about their interaction profiles, 

this splitting scheme becomes inappropriate. To address this problem, we draw on a method that 

partitions drug pairs based on drugs 14,20,21. All drugs in our constructed dataset were randomly split into 

“training drugs” and “test drugs” with a ratio of 2:1. The training set consists of all drug pairs where both 

drugs are “training drugs” and the test set comprises all drug pairs where both drugs are “test drugs” (Fig. 

2a). As a result, 475 interacting drug pairs and 4,802 non-interacting drug pairs involving 175 drugs went 

into the training set; 131 interacting drug pairs and 1,322 non-interacting drug pairs involving 87 drugs 

went into the test set.  

 To build a more interpretable model and speed up the training process, we applied a feature 

selection method known as group minimax concave penalty (MCP) 38 that have been previously 

employed on biological datasets 39. This resulted in a final group of 11 features whose values were all 

significantly different between adversely interacting drugs and non-interacting drugs (Fig. 1b-c, e-f). An 

extreme gradient boosting (XGBoost) classifier 40 was then built because of its speed and outstanding 

performance in data science competitions. We optimized hyperparameters of the classifier using the tree-

structured Parzen Estimator (TPE) approach 41, which has been shown to drastically improve the 
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performance in a recent study predicting protein-protein interaction interfaces 42. Notably, instead of 

doing cross-validation, we adopted the same drug-based splitting scheme on the training set for hold-out 

validation (Fig. 2a). This enables the model to be best tuned for predicting interacting drug pairs without 

any prior information about the interaction profiles of the drugs involved. Indeed, a previous report by Liu 

et al. showed that classifier performance dropped significantly when evaluated on a test set consisted of 

pairs of drugs completely unseen in the training set if conventional cross-validation was performed 21. Our 

novel training strategy resulted in an average area under the receiver operating characteristic curve 

(AUROC) of 0.727 and an average area under the precision-recall curve (AUPR) of 0.326 over 1,000 

trials of hold-out validation on the training set (Fig. 2b-d). When evaluated on the test set, our classifier 

achieved an AUROC of 0.689 (Fig. 2d-e) and an AUPR of 0.280 (Fig. 2d, 2f), demonstrating the 

robustness of our model. As shown in Table 1, our classifier attained a precision of 100% on the top 10 

predictions, and a precision of 65% on the top 20 predictions (Table 1). Since there is no gold-standard 

set of non-interacting drugs, it is plausible that our non-interacting drug pairs might actually contain 

adverse DDIs. Not surprisingly, some non-interacting drug pairs with the high predicted probabilities can 

be found with evidence supporting their possible adverse interactions. For example, the drug pair with a 

non-interacting label with the highest predicted interacting probability in the test set, liothyronine and 

tretinoin, has been indicated to potentially cause intracranial pressure increase and a higher risk of 

pseudotumor cerebri when taken together43. Furthermore, diazoxide and spironolactone, predicted with an 

interacting probability of 0.846, have been reported to induce asthma, cardice hypertrophy and pulmonary 

edema according to FDA reports when co-administrated 44.  

 To demonstrate the utility of our method, we obtained 5,039 drug pairs involving 295 drugs that 

had not been used for training and testing (Supplementary Fig. 6). After refitting our model on all 

12,426 drug pairs that were used to develop our method, we predicted 432 novel DDIs (Supplementary 

Table 2). Remarkably, out of the top 20 newly predicted adversely interacting drug pairs, 9 can be 

verified in the TWOSIDES database (Table 2), manifesting the reliability of our method.  
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Genetic interaction provides mechanistic insight into drug-drug interactions 

We investigated the contribution of genetic interaction features to classifier performance by building and 

tuning a new model without them. Excluding genetic interaction features significantly decreases classifier 

performance when either AUROC or AUPR is examined (Fig. 2b-d). This establishes genetic interaction 

as an important feature in our model for predicting DDIs, providing complementary information that 

other features cannot capture. 

 More importantly, genetic interaction can help us generate plausible mechanistic explanations for 

drug-drug interactions. For example, mesalazine and dexamethasone, both of which are anti-inflammatory 

drugs, are a pair of drugs in the test set that have been labeled as adversely interacting. Mesalazine can 

target the IKBKB protein, whereas dexamethasone can target NOS2, which plays important roles in nitric 

oxide signaling. In yeast, double knockout of ATG1 and TAH18, the respective yeast homologs of IKBKB 

and NOS2, exhibits a more negative impact on cell viability than expected from single knockout 

phenotypes 35. In human, IKBKB can phosphorylate the NF-kB inhibitor and activate NF-kB 45, which is 

a family of transcription factors involved in inflammation and immunity. Notably, the transcription of 

NOS2 is induced by NF-kB activity 46. Mesalazine has been shown to inhibit IKBKB, thereby inhibiting 

the activation of NF-kB, while dexamethasone is a negative modulator of NOS2. A previous study has 

reported that dexamethasone can decrease NOS2 translation and facilitate NOS2 degradation in rat 47 

(Fig. 3a). The combined use of mesalazine and dexamethasone may largely reduce the amount of NOS2, 

potentially affecting neurotransmission, antimicrobial and antitumoral activities. 

 As another example, arsenic trioxide and mexiletine are a pair of drugs not labelled as adversely 

interacting in DrugBank, but predicted by our model to interact with high probability. As a chemotherapy 

drug for acute promyelocytic leukemia (APL), arsenic trioxide has been reported to decrease the activity 

of a serine/threonine-protein kinase AKT1 48. On the other side, mexiletine is a sodium channel blocker 

that has also been used as part of a prophylactic therapy to treat APL patients to reduce cardiac 

complications 49. PKC1, the yeast homolog of AKT1, exhibits strong synergistic interaction with CCH1 
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35,50, which is the homolog of SCN5A, the gene encoding the sodium channel NAv1.5 targeted by 

mexiletine. In human, the transcription of SCN5A is repressed by FOXO1, whose transcriptional 

repression activity is in turn inactivated by AKT1-dependent phosphorylation 51 (Fig. 3b). Therefore, the 

simultaneous inhibition of AKT1 and the sodium channel by the two drugs may reduce sodium influx in 

cardiac cells to a greater extent, potentially causing undesired adverse effects. Indeed, this pair of drugs is 

reported by TWOSIDES as interacting, providing additional supporting evidence to their adverse 

interaction. 

 

DISCUSSION 

In the past decade, many methods have been developed for predicting DDIs based on various types of 

features. In this study, we have incorporated a novel feature, namely genetic interaction, to build a 

gradient boosting-based model for fast and accurate adverse DDI prediction. We have shown that our 

classifier can robustly predict drug-drug interactions even for drugs whose interaction profiles are 

completely unseen during training. Furthermore, we have predicted 432 novel DDIs, with additional 

evidence supporting our top predictions, demonstrating the usefulness of our approach.  

 Most previous efforts of predicting DDIs suffer from an inability to make predictions for newly 

developed drugs due to train-test split based on drug pairs rather than drugs 10,16,17,19,22,23,36,37. Three studies 

attempted to address this problem by dividing the entire dataset based on drugs 14,20,21. However, they 

failed to do so during the training phase, resulting in an inflated performance on the training set. We have 

followed the drug-based train-test splitting scheme and have adopted a hold-out validation approach to 

avoid using overlapping drug sets for fitting the model and evaluating its performance. By doing so, we 

have achieved robust performance on the training set and the test set, which establishes the ability of our 

method to predict new DDIs for drugs whose interaction profiles are completely unknown. 

 By examining genetic interactions, our method provides mechanistic insights into how two drugs 

may interact in a detrimental fashion. The combined modulatory effect resulted from binding of two drugs 

to their respective targets might underlie adverse DDIs, and genetic interaction gives valuable information 
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about the nature of such combined effect. Indeed, we have observed that genetic interaction features are 

indispensable to our classifier performance. Nevertheless, our work is limited by the lack of a global 

human genetic interaction network. As a surrogate for human genetic interactions, genetic interactions of 

yeast homologs were used in this study. Fortunately, large-scale human genetic interaction studies are 

coming into sight. Using a recently published dataset of human genetic interactions encompassing 

222,784 gene pairs 52, we have found that the distribution of human genetic interaction scores vary 

significantly between adversely interacting drugs and non-interacting drugs (Supplementary Fig. 2b). 

With the continuous advancement of technologies for probing human genetic interactions including 

CRISPR interference, we anticipate that a more comprehensive map of human genetic interactions will 

become available in the near future, which could illuminate adverse DDI prediction to a larger extent.  
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Figure Legends 

 

Figure 1. Adversely interacting drug pairs and non-interacting drug pairs significantly differ with regard 

to the 11 features selected. (a) Schematics of calculating indication similarity and side effect similarity 

features. (b) Indication similarity score of hierarchy level PT, HLGT and SOC between two drugs. (c) 

Side effect similarity score of hierarchy level HLT and HLGT between two drugs. (d) Schematics of 

calculating target sequence similarity and genetic interaction features. (e) Minimum, mean, median and 

maximum target sequence similarity score between targets of two drugs. (f) Minimum and maximum 

genetic interaction score between targets of two drugs. (Statistical significance determined by two-sided 

Mann-Whitney U test) 

 

Figure 2. The train-test splitting scheme and model performance on the test set. (a) The train-test splitting 

scheme. Drugs are randomly divided into “training drugs” and “test drugs” with ratio of 2:1. Training set 

only consists of drug pairs constituted by “training drugs” and test set only consists of drug pairs 

constituted by “test drugs”. Training drugs are further split into “training drugsi” and “validation drugsi” 

with the same splitting scheme to obtain training seti and validation seti in the training phase. For each 

iteration of hold-out validation, the classifier is fit with training seti  and evaluated with validation seti. 

Purple squares represent non-interacting drug pairs in training seti. Blue squares represent non-interacting 

drug pairs in validation seti. Green squares represent non-interacting drug pairs in test set. Red squares 

represent interacting drug pairs in each set. Grey squares represent unused drug pairs. (b) Approximate 

receiver operating characteristic (ROC) curves on the training set. (c) Approximate precision-recall 

curves on the training set. (d)AUROCs and AUPRs on the training set and the test set. (e) Receiver 

operating characteristic (ROC) curve on the test set. (f) Precision-recall curve on the test set. 

 

Figure 3. Genetic interaction provides possible mechanistic insights into DDIs. (a) Mesalazine inhibits 

IKBKB, a positive regulator of NF-kB activity, and NF-kB is a transcription factor which induces NOS2 

transcription. Dexamethasone can inhibit the transcription of NOS2 and facilitate degradation of 

NOS2. The combined use of dexamethasone and mesalazine could potentially reduce the amount of 

NOS2 in cells to a large extent, which may affect neurotransmission, antimicrobial and antitumoral 

activities. (b) Mexiletine targets NAv1.5, a sodium channel encoded by SCN5A, while arsenic trioxide 

targets AKT1. The transcription of SCN5A is repressed by the transcriptional repressor FOXO1. AKT1 

can activate the transcription of SCN5A by phosphorylating FOXO1. The combined use of mexiletine and 

arsenic trioxide could inactivate the transcription of SCN5A and at the same time block the existing 

sodium channel, which may largely reduce sodium influx in cardiac cells.  
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Table 1. Top 20 DDI predictions in the test set.  

 

Table 2. Top 20 new adverse DDI predictions.  

 

Supplementary Figure 1. Schematics of our DDI prediction framework. Four groups of features were 

calculated for each drug pair. Drug pairs were then divided into a training set and a test set. A gradient 

boosting-based model was built on the training set after feature selection. Model performance was 

evaluated on training set using hold-out validation and also on the test set. We demonstrate the 

importance of our novel feature with a case study and provide novel DDI predictions at the end. 

 

Supplementary Figure 2. The distribution of adversely interacting drug pairs and non-interacting drug 

pairs in terms of the 5 unused features. (a) Indication similarity score of hierarchy level HLT between two 

drugs. (b) Side effect similarity score of hierarchy level PT and SOC between two drugs. (c) Mean and 

median genetic interaction score between targets of two drugs. (Statistical significance determined by 

two-sided Mann-Whitney U test) 

 

Supplementary Figure 3. (a) The total number of protein targets between two drugs. (b) Minimum, 

mean, median and maximum human K562 cell line genetic interaction score between targets of two 

drugs. (Statistical significance determined by two-sided Mann-Whitney U test) 

 

Supplementary Figure 4. The correlation between genetic interaction features and other features.  

 

Supplementary Figure 5. Values of hyperparameters of the XGBoost model over 2000 TPE iterations.  

 

Supplementary Figure 6. Construction of a set of drug pairs used for new predictions. All combinations 

between drugs that appear in the first category in DrugBank and other drugs, as well as all pairwise 

combinations of drugs not in the first category, are taken for new predictions. Green squares represent 

drug pairs used for building the classifier. Grey squares represent unused drug pairs. Blue squares 

represent drug pairs used for new predictions. 

 

Supplementary Table 1. Five main DDI categories in DrugBank.  

 

Supplementary Table 2. A list of 432 new adverse DDI predictions. 
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ONLINE METHODS 

Data collection 

We obtained DDI data from DrugBank (version 5.0.10) 28. Among the 5 major interaction categories in 

DrugBank (Supplementary Table 1), we only considered the first category as they were clearly defined 

as adverse DDIs. Non-interacting drug pairs were constructed by taking all other combinations using the 

same set of drugs, removing drug pairs also appearing in other categories in DrugBank, TWOSIDES 29, or 

a complete dataset of DDIs 30 compiled from a number of sources. This minimizes the chance of having 

actual adverse DDIs in the non-interacting set given the absence of a gold standard set of non-interacting 

drug pairs. From DrugBank, we also collected human protein targets of drugs and their sequences.  

Side effects were obtained from SIDER 4.1 53 and OFFSIDES 29. Both databases use UMLS 

concept IDs as their side effect identifiers. However, as reported by Zhang et al. 20, some side effect terms 

are similar, and synonyms could cause biases when calculating side effect similarity. To solve this 

problem, we obtained mapping from UMLS concept IDs to MedDRA concept IDs from the 2017AB 

release of UMLS 54. Furthermore, we obtained the full MedDRA hierarchy from MedDRA (version 21.0) 
31. This allowed us to map UMLS concept IDs to different levels (PT, HLT, HLGT and SOC) of the 

MedDRA hierarchy. Similar to side effect data, indications of drugs were acquired from SIDER 4.1 53 and 

mapped to the same 4 levels of the MedDRA hierarchy. 

For genetic interactions, we obtained yeast genetic interactions from Costanzo et al. 35. We first 

filtered all genetic interactions by a p-value cutoff of 0.05 and aggregated the scores of all combinations 

of alleles of each yeast gene pair by applying the arithmetic mean. Drug targets in the form of UniProt 

IDs were mapped to gene names by UniProt 55 and these human genes were mapped to their yeast 

homologs via SGD YeastMine 56. For human gene pairs mapped to multiple yeast gene pairs, we obtained 

a single score for each human gene pair by applying the arithmetic mean. 

 

Feature extraction and the train-test split 

For a drug pair (A,B), four groups of features were calculated (Fig. 1a, d): indication similarity scores 

between A and B, side effect similarity scores between A and B, target sequence similarity scores 

between targets of drug A and targets of drug B, and genetic interaction scores between targets of drug A 

and targets of drug B. Indications and side effects of drugs were mapped to 4 different levels of the 

MedDRA hierarchy as described above. At each level, indication similarity was calculated by taking the 

Jaccard index between the respective indication vectors of drug A and drug B (Fig. 1a). Similarly, side 

effect similarity was calculated by applying the same measure on the side effect vectors at the 4 different 

MedDRA hierarchy levels (Fig. 1a). For genetic interactions, since each drug can have multiple targets, 

we obtained a single score for each drug pair by aggregating the genetic interaction scores of all their 
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corresponding target pairs using 4 different functions, namely taking the minimum, mean, median or 

maximum (Fig. 1d). Similarly, the same 4 functions were used for constructing target similarity features, 

which was calculated from the target sequences with the Smith-Waterman algorithm using the scikit-bio 

Python library. The raw scores were normalized as described in Bleakley et al. 57. Overall, 16 features 

belonging to 4 feature groups were constructed. Only drug pairs with all features available were 

considered when building the machine learning model. All drugs were randomly split into “training 

drugs” and “test drugs” with a 2:1 ratio. The training set consisted of all drug pairs where both drugs were 

“training drugs” and the test set consisted of all drug pairs where both drugs were “test drugs” (Fig. 2a). 

We constrained the fraction of adversely interacting drug pairs in the training set and that in the test set to 

be fairly balanced. To obtain the optimal feature combination, we calculated all features for the training 

set and applied group minimax concave penalty (MCP) 38 with the ‘grpreg’ R package with default 

parameters. All subsequent training was done using this optimal set of features. 

 

Hyperparameter optimization and classifier training 

The gradient boosting-based algorithm XGBoost 40 was used in this study. To find the best combination 

of hyperparameters for the XGBoost classifier, the tree-structured Parzen estimator (TPE) approach 41 

was adopted. Because of the drug-based approach by which we split our dataset into training and test sets, 

we applied the same splitting scheme on the training set multiple times to obtain training seti and 

validation seti instead of simply using cross-validation. Each split on the training set can be seen as a 

hold-out validation, as we used training seti to fit the model and validated model performance on 

validation seti. We selected the average AUPR of 50 trials of hold-out validation as the loss function to 

minimize for TPE, and we ran TPE for 2,000 iterations to obtain set of hyperparameters that minimized 

the loss function for our XGBoost classifier (Supplementary Fig. 5). After finding the optimal set of 

hyperparameters, we fit the model on the complete training data.  

 

Model evaluation 

Model performance on training set was evaluated by 1,000 runs of hold-out validation on the training set. 

For each hold-out validation, we fitted the model on training seti and obtained AUROC and AUPR. We 

averaged AUROC and AUPR over 1,000 runs of hold-out validation as measurements of the performance 

of the model. Approximate ROC curve and precision-recall curve (Fig. 2b-c) were plotted by averaging 

the 1,000 ROC curves and 1,000 precision-recall curves respectively at every thousandth of a point on the 

x-axis. In order to evaluate the ability of the classifier to identify drug-drug interactions between drugs 

whose interaction profiles were completely unknown during training, the model was evaluated on the test 
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set which had no overlap with the training set in terms of the drugs involved. Predictions were ranked 

according to their raw prediction scores to produce the ROC curve and the precision-recall curve. 

 

Making new predictions 

To make novel adverse DDI predictions, we examined all combinations of drugs that appeared in 

DrugBank, excluding drug pairs where both drugs were involved in the first category of DDIs 

(Supplementary Fig. 6), which we used for building the machine learning model. We then predicted 

6,690 drug pairs involving 336 drugs for which all features could be calculated using the classifier 

retrained on the whole dataset. The probability cutoff that produced the maximum averaged F1 score over 

1,000 runs of hold-out validation on the training set was chosen for determining new DDI predictions. 
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ID1 ID2 Drug name1 Drug name2 Label Probability 
DB01076 DB01098 Atorvastatin Rosuvastatin 1 0.9943 
DB01076 DB01095 Atorvastatin Fluvastatin 1 0.9938 
DB00381 DB00421 Amlodipine Spironolactone 1 0.9889 
DB00880 DB00887 Chlorothiazide Bumetanide 1 0.9704 
DB00313 DB01356 Valproic Acid Lithium cation 1 0.9614 
DB00887 DB00999 Bumetanide Hydrochlorothiazide 1 0.9463 
DB00880 DB01119 Chlorothiazide Diazoxide 1 0.8835 
DB00421 DB01076 Spironolactone Atorvastatin 1 0.8815 
DB00421 DB00622 Spironolactone Nicardipine 1 0.8753 
DB00999 DB01119 Hydrochlorothiazide Diazoxide 1 0.8723 
DB00279 DB00755 Liothyronine Tretinoin 0 0.8677 
DB00162 DB00755 Vitamin A Tretinoin 1 0.8610 
DB00477 DB01098 Chlorpromazine Rosuvastatin 0 0.8601 
DB00421 DB01119 Spironolactone Diazoxide 0 0.8457 
DB00313 DB00523 Valproic Acid Alitretinoin 0 0.8419 
DB05015 DB06176 Belinostat Romidepsin 0 0.8378 
DB01065 DB01069 Melatonin Promethazine 1 0.8342 
DB00622 DB01076 Nicardipine Atorvastatin 1 0.7995 
DB00755 DB00900 Tretinoin Didanosine 0 0.7962 
DB00162 DB01212 Vitamin A Ceftriaxone 0 0.7858 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/455006doi: bioRxiv preprint 

Charles Liang
Table 1

https://doi.org/10.1101/455006
http://creativecommons.org/licenses/by-nc-nd/4.0/


ID1 ID2 Drug name1 Drug name2 Probability In Twosides 
DB00347 DB01189 Trimethadione Desflurane 0.9750 No 
DB00136 DB00630 Calcitriol Alendronic acid 0.9739 Yes 
DB00417 DB01050 Phenoxymethylpenicillin Ibuprofen 0.9699 Yes 
DB00228 DB00347 Enflurane Trimethadione 0.9680 No 
DB00347 DB00753 Trimethadione Isoflurane 0.9668 No 
DB00347 DB01236 Trimethadione Sevoflurane 0.9656 No 
DB00887 DB01586 Bumetanide Ursodeoxycholic acid 0.9567 Yes 
DB00532 DB01189 Mephenytoin Desflurane 0.9531 No 
DB00532 DB01236 Mephenytoin Sevoflurane 0.9521 No 
DB00228 DB00532 Enflurane Mephenytoin 0.9466 No 
DB01067 DB01083 Glipizide Orlistat 0.9456 Yes 
DB00731 DB01016 Nateglinide Glyburide 0.9430 Yes 
DB01050 DB01053 Ibuprofen Benzylpenicillin 0.9422 No 
DB00532 DB00753 Mephenytoin Isoflurane 0.9368 No 
DB00421 DB01216 Spironolactone Finasteride 0.9333 Yes 
DB00162 DB00165 Vitamin A Pyridoxine 0.9260 No 
DB01236 DB04930 Sevoflurane Permethrin 0.9250 No 
DB00284 DB00731 Acarbose Nateglinide 0.9199 Yes 
DB00136 DB00273 Calcitriol Topiramate 0.9132 Yes 
DB00877 DB01586 Sirolimus Ursodeoxycholic acid 0.9122 Yes 
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