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Abstract 
Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when                 
sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged, and has had a                 
major impact on models of perception 1, sensorimotor function 2,3, and cognition 4. However, it is not known                  
how recurrent interactions among neurons mediate Bayesian integration. Using a time interval reproduction             
task in monkeys, we found that prior statistics warp the underlying structure of population activity in the frontal                  
cortex allowing the mapping of sensory inputs to motor outputs to be biased in accordance with Bayesian                 
inference. Analysis of neural network models performing the task revealed that this warping was mediated by a                 
low-dimensional curved manifold, and allowed us to further probe the potential causal underpinnings of this               
computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their               
influence on behavior by sculpting cortical latent dynamics. 
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Introduction 

Past experiences impress upon neural circuits information about statistical regularities of the environment,             
which help us in all manners of behavior, from reaching for one’s back pocket to tracking a friend’s voice in a                     
crowd and making inferences about others’ mental states. There is, however, a fundamental gap in our                
understanding of how behavior exploits statistical regularities in relation to how the nervous system represents               
past experiences. The effect of statistical regularities on behavior is often described in terms of Bayesian                
theory, which offers a powerful and principled framework for understanding the combined effect of prior beliefs                
and sensory evidence in perception 1, cognition 4, and sensorimotor function 2,3.  

On the other hand, the effects of experience on neural activity have been described in terms of cellular                  
mechanisms that govern the response properties of neurons 5. For example, natural statistics are thought to                
shape tuning properties and/or spontaneous activity of neurons through adjustments of synaptic connections in              
early sensory areas 6–10. Single-unit responses in higher-level cortices also encode recent sensory events 11,               
motor responses 12–14, and reward probabilities 15–18. However, an understanding of how experience-dependent             
neural representations enable Bayesian computations is lacking.  

Recent studies have focused on an analysis of the geometry and structure of in-vivo cortical activity in trained                  
animals and in-silico activity in trained recurrent neural networks (RNNs) to gain a deeper understanding of                
how neural dynamics might give rise to behaviorally-relevant computations 19–27. Following this emerging             
multidisciplinary approach, we analyzed the geometry of neural activity in the frontal cortex of monkeys and                
in-silico activity in RNNs in a Bayesian timing task, and found strong evidence that prior statistics establish                 
curved manifolds of neural activity that cause the underlying representations of time to be biased in                
accordance with Bayes-optimal behavior. 

Task and behavior 

We trained rhesus macaques to perform a time-interval reproduction task in which we could readily manipulate                
the prior belief and sensory uncertainty independently (Figure 1a). We refer to this as the Ready-Set-Go (RSG)                 
task. Every trial was initiated by two fixation cues, a circle that the animal had to fixate and a square that                     
instructed the animal to hold a joystick in its central position. While fixating, two visual flashes – Ready followed                   
by Set – provided the first two beats of an isochronous rhythm. The animal was required to estimate the                   
sample interval, ts, between Ready and Set (i.e., estimation epoch), and use this information in the subsequent                 
production epoch to generate the omitted third beat (Go) by either initiating a saccade or moving the joystick to                   
the left or right, depending on the location of a target cue in the periphery. Monkeys received reward if the                    
produced interval, tp, between Set and Go was sufficiently close to ts (Figure 1b).  

To examine the neural basis of Bayesian integration, a critical aspect of the experimental design was that ts                  
was sampled from one of two prior distributions, a ‘Short’ prior ranging between 480 and 800 ms, and a ‘Long’                    
prior ranging between 800 and 1200 ms (Figure 1c). Since the two prior conditions had an overlap at ts = 800                     
ms, the task offered a unique opportunity to characterize the representation of prior beliefs and how they might                  
be integrated with ongoing sensory measurements. The full experiment consisted of eight conditions: two prior               
conditions (‘Short’ and ‘Long’), two response modalities (‘Eye’ and ‘Hand’), and two target directions (‘Left’ and                
‘Right’). The prior condition and the desired effector switched across blocks of trials (block length: 4.0 ± 4.4                  
trials; uniform hazard) and were cued explicitly throughout every trial by the color of the fixation cues (Figure                  
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1d). The target direction was chosen randomly across trials. The rationale for including two response               
modalities and two directions of response was to ensure that the neural correlates of Bayesian integration we                 
identified would generalize across multiple experimental conditions. 

To verify that animals learned to perform the task, we used a regression analysis to assess the dependence of                   
tp on ts (Figure 1e, Figure S1). For both animals, the regression slope was positive in all conditions (Figure 1e,                    
Table S1), demonstrating that their behavior correctly followed task contingencies. An important feature in both               
animals’ behavior was that the regression slopes were less than unity (Figure 1e, Table S1) indicating that                 
animals systematically biased their responses toward the mean of the cued prior, consistent with Bayesian               
integration 28. In particular, the bias at the overlapping ts of 800 ms was in the opposite direction depending on                    
the prior condition (rank-sum test, p<10 -43 in animal H, p<10 -75 in G; also see complementary analysis in Table                  
S2). Importantly, this influence of prior on the bias was present immediately after block transitions, indicating                
that the animals were able to rapidly switch between priors using the cues (Figure S2). Bayes-optimal behavior                 
additionally predicts that biases should be stronger for the Long prior condition for which measured intervals                
are more variable due to the scalar property of noise in interval timing 29. Consistent with this prediction, we                   
found that the regression slope for the Short prior was significantly larger than that for the Long prior (Figure                   
S1, Table S1). Finally, in agreement with previous work on variants of the RSG task in humans and monkeys                   
28,30,31, we found that behavioral statistics across animals, prior conditions and effectors were accurately              
captured by a Bayesian observer model (Figure S3, Table S3). Based on these results, we reasoned that the                  
RSG task with two overlapping priors and various levels of measurement uncertainty is a suitable platform for                 
investigating the representation of prior beliefs and the computational principles of Bayesian integration at the               
neural level.   
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Figure 1. Task and behavior. a) Schematic of a single trial of the Ready-Set-Go task. A circle and a square fixation spot are                       
presented at the center of the screen. The monkey fixates the circle and holds a joystick in center position. After a variable delay, a                        
white target is presented to the left or right along the horizontal meridian. After another variable delay, a sequence of two flashes –                       
Ready followed by Set – are presented around the fixation spot. The animal has to estimate the sample interval, ts, between Ready and                       
Set (estimation epoch), and generate a delayed response toward the target either via a saccade or a movement of the joystick                     
(production epoch). The produced interval, tp, between Set and movement initiation time (Go) has to match ts. b) Feedback. The                    
monkey receives juice as reward (green region) if the relative error ( tp-ts)/t s is smaller than 0.15. Within this window, the amount of                      
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reward decreases linearly with the magnitude of error. At the time of feedback (i.e., immediately following the response), the target                    
color changes to green or red in rewarded or non-rewarded trials, respectively. c) Prior distributions of ts. On each trial, ts is sampled                       
from one of two discrete, uniform prior distributions (‘Short’ and ‘Long’) partially overlapping at ts = 800 ms. d) Trial types. The                      
experiment consisted of 8 trial types: 2 prior conditions (Short and Long) x 2 effectors (Eye and Hand) x 2 target directions (Left and                        
Right). The target direction was chosen randomly on a trial-by-trial basis. The 4 conditions associated with prior and effector were                    
randomly interleaved across blocks of trials (see Methods for details). The block type was cued throughout the trial by the fixation spot:                      
red circle and white square for Eye Short, red square and white circle for Hand Short, blue circle and white square for Eye Long, and                         
blue square and white circle for Hand Long. e) Behavior. Top: A representative session showing individual t p values pooled across                    
effectors and target directions (small filled circles) and corresponding averages (large open circles) for each ts for monkey H. The                    
horizontal location of individual dots for each t s was jittered to facilitate visualization of individual tp values associated with each ts. The                      
red and blue lines are predictions based on fits of a single Bayesian model for both Short and Long prior conditions (see Methods and                        
Figure S3). The diagonal shows the unity line. Right: Histograms of t p for the overlapping ts of 800 ms (horizontal dashed line) for each                        
of the two prior conditions (Short: orange; Long: blue) with the corresponding averages (triangles). Top-left inset: Average error (i.e.,                   
bias) for each ts (data: circles; Bayesian model: solid lines). Bottom-right inset: Slopes of regression lines relating tp to ts. We used                      
weighted linear regression to fit a line to individual data points for each prior condition separately (see Methods). Results for individual                     
sessions is shown as small dots connected by gray lines, and the corresponding averages are shown as open circles connected by a                      
black line. Bottom: The same as top for Monkey G.  
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Electrophysiology 

While animals performed the task, we recorded single-unit and multi-unit activity in the dorsomedial frontal               
cortex (DMFC; N=617 and 741 in H and G, respectively) including the supplementary eye field (SEF), the                 
dorsal region of the supplementary motor area (SMA), and pre-SMA. Our choice of recording areas was                
motivated by previous work showing a central role for DMFC in motor timing, movement planning and learning                 
in humans 32–37, monkeys 38–53, and rodents 54–60.  

During the estimation epoch, firing rates of single neurons were heterogeneous and exhibited rich dynamics               
that varied across experimental conditions (Figure 2a, see Figure S4 for more examples). A substantial               
proportion of neurons had distinct response dynamics depending on the prior condition (Figure 2a(i,iii,iv,v)).              
This observation is remarkable given that the two priors were switched rapidly across short blocks of trials.                 
Indeed, knowledge about the prior condition altered neural responses at the very first trial after block                
transitions (Figure S5). We used a generalized linear model to quantify the degree to which spike counts of                  
individual neurons during the support of the prior were modulated by elapsed time and the prior condition (see                  
Methods). Results indicated that the activity of approximately 30% of neurons were modulated by time (27%                
Monkey H, 31% Monkey G; Figure 2c). As suggested by previous modeling studies, populations of neurons                
with such rich time-dependent responses may serve as a substrate for tracking elapsed time 61,62. Nearly 60%                 
of neurons changed their firing rate depending on the prior condition (65% Monkey H, 62% Monkey G; Figure                  
2c). The strong and systematic modulation of neural responses by the prior condition suggests that the                
neurons in this area were modulated according to the animal’s belief about the prior distribution of ts.  

Many DMFC neurons were also strongly modulated during the production epoch and exhibited temporally              
complex and heterogeneous patterns of activity (Figure 2b; see Figure S4 for more examples). Responses               
were often different at the time of Set because of prior- and ts-dependent modulations during the preceding                 
estimation epoch. The presentation of Set was followed by transient modulations of firing rates, for about 200                 
ms (Figure 2b(i-iii,v)). Following this transient modulation, neurons exhibited a range of monotonic (e.g.,              
ramping) or non-monotonic response profiles that were often organized systematically according to ts             
irrespective of the prior condition (Figure 2b(i-iii,v,vi)). A qualitative assessment indicated that responses of              
many neurons were temporally scaled with respect to ts (i.e., stretched in time for longer ts), an effect that was                    
most conspicuous as a change of slope among the subset of ramping neurons (Figure 2b(ii,vi)). This temporal                 
scaling is consistent with recent recordings in this area in a range of simple motor timing tasks 20,21,43,44,59. 

Several lines of evidence have led to the hypothesis that the relationship between neurons with such complex                 
activity profiles and the computations they perform may be understood through population level analyses that               
depict the collective dynamics as neural trajectories governed by a dynamical system 63–66. Recent              
population-level analyses of neural activity in various higher cortical areas in a number of motor and cognitive                 
tasks have provided support for this hypothesis 19–23,67–71. Following this line of work, we applied principal                
component analysis (PCA) to visualize the evolution of DMFC neural trajectories for various experimental              
conditions (see Methods). Our initial analysis indicated that neural responses associated with different             
effectors, target directions and epochs resided in different regions of the state space (Figure S6). Therefore,                
we applied PCA to trial-averaged neural responses across experimental conditions and task epochs             
separately.  
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For all datasets, the population activity in each epoch was relatively low dimensional: 3-4 principal components                
(PC) in the estimation epoch and 5-10 PCs in the production epoch explained nearly 75% of total variance                  
(Figure S7). In the estimation epoch, neural trajectories associated with the two prior conditions were different                
at the time of Ready and became progressively more distinct throughout their evolution (Figure 2d; Movie S1).                 
The most salient feature of population activity in this epoch was a rotation of neural trajectories that was                  
temporally tuned to the support of the prior; i.e., approximately between 480 and 800 ms in the Short prior and                    
between 800 and 1200 ms in the Long prior. The presence of rotational dynamics for the two priors was                   
consistent with tuned responses of single neurons, many of which had nonlinear activity profiles that were                
specific to the support of the priors (Figure 2a(i,iii,iv)). Remarkably, these features were present in all                
experimental conditions (Figure S7) despite the fact that the corresponding neural activity patterns resided in               
different parts of the state space (Figure S6). These observations suggest that the rotational dynamics in                
DMFC may be the key for understanding the neural basis of Bayesian integration in the RSG task. 

In the production epoch, consistent with observations of single neurons (Figure 2b), trajectories were at               
different initial states at the time of Set (Figure 2e; Movie S2). The Set flash caused a rapid displacement of                    
neural states for nearly 200 ms. After the transient Set-triggered response, neural trajectories had an orderly                
structure with respect to ts and evolved toward a common terminal state (Go). A notable feature of neural                  
trajectories in this epoch after the initial transient was an inverse relationship between ts and the speed with                  
which responses evolved toward their terminal state. This effect was manifest in the displacement of neural                
states in 20-ms increments along neural trajectories associated with different ts intervals (Figure 2e).              
Specifically, neural trajectories appeared to evolve progressively slower for longer ts. Again, these features              
were expected based on the activity profile of single neurons (Figure 2b). The Set-triggered transient response                
was evident in the firing rate of single neurons (Figure 2b), and the change in speed was reflected in the                    
temporal stretching of response profiles of many single neurons (Figure 2b (ii,iii,vi)). Both the role of speed in                  
the control of movement initiation time 21, and the importance of initial state in adjusting the speed 20 have been                    
demonstrated previously. The question that remains is how the brain utilizes a representation of the prior                
during the estimation epoch to set a suitable initial condition after Set so that the speed of the ensuing                   
trajectories can take the information about the prior into account. 
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Figure 2. DMFC response profiles and neural trajectories. a) Firing rate of 6 example neurons during the estimation epoch labeled                    
by Roman numeral (i-vi). Different shades of red and blue correspond to different ts intervals for the Short and Long prior conditions,                      
respectively. Traces show activity from the time of Ready (vertical dashed line) to the time of Set (open circles), and the support of the                        
prior is shown top left. Firing rates were obtained by smoothing averaged spike counts in 1-ms bins using a Gaussian kernel with a                       
standard deviation of 25 ms. The label of each panel (e.g., H7_3011e) indicates the animal (H versus G) and the effector (e for Eye and                         
h for Hand) associated with the traces. b) Firing rate of the same 6 neurons during the production epoch. Due to animals’ behavioral                       
variability, production epochs for the same ts were of different durations. The plot shows the average activity of neurons from the time of                       
Set (vertical dashed line) to the minimum t p for each ts. The color scheme is the same as panel a. c) A pie chart illustrating the                          
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proportion of neurons whose spike count during the prior support were dependent on the prior (“prior-dep.”) and/or ts (“ ts-dep.”),                   
determined by a generalized linear model (see Methods). The green region includes neurons that were only prior-dependent, the dark                   
red, neurons that were only ts-dependent, light red, neurons that were both prior- and ts-dependent, white, the remaining neurons. d)                    
Neural trajectories during the estimation epoch. A representative dataset is shown (Monkey H, Eye Left condition, see Figure S7 for                    
other datasets). Trajectories are depicted in the subspace spanned by the first three principal components (PCs) in the estimation                   
epoch using the same color scheme as in panel a. Triangles and circles represent the time of Ready and Set, respectively. Arrows                      
illustrate the direction along which the trajectories evolve with time. e) Neural trajectories in the production epoch. Circles and squares                    
represent the time of Set and Go, respectively (see Methods for how trials with different durations were handled). For each prior                     
condition, the dashed line connects the neural states along the different trajectories 200 ms after Set. The small dots along each                     
trajectory show neural states at 20-ms increments. The distance between consecutive dots is proportional to the speed at which activity                    
evolves along a neural trajectory (e.g., higher speed for dark red compared to light blue). 
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Bayesian sensorimotor integration through latent dynamics 

The common feature present across all experimental conditions in the state space was the rotation of neural                 
trajectories during the support of the prior. How can a rotating trajectory encode prior belief and support                 
Bayesian integration? An inherent property of a curved trajectory is that when it is projected onto a line                  
connecting the two ends of the trajectory, equidistant points along the trajectory become warped. In other                
words, points near the ends of the projected line become biased toward the middle (Figure 3a), which is similar                   
to the effect of Bayesian integration on the behavior (Figure 1e). This realization inspired the following                
hypothesis regarding how the rotation might serve as a substrate for Bayesian integration: neural states               
evolving along the rotating trajectory provide an implicit, moment-by-moment representation of the Bayesian             
estimate of elapsed time that could be decoded when projected onto a line in the state space.  

To test this hypothesis, we asked whether projections of neural states during the support of the prior onto a                   
one-dimensional ‘encoding axis’ could cause a regression to the mean consistent with Bayes-optimal behavior.              
Naturally, the answer depends on the choice of the encoding axis. Based on our understanding of the                 
geometry of the problem (Figure 3a), we reasoned that a good candidate for the encoding axis was the vector                   
pointing from the states associated with the shortest to the longest ts for each prior condition (uts; Figure 3c).                   
We projected neural states onto uts to generate a one-dimensional representation of elapsed time during the                
support of the prior (Figure 3c). As predicted (Figure 3a), average neural states associated with each ts were                  
warped with respect to the actual ts and exhibited biases toward the mean that matched the predictions of a                   
Bayesian model fitted to the behavior (R2 = 0.993 for the Short prior, 0.996 for the Long prior; Figure 3c).  

Our choice of uts was motivated by an understanding of how projecting points along a curve onto a line causes                    
warping (Figure 3a). To validate this choice, we tested other randomly chosen projection vectors (u’ts) within a                 
cone in the state space that were up to 90 deg away from uts. The similarity of projected states to the Bayesian                      
model decreased progressively as a function of the angle between uts and u’ts (Figure 3d), and for vectors far                   
from uts, projected states did not resemble the fits to the Bayesian model (Figure 3c, inset). These observations                  
were consistent across priors, effectors and target directions (Figure S8). Together, these results suggest that               
the rotational dynamics in DMFC allow neural states to carry an implicit, continuous and instantaneous               
representation of the Bayesian estimate of elapsed time during the support of the prior.  

We next asked how this implicit representation at the time of Set could influence tp at the end of the production                     
epoch. Previous work has demonstrated that flexible production of timed intervals is made possible through               
adjustments of speed at which neural trajectories evolve toward an action-triggering state 21,72–74, and that this                
speed is determined by the initial conditions at the beginning of the production epoch 20,72,75. Accordingly, we                 
evaluated the link between Set activity and tp in terms of a cascade of computations going from Set activity to                    
initial conditions after Set, from initial conditions to speed of dynamics during Set-Go, and from speed to tp                  
(Figure 3b). 

We hypothesized that the transient displacement of population activity following Set (Figure 2e) maps activity               
onto a “decoding axis” that serves as the initial condition, and that those initial conditions set the speed of the                    
ensuing dynamics during the production epoch. An analysis of the structure of activity immediately after Set                
indicated that the Set-evoked transient response settled after nearly 200 ms (Figure S9). Therefore, we defined                
the decoding axis for each prior by a vector, vtp, that connected neural states associated with the shortest and                   
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longest ts 200 ms after Set (Figure 2e). As predicted by our hypothesis, average neural states projected onto                  
vtp exhibited the characteristic regression to the mean present in the Bayesian model fits to the behavior (R2 =                   
0.993 for the Short prior and 0.951 for the long prior; Figure 3e). We also validated our choice of vtp over other                      
decoding axes (v’tp) that were up to 90 deg away from vtp (Figure 3f) and found that our choice vtp yielded                     
largest decoding efficiency and similarity with the Bayesian model. 

Next, we asked whether the initial conditions along the decoding axis were predictive of the speed at which                  
activity evolved afterwards. We estimated the speed as the average Euclidean distance (in the PC space                
accounting for at least 75% of the total variance) between neural states associated with successive bins (20                 
ms), divided by the duration of the production epoch. We then examined the relationship between speed and                 
the projection of neural states onto vtp. Speeds were slower for the Long compared to Short prior condition, and                   
for each prior condition, speed decreased monotonically with the initial conditions associated with longer ts,               
consistently across all conditions (Figure 3g; Pearson correlation, ρShort=-0.77, p<10 -8, ρLong=-0.48, p<10 -2). We             
verified that the relationship between speed and initial conditions held at the level of single trials (ρShort=-0.12,                 
p<10 -3, ρLong=-0.14, p<10 -4). Corroborating previous findings 20,21,72, these results show that during flexible motor              
timing tasks, the brain utilizes initial conditions to adjust the speed of ensuing neural dynamics. 

Finally, we verified that the speed of dynamics was predictive of the resulting tp across both priors and across                   
all experimental conditions, both at the level of averages (Figure 3h; Pearson correlation, ρShort=-0.62, p<10 -4,               
ρLong=-0.66, p<10 -5) and single trials (ρShort=-0.13, p<10 -3, ρLong=-0.14, p<10 -4). Together, these step-by-step            
analyses support our prediction that the rotation during the estimation epoch supplies a Bayesian estimate of                
elapsed time that sets the speed of dynamics during the production epoch allowing animals to produce                
Bayes-optimal behavior. 
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Figure 3. Neural signatures of Bayesian integration. a) A geometric illustration of how linear projection of points along a 2D curve                     
onto a 1D line could cause warping mimicking the regression to the mean effect caused by Bayesian integration. b) The cascade of                      
computations during estimation and production of the sample interval ( ts) in the Ready-Set-Go task. The prior distribution of ts (leftmost                    
panel) establishes rotational dynamics during the estimation epoch (second leftmost panel). Projection of the points along the rotating                  
trajectory onto an encoding axis (green vector, uts) creates a warped 1D representation of time that exhibits prior-dependent biases.                   
Presentation of Set maps neural states onto a decoding axis (middle panel; purple vector, vtp). Neural states along the decoding axis                     
serve as the system’s initial conditions during the production epoch. These initial conditions dictate the speed of neural trajectories                   
(second rightmost panel) and allow the system to exhibit Bayes-optimal behavior (rightmost panel). The parenthetical labels (c), (e), (g)                   
and (h) are evaluated quantitatively in the corresponding panels. c) Projection of neural states in the estimation epoch onto the                    
encoding axis ( uts) as a function of ts. These projections yielded a warped representation of elapsed time whose relationship to actual                     
elapsed time (abscissa) matched the prediction of a Bayesian model fit to behavior (line). The range of projections onto uts (right                     
ordinate axis) was linearly mapped onto the tp range (left ordinate axis) for a meaningful comparison with the Bayesian fit. The plot                      
shows a representative experimental condition (Monkey H, Hand Left condition). Circles show projections every 20 ms for Short (red)                   
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and Long (blue) prior conditions. Shaded areas represent 95% bootstrap confidence intervals (CIs). We tested other encoding axes                  
( u’ts) within a cone centered on uts (lower right inset) as shown for one random u’ ts (top left inset) for which projected states (magenta for                         
Short and cyan for Long) did not match the Bayesian predictions (line). d) A measure of similarity (based on R 2: coefficient of                      
determination) between neural states projected onto different vectors ( u’ts) and the predictions of the Bayesian model as a function of                    
the cosine of the angle between u’ ts and the original uts (Monkey H, Hand Left condition, see Figure S9 for other conditions). Small dots                        
correspond to random u’ts vectors at various angles from uts and lines are the respective moving averages. The circle and diamond                     
symbols correspond to the original u ts and u’ts used for the top left inset of c). e) Projection of neural states 200 ms after Set onto the                           
decoding axis ( vtp). e) and f) show results of analyses on the decoding axis in the same format shown in c) and d) for the encoding axis.                           
g) Speed at which neural states evolved during the production epoch (from Set + 200 ms to Go) as a function of the projection of the                          
neural state at Set + 200 ms onto vtp. The speed was estimated by averaging distances between successive bins of the states in the                        
state space. The thin lines correspond to individual datasets (2 animals x 2 effectors x 2 directions), and the thick line connecting circles                       
show averages. Error bars are s.e.m. h) Average produced interval ( tp) as a function of speed at which neural states evolved during the                       
production epoch. Results are presented in the same format as in g. 
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Trial-by-trial link between the encoding and decoding axes 

To further substantiate the role of the encoding and decoding axes in Bayesian computations, we extended our                 
analysis to single trials. An analysis of this kind is challenging since single-trial estimates of neural states can                  
often be unreliable 76. Therefore, we focused on a behavioral session where we were able to record from a                   
large number of neurons simultaneously (Monkey H: N=48; Figure S10 for monkey G) and thus could estimate                 
momentary neural states with greater reliability. For this dataset, we first projected neural trajectories onto the                
subspace spanned by the first three PCs, which explained 80% of variance (Figure 4a top). We then computed                  
projections of neural states onto uts using a cross-validation procedure (see Methods), and generated              
distributions of projected values for each ts (Figure 4a bottom, Figure S10a top). To increase statistical power,                 
we used standard scores (i.e., z-score) and combined data across effectors and directions. To evaluate the                
separation between distributions, we used a sensitivity index (d’) to measure the distance between each               
distribution to that associated with the mean ts (Figure 4b, Figure S10a bottom). This relative distance measure                 
featured the two key properties of Bayesian integration. First, sensitivity curves for each prior exhibited a                
sigmoidal shape indicating that distributions associated with the shortest and longest ts were biased toward the                
mean ts for each prior (relative distances were significantly larger around middle ts; two-tailed paired t test,                 
t(30)=3.56, p=0.001). Second, the overall distances were smaller for the long prior condition (two-tailed paired               
t-test on slope of regression, t(6)=3.91, p=0.008) consistent with the larger regression to the mean in this                 
condition due to scalar variability. The difference between the two priors was also evident when we applied the                  
same analysis to the decoding axis (two-tailed paired t-test on slope of regression, t(6)=4.08, p=0.007; Figure                
4c,d, Figure S10b); i.e., relative distances were smaller for the long prior condition. These results provide                
compelling evidence that implicit representations along the encoding axis and explicit representations along             
the decoding axis were associated with the Bayesian estimate of ts. 

As a final assessment of representations in single trials, we asked whether neural states along the encoding                 
axis (before Set) could be used to predict projections along the decoding axis (after Set). Remarkably,                
projections of neural states at the level of single trials onto uts and vtp were significantly correlated (correlation                  
coefficient: 0.118, p<0.001; 95% confidence interval from bootstrapping across trials: [0.070 0.170], Figure 4e,              
Figure S10c). This analysis demonstrates a systematic relationship between representations of time along the              
two axes. For example, when projections onto uts for the shortest ts were closer to the expected state for a                    
longer ts (due to trial-by-trial variability), the corresponding projections onto vtp were also biased in the same                 
direction. Importantly, these trial-by-trial correlations were strongest for activity projected onto vectors uts and              
vtp and decreased when activity was projected onto other random vectors (Figure 4f, Figure S10d). We also                 
used the correlation strength to validate our choice of the temporal position of the decoding axis at 200 ms                   
after Set. We found that correlations were strongest when vtp was computed from activity at around 200 ms                  
after Set and decreased progressively when it was computed from earlier activity within the transient phase of                 
the response (Figure S11). This result also rules out a trivial explanation of the correlation based on                 
autocorrelation of firing rates near the time of Set. Together, these results suggest that the initial conditions                 
along the decoding axis needed for Bayes-optimal behavior were computed by the rotational dynamics during               
the support of the prior. 
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Figure 4. Bayesian computation at single-trial level. a) In a session with large number of simultaneously recorded neurons (Monkey                   
H, Eye Right condition), we analyzed the distribution of projections onto u ts across single trials for each t s. Top panel shows the state                       
space spanned by the first 3 principal components (PCs), the rotating neural trajectories within that space, and a single trial projected                     
onto the corresponding uts for each prior. Bottom panel shows the distribution of projected states for the shortest and longest t s of each                       
prior condition in shades of red (Short) and blue (Long), respectively. Analyses were performed on cross-validated data (see Methods)                   
within the subspace spanned by the first 3 PCs that explained 87.8% variance. (b) d’ measure quantifying the separation between the                     
distribution of projected states for each ts to that for the middle ts (red for Short and blue for Long) as a function of ts. Thin and thick lines                             
represent individual experimental conditions (2 effectors x 2 directions) and their corresponding average, respectively. c) In the same                  
behavioral session, we analyzed the distribution of projection onto vtp across single trials for each ts. c) and d) show results of analyses                       
on the decoding axis in the same format shown in a) and b) for the encoding axis. For the decoding axis, the distribution of projected                         
states was computed in the subspace spanned by the first 6 PCs that explained 74.1% variance. e) Correlation between single-trial                    
neural states at the time of Set projected onto uts and the corresponding neural states 200 ms after Set projected onto v tp. To improve                        
statistical power, we combined trials associated with different conditions (prior, effector, and direction) and different values of ts after                   
z-scoring each dataset (line: best fit total-least-squares regression line; shading: 95% CI). f) Correlation coefficient between single-trial                 
neural states projected onto u’ ts and v’ tp for 10000 randomly chosen pairs of u’ ts and v’ tp. The 2D histogram shows average correlations                      
as a function of the cosine of angle between u’ ts and uts (abscissa) and between v’tp and vtp (ordinate).  
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Recurrent network models of cortical Bayesian integration 

Recurrent neural network models (RNNs) have proven useful in elucidating how neural populations in higher               
cortical areas support various motor and cognitive computations 22,23,67,68,70,77,78. They have also been useful for               
characterizing internally-generated dynamics in DMFC in flexible timing tasks 20,21. To gain further insight into               
how neural systems implement Bayesian inference, we trained RNNs to perform the two-prior RSG task               
(Figure 5a). On each trial, the network received the fixation cue as a tonic input whose value was adjusted by                    
the prior condition. Afterwards, a second input administered Ready and Set via two pulses that were separated                 
by ts. The network was trained to generate a linear ramping signal during Set-Go that would reach a fixed                   
threshold (“Go”) at the correct time to reproduce ts. Using a suitable training strategy (see Methods), we were                  
able to build RNNs whose behavior was accurately captured by a Bayesian observer model. In particular,                
responses were biased toward the mean for each prior condition, and biases were larger for the Long prior                  
(Figure 5b).  

Next, we examined activity in the trained RNNs. Like DMFC neurons, individual RNN units displayed               
heterogeneous response profiles and were strongly moduled during the support of the prior (Figure S12a,b).               
Similar to DMFC, the overall network activity was low dimensional during both the estimation and production                
epochs (Figure S12c,d). Most importantly, network population trajectories exhibited the same hallmarks of             
neural trajectories in DMFC. For instance, during the estimation epoch, unit trajectories exhibited rotational              
dynamics that were temporally tuned to the support of each prior (Figure 5c top), and during the production                  
epoch, the initial condition and speed of trajectories were organized systematically depending on ts (Figure 5c                
bottom). To further assess the similarity between DMFC and RNN, we applied to the trained RNNs the same                  
battery of analyses that was used to assess the cascade of computations in DMFC (Figure 3). Results                 
indicated that the rotational dynamics established in the RNN resulted in a warped representation of ts along                 
an encoding axis (uts), which set the initial conditions along a decoding axis (vts), and enabled speed-based                 
dynamics leading to Bayes-optimal behavior (Figure S12 g,h). Based on these results, we concluded that the                
trained RNNs provided a suitable platform for validating and further delving into the importance of rotational                
dynamics in Bayesian computations.  

A key advantage of training RNNs was that it allowed us to move beyond correlational observations relating                 
rotational dynamics to Bayesian computation, and establish a causal link between the two. A major challenge                
in performing causal experiments on low-dimensional population activity is to successfully orient the             
perturbation along computationally-relevant dimensions of neural activity 23,79,80. Such targeted-dimensionality          
perturbation experiments are currently not feasible in-vivo, but they are in-silico. Accordingly, we developed an               
in-silico perturbation strategy, in which we halted the RNN shortly before Set, altered its state and then                 
released the network to evaluate the outcome of the perturbation on the behavior. Importantly, the perturbation                
systematically targeted projections of neural states onto the encoding axis – a strategy that we refer to as                  
re-encoding (Methods). We reasoned that if the rotational dynamics and the corresponding uts are causally               
involved in creating biased neural representations, perturbing network state along this axis would lead to               
predictable behavioral outcomes.  

Using this strategy, we perturbed network activity just preceding the time of Set in two ways: 1) compression                  
around the middle ts (mean of the prior) along uts and 2) linear translation along uts . According to our                   
hypothesis, the projection of activity along uts provides an implicit representation for the Bayesian estimate of ts.                 
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This hypothesis makes specific predictions for how the compressive and translational perturbations would             
impact the behavior. The compression should lead to increased bias toward the mean ts (Figure 5d). The                 
translation, on the other hand, should result in a translation in the value of tp towards longer or shorter intervals                    
(Figure 5e) depending on the direction of the translation. Results confirmed these predictions: tp values               
exhibited progressively larger regression to the mean for larger compressive perturbations (Figure 5d), and              
underwent an overall upward or downward shift as a result of translation (Figure 5e). These causal                
experiments provide additional evidence that the brain might also be using its prior-dependent rotational latent               
dynamics to implicitly represent the Bayesian estimate of ts.  
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Figure 5: Recurrent neural networks re-creating Bayesian behavior and dynamics in cortical populations. a) Schematic of RNN                 
experimental design. Prior condition is cued by tonic input (blue for long prior and orange for short). Second timing input provides the                      
sample interval ( ts) through Ready (R) and Set (S) pulses. The network was trained to generate a linearly ramping output between Set                      
(S) and Go (G) whose slope was inversely related to t s. The produced interval ( tp) was controlled by a threshold-crossing mechanism                     
(dashed line). b) Network behavior shown using the same format as in Figure 1e except circles are filled to distinguish them from                      
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subsequent panels. Solid lines represent the behavior of the corresponding Bayesian ideal observer model. c) Network unit trajectories                  
shown using the same format as Figure 2d,e. d) Top: Schematic showing the re-encoding process for compressive perturbation.                  
Network states are compressed toward the state associated with the mean ts. Below: Network behavior with different levels of                   
compressive re-encoding (gray: 40% compression; white: 80% compression) as well as neutral re-encoding with no effective                
perturbation (black; see Methods). Solid lines represent single parameter (w m) fits to the Bayesian model. e) Same as d for translational                     
re-encoding toward larger (gray: 20% positive translation along the moving trajectory) and smaller (white: 20% negative translation                 
against the moving trajectory) t s values. Solid lines represent the Bayesian model translated by an offset that was a single-parameter fit                     
to the data using a least-squares procedure (wm = 0.05).  
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Discussion 

The classic formulation of Bayesian models assumes that the observer integrates a sensory likelihood function               
with the prior probability distribution to compute a posterior distribution, and applies a cost function to the                 
posterior to extract an optimal estimate. Inspired by this formulation, theoretical and experimental studies have               
sought to find representations of various components of Bayesian inference at the level of single neurons. For                 
example, some studies have proposed that the stochastic nature of sensory representations provide the              
means to implicitly encode sensory likelihoods 81,82. Others have shown that task-related firing rates of single                
neurons before the presentation of sensory information may be modulated by prior expectations 83–85, and firing                
rates after the presentation of sensory information may reflect Bayesian estimate of behaviorally-relevant             
variables 30,86–88. There have also been attempts to apply reliability-weighted linear updating schemes –              
commonly used in cue combination studies 89–91 – to explain how single-neuron firing rates might combine                
sensory evidence with prior expectations 92,93. However, the fact that single neurons encode various              
components of Bayesian models has not led to an overarching framework for understanding how networks of                
neurons perform Bayesian computations. 
 
The central challenge in understanding Bayesian computations is the need for a framework that could bridge                
explanations at multiple scales. At one end are cellular-level explanations of how past experiences alter               
synaptic coupling between neurons, and on the other, are explanations of behavior based on the abstract                
notion of prior knowledge. This challenge was clearly stated by Nobel laureate Richard Axel 94, “we do not                  
know the language by which [...] patterns of neural activity are [...] translated into appropriate behavioral or                 
cognitive output.” In the case of Bayesian integration, we need a language that has the potential to explain how                   
synaptic coupling between neurons could mediate prior-dependent biases in behavior. 
 
Theoretical studies and recent artificial neural network models have established a framework that could              
potentially address this challenge. They indicate that structured connectivity creates low-dimensional activity            
patterns across the population with powerful computational capacities 25,95 for integration 96, categorization 22,              
gating 97, timing 21,26,61,98, learning 99–101, movement control 80,102–106 and forming addressable memories 107.              
According to this framework, the key to a deeper understanding of how neural circuits perform computations is                 
an analysis of the geometry and dynamics of activity across the population 108.  
 
Using this approach, we found a novel computational principle for how neural circuits perform Bayesian               
integration. We found that prior statistics that were presumably embedded in the coupling between neurons,               
established low-dimensional curved manifolds across the population. This curvature, in turn, warped the             
underlying neural representations and afforded biases in accordance with Bayes-optimal behavior. This            
mechanism was evident across multiple behavioral conditions including different prior distributions and            
different effectors suggesting that it may be a general computational strategy for Bayesian integration.  
 
Remarkably, this computational strategy also emerged spontaneously in an artificial neural network trained on              
the same sensorimotor task. Moreover, the network allowed us to probe the causal role of the underlying                 
mechanisms in-silico using a set of targeted-dimensionality perturbation experiments that are currently not             
possible in-vivo. These experiments allowed us to reveal the role of bias in compensating uncertainty (i.e..                
larger biases for noisier measurements), and validated the role of the curved manifold for integrating prior                
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knowledge into behavioral responses. To investigate the neurobiological instantiation of Bayesian integration at             
the level of cells and synapses, future experiment should examine how functional and causal measures of                
coupling between neurons may change while such prior-dependent curved manifolds are formed across the              
population 109, as is done for simpler kinds of motor learning 110.  
 
Although we focused on Bayesian integration in the domain of time, the key insights gleaned from our results                  
are likely to apply more broadly to the general problem of Bayesian integration in perception, sensorimotor                
function and cognition. For example, numerous studies have found an important role for natural scene               
statistics in vision, and have further shown that the organization of tuning in neurons of the primary visual                  
cortex follow those statistics 8. This observation is often explained in terms of efficient coding 111, which is a                   
statement about the nature of the representation, and not about the underlying computations. We also found                
that single neurons developed flexible tuning for the range of intervals the animal was exposed to (Figure 2). In                   
other words, single neurons in our experiment also abided by the principles of efficient coding. However, what                 
distinguishes our approach is that it does not stop at the representational description. Instead, our results show                 
how biased tuning across single neurons leads to warped representations in population dynamics whose              
geometry can explain the underlying Bayesian computations. We speculate that the same framework may              
provide valuable insights into the link between efficient coding and Bayesian perception 112,113, as well as                
numerous other sensorimotor and cognitive functions.  
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Online Methods 

All experimental procedures conformed to the guidelines of the National Institutes of Health and were approved                
by the Committee of Animal Care at the Massachusetts Institute of Technology. Experiments involved two               
awake, behaving monkeys (species: M. mulatta; ID: H and G; weight: 6.6 and 6.8 kg; age: 4 yrs old). Animals                    
were head-restrained and seated comfortably in a dark and quiet room, and viewed stimuli on a 23-inch                 
monitor (refresh rate: 60 Hz). Eye movements were registered by an infrared camera and sampled at 1kHz                 
(Eyelink 1000, SR Research Ltd, Ontario, Canada). Hand movements were registered by a custom single-axis               
potentiometer-controlled joystick whose voltage output was sampled at 1kHz (PCIe6251, National Instruments,            
TX). The MWorks software package (http://mworks-project.org ) was used to present stimuli and to register              
hand and eye position. Neurophysiology recordings were made by 1-3 24-channel laminar probes (V-probe,              
Plexon Inc., TX) through a bio-compatible cranial implant whose position was determined based on stereotaxic               
coordinates and structural MRI scan of the two animals. Signals were amplified, bandpass filtered, sampled at                
30 kHz, and saved using the CerePlex data acquisition system (Blackrock Microsystems, UT). Spikes from               
single-units and multi-units were sorted offline using Kilosort software suites 114. Analysis of both behavioral               
and spiking data was performed using custom MATLAB code (Mathworks, MA). 

Two-prior time-interval reproduction task. Animals were trained on an interval-timing task that we refer to as                
the Ready-Set-Go (RSG) in which they had to measure a sample interval, ts, and produce a matching interval tp                   
by initiating a saccade or by moving a joystick. Each trial began with the presentation of a circle (diameter: 0.5                    
deg) and a square (side: 0.5 degree) immediately below it. Animals had to fixate the circle and hold their gaze                    
within 3.5 deg of it. The square instructed animals to move the joystick to the central location. To aid the hand                     
fixation, we briefly presented a cursor whose instantaneous position was proportional to the joystick’s angle               
and removed it after successful hand fixation. Upon successful fixation and after a random delay (500 ms plus                  
a random sample from an exponential distribution with mean of 250 ms), a white movement target was                 
presented 10 deg to the left or right of the circle (diameter: 0.5 deg). After another random delay (250 ms plus                     
a random sample from an exponential distribution with mean of 250 ms), the Ready and Set stimuli were                  
flashed sequentially around the fixation cues (outer diameter: 2.2 deg; thickness: 0.1 deg; duration: 100 ms).                
The animal had to measure the sample interval, ts, demarcated by Ready and Set, and produce a matching                  
interval, tp, after Set by making a saccade or by moving the joystick toward the movement target presented                  
earlier (Go). Across trials, ts was sampled from one of two discrete uniform prior distributions each with 5                  
equidistant samples, a “Short” distribution between 480 and 800 ms, and a “Long” distribution between 800                
and 1200 ms.  

The full experiment consisted of 8 randomly interleaved conditions, 2 effectors (Hand and Eye), 2 movement                
targets (Left and Right), and two prior distributions (Long and Short). The 4 conditions associated with the 2                  
effector and 2 prior condition were interleaved randomly across blocks of trials. For 15 out of 17 sessions, the                   
block size was set by a minimum (3 and 5 trials for H and G, respectively) plus a random sample from a                      
geometric distribution with a mean of 3 trials, and was capped at a maximum (20 for H and 25 for G). The                      
resulting mean ± SD block lengths were 4.0 ± 4.4 and 13.3 ± 3.1 trials for H and G, respectively. In 2 sessions                       
in H, switches occurred on a trial-by-trial basis. Because animal G had more trouble switching between                
conditions, block switches involved a change of prior or effector but not both. The position of the movement                  
target was randomized on a trial-by-trial basis. Throughout every trial, the fixation cue provided information               
about the underlying prior and the desired effector. One of the two fixation cues was colored and the other one                    
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was white. The animal had to respond with the effector associated with the colored cue (circle for Eye and                   
square for Hand) and the cue indicated the prior condition (red for Short and blue for Long). 

To receive reward, animals had to move the desired effector in the correct direction, and the magnitude of the                   
relative error defined as |tp-ts|/t s had to be smaller than 0.15. When rewarded, reward decreased linearly with                 
relative error, and the color of the response target changed to green. Otherwise, no reward was given and the                   
target turned red. Trials were aborted when animals broke the eye or hand fixation prematurely before Set,                 
used incorrect effector, moved opposite to the target direction, or did not respond within 3 ts after Set. To                  
compensate for lower expected reward rate in the Long prior condition due to longer duration trials (i.e., longer                  
ts values), we set the inter-trial intervals of the Short and Long conditions to 1220 ms and 500 ms, respectively.  

Behavior 

We analyzed behavior in sessions with simultaneous neurophysiological recordings (H: 17 sessions, 26189             
trials, G: 12 sessions, 30777 trials). First, we used a probabilistic mixture model to exclude outliers from further                  
analysis. The model assumed that each tp was either a sample from a task-relevant Gaussian distribution or                 
from a lapse distribution, which we modeled as uniform distribution extending from the time of Set to 3 ts. We fit                    
the mean and standard deviation of the Gaussian for each unique combination of session, prior condition, ts,                 
effector, and target directions. Using this model, we excluded any trial whose tp was more likely sampled from                  
the lapse distribution (3.84% trials in H and 5.7% trials in G). 

We measured the relationship between tp and ts separately for each combination of prior, effector, and target                 
direction in individual sessions using linear regression (tp=βts+ε). Since tp is more variable for larger ts due to                  
scalar variability, we used a weighted regression - for each ts, error terms were normalized by the standard                  
deviation of the distribution of tp for that ts. We tested whether regression slopes were larger than 0 and less                    
than 1 (Figure 1, Figure S1, Table S1).  

We also fit a Bayesian observer model to behavioral data (Figure 1, Figure S3). The Bayesian observer                 
measures ts using a noisy measurement process that generates a variable measured interval, tm. The               
measurement noise has a Gaussian distribution with a mean of zero and a standard deviation that scales with                  
ts with constant of proportionality wm. The observer combined the likelihood function, p(tm|t s), with the prior,                
p(ts), and uses the mean of the posterior, p(ts|t m), to compute an estimate, te. The observer aims to produce te                    
through another noisy process generating a variable tp. We assumed that production noise scales with te with                 
constant of proportionality wp. For each prior, the model also included an offset term (b) to accommodate any                  
overall bias in tp. Using maximum likelihood estimation, we fit the 4 free parameters of the model (wm, wp, bShort,                    
and bLong) to data for each animal, effector, and target directions after pooling across sessions (Figure S3).  

Electrophysiology 

We collected 456 single-units (H:196, G:260) and 902 multi-units (H:421, G:481) in 69 penetrations across 29                
sessions (H:17, G:12). Most analyses were performed in a condition-specific fashion (2 priors, 5 ts per prior, 2                  
effectors, and 2 directions), and therefore, we excluded units for which we had less than 5 trials per condition.                   
In addition, we excluded units whose average firing rate was less than 1 spike/s. The remaining units included                  
in subsequent analyses were 536 and 636 in H and G, respectively.  
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We used a generalized linear model (GLM) to assess which neurons were sensitive to the prior and ts. We                   
modeled spike counts in an 80-ms window immediately before Set, rSet, as a sample from a Poisson process                  
whose rate was determined by a weighted sum of a binary indicator for prior (Iprior: 1 for Long, 0 for Short) and 5                       
binary indicators for ts values associated with the Short prior for which we also knew the firing rate for the Long                     
prior. The model was augmented by two additional binary indicators to account for independent influences of                
the effector (I effector: 1 for Hand, 0 for Eye), and direction (Idirection:1 for Left, 0 for Right). 

rSet = βts I ts(j) + β prior I prior + βeffector I effector + β direction I direction∑
5

j=1
 Equation 1 

To get the most reliable estimate for the regression weights, we included spike counts based on all trials with                   
attrition, and estimated β parameters of the model using MLE for all included neurons. To assess the                 
significance of the effect of the prior condition, we used Bayesian information criteria (BIC) to compare the full                  
model (Equation 1) to a reduced model that did not include a regressor for the prior (Equation 2):  

rSet = βts I ts(j) + β effector I effector + β direction I direction∑
5

j=1
 Equation 2 

We also used a GLM to assess which neurons were sensitive to ts. Since values of ts were different between                    
the priors, we used two distinct GLMs, one for data in the Short prior and one for the Long prior (Equation 3):  

rSet = βts I ts(j) + βeffector I effector + β direction I direction∑
5

j=1
 Equation 3 

To identify the neurons that were sensitive to ts, we used BIC to compare the ts-dependent GLM (Equation 3) to                    
a reduced GLM in which there was no sensitivity to ts (Equation 4): 

rSet = β 0 + βeffector I effector + β direction I direction Equation 4 

Neurons were considered ts-dependent if the BIC was lower in the full model either for the Short or for the Long                     
prior condition (Figure 2). 

Population analysis 

To examine the trajectory of population activity in state space, we applied principal component analysis (PCA)                
to condition-specific, trial-averaged firing rates (bin size: 20 ms, Gaussian smoothing kernel width: 40 ms).               
Since neurons modulated during estimation and production epochs were largely non-overlapping (Figure S6),             
we performed PCA separately on the two epochs. We first constructed firing rate matrices of all neurons and                  
time points [time points x neurons]. This yielded 16 matrices (2 priors x 2 effectors x 2 directions x 2 epochs).                     
We then concatenated the matrices across the two prior conditions along the time dimension and applied PCA                 
to each of the resulting 8 data matrices to find principal components (PCs) for each unique combination of                  
effector and direction, separately in the two epochs. 

In the estimation epoch, firing rates for each ts were estimated with attrition (i.e., firing rate at time t was                    
computed from spikes in all trials in which Set occurred after t). However, results were qualitatively unchanged                 
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if firing rates were estimated without attrition. In the production epoch, to accommodate different trial lengths                
(i.e., variable tp), we estimated firing rates only up to the shortest tp for each ts. Neural trajectories in the two                     
epochs were analyzed within the subspace spanned by the top PCs that accounted for at least 75% of total                   
variance (Figure S7). We will use X(t) to refer to a neural state within the PC space at time t. 

In the estimation epoch, we examined the rotational dynamics in neural trajectories during the support of each                 
prior by projecting X(t) onto an ‘encoding axis’, uts, defined by a unit vector connecting the state associated with                   
the shortest ts (ts_min) to that with the longest ts (ts_max) for that prior. We denote the projected states by Xuts. To                      
reduce estimation error, we computed multiple difference vectors connecting X(ts_min+Δt ) to X(ts_max-Δt ) for every              
Δt= 20 ms, and used the average as our estimate of uts. We used bootstrapping (resampling trials with                 
replacement 1000 times) to compute 95% confidence interval for Xuts. We quantified the similarity between Xuts                
and the Bayesian estimates (te) inferred from model fits to behavior using linear regression (Xuts = α + βte).                   
Since we included spike counts across trials with attrition, there were nearly 5 times more data for the shortest                   
ts compared to the longest ts within each prior. Accordingly, for each ts, error terms were weighted by the                   
number of data points included for that ts (5 for the shortest ts, 4 for the second shortest, and so forth). We then                       
used the coefficient of determination (R2) to assess the degree to which te was explained by the neurally                  
inferred Xuts. Finally, we tested the specificity of our results with respect to the chosen uts by performing the                   
same analysis for 1000 randomly chosen encoding axes (u’ts ), and comparing the corresponding R2 values. 

In the production epoch, we defined a ‘decoding axis’, vtp, for each prior as the unit vector connecting the state                    
associated with the shortest ts to that with the longest ts 200 ms after Set. We projected neural states 200 ms                     
after Set onto vtp and compared the organization of projected states (Xvtp) to the Bayesian estimates (te) using                  
R2. We also performed the analysis for 1000 randomly chosen decoding axes (v’tp) to test the specificity of                  
results with respect to the chosen vtp. 

We also measured trial-by-trial correlation between Xuts and Xvtp using a leave-one-out cross-validation             
procedure in one experimental session in animal H with a large number of simultaneously recorded neurons                
(N=48) and a large number of completed trials (1610 trials) (see Figure S10 for monkey G). For each condition                   
(effector and direction), we computed PCs of trial-averaged firing rates across all neurons (including those               
recorded in other sessions) and all trials except the left-out trial.  

We also analyzed neural activity at the level of single trials using cross-validation with the following procedure:                 
(1) we designated one trial as test and the remaining trials as train dataset; (2) we binned and smoothed X for                     
the test trial (20 ms for bin size and 40 ms for smoothing kernel size); (3) we projected the smoothed X onto uts                       
and vtp estimated from the train dataset to compute Xuts and Xvtp. Repeating this procedure for different choices                  
of test trial yielded distributions of Xuts and Xvtp for individual trials. We then used the sensitivity index, d’ (i.e.,                    
difference between means relative to standard deviation) to quantify the distance of the distribution of Xuts for                 
every ts to the distribution of Xuts for the mean ts for each prior condition. We also quantified the trial-by-trial                    
correlation between Xuts and Xvtp. To do so, we first standardized (i.e., z-scored) Xuts and Xvtp values for each                   
condition separately (2 priors, 5 ts values, 2 effector, and 2 target directions) and the combined the entire                  
dataset to compute a reliable estimate of trial-by-trial correlations as well as 95% confidence interval derived                
from bootstrapping (Figure 4e). We repeated our measurement of correlation while using 1000 randomly              
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chosen encoding and decoding axes (u’ts and v’tp) to further verify the validity of our choice of uts and vtp (Figure                      
4f). 

We finally examined two later links of the cascade model (Figure 3b) during the production epoch. A key                  
component in the production epoch was the speed of the neural trajectory travelling the state space. For each                  
dataset, we computed the speed as the average Euclidean distance (in the PC space accounting for at least                  
75% of the total variance) between neural states associated with successive bins (20 ms), divided by the                 
duration separating Set+200ms and the time of Go. First, we related the trajectory speed to the projected state                  
along the decoding axis (vtp) across the prior and ts to test if the state served as an initial condition to set up the                        
speed of the ensuing trajectory (Figure 3G). We then assessed how the speed during the production epoch                 
was associated with the behavioral output, tp (Figure 3H). We computed a correlation coefficient between the tp                 
averaged across trials of each dataset and the trajectory speed and tested its statistical significance (p<0.05). 

Recurrent neural network 

We constructed a randomly connected firing-rate recurrent neural network (RNN) model with N = 200 nonlinear                
units. The network dynamics were governed by the following equations: 

 

 

is a vector containing the activity of all units and represents the firing rates of those units by                    
transforming through a nonlinearity. Time was sampled every millisecond for a duration of = 3500                   
ms. The time constant of decay for each unit was set to . The unit activations also contain an offset                    

and white noise at each time step with standard deviation in the range [0.01-0.015]. The matrix                   
represents recurrent connections in the network. The network received multi-dimensional input through             
synaptic weights . The input was comprised of a prior-dependent context cue and an                
input that provided Ready and Set pulses. In Ready and Set were encoded as 20 ms pulses with a                     
magnitude of 0.4 that were separated by time , which is the original interval transformed stochastically by                  
weber noise (see next section for training details). The amplitude of the prior-dependent context input                

was set to 0.3 for the short prior and 0.4 for the long prior contexts. Networks produced a                   
one-dimensional output  through summation of units with weights  and a bias term .  

 

Network Training 

Prior to training, model parameters ( ), which comprised , , , and were initialized. Initial values                  
of matrix were drawn from a normal distribution with zero mean and variance 1/N, following previous work                  
115. Synaptic weights and the initial state vector and unit biases were initialized to random                  
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values drawn from a uniform distribution with range [-1,1]. The output weights, and bias , were initialized                  
to zero. During training, model parameters were optimized by truncated Newton methods116 using             
backpropagation-through-time 117 by minimizing a squared loss function between the network output and              
a target function  , as defined by: 

 

Here indexes different trials in a training set ( = different prior contexts x intervals ( ) x repetitions ( )). The                     
target function was only defined in the production epoch (the output of the network was not constrained                  
during the estimation epoch). The value of was zero during the Set pulse. After Set, the target function                   
was governed by two parameters that could be adjusted to make nonlinear, scaling, non-scaling or                
approximately-linear: 

 

For the networks reported, was an approximately-linear ramp function parametrized by = 3 and =                  
2.8. Solutions were robust with respect to the parametric variations of the target function (e.g., nonlinear and                 
non-scaling target functions). In trained networks, the production time, tp was defined as the time between the                 
Set pulse and when the output ramped to a fixed threshold ( ). 

During training, we employed three strategies to obtain robust solutions. was drawn from a normal                
distribution with standard deviation 0.05. Furthermore, networks were trained and tested with a noisy              
measured interval (tm) that was generated from the interval ts plus interval-dependent noise with the constant of                 
proportionality (wm=0.05), while fixing the objective itself to .  

Network causal experimentation 

To evaluate the importance of the encoding axis on the behavior of the RNN at the time of Go, we performed a                      
targeted perturbation experiment involving changes of the network state along the encoding axis shortly before               
Set, which we refer to as ‘re-encoding’. We systematically altered network states along the uts 20 ms before the                   
onset of Set and examined the consequences of this perturbation on behavior. To verify our approach, we first                  
performed a control experiment in which the perturbation was expected to have no appreciable effect on                
behavior. Specifically, we re-encoded the network state for each trial of each ts to the expected state for that ts                    
under no perturbation (n = 3000 trials per re-encoding). In this control experiment, perturbation had no effect                 
on behavior (as expected) when we used a protocol in which (i) we allowed the network to stabilize for 10 ms                     
after re-encoding (on the same order as the time constant of individual units in the RNN), and (ii) administered                   
the Set pulse 10 ms after stabilization (Figure 5d). Having established a working protocol for the re-encoding                 
experiment, we performed two causal experiments involving compression and translation of network states on              
uts.  

For the compression experiments, we evaluated the network’s behavior after applying various levels of              
compression (40% and 80%) to network states along uts toward the mean state (i.e. the state associated with                  
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the mean of the prior). For the translation experiments, everything was the same except that the re-encoding                 
involved a 20% shift in network states in the positive or negative directions (i.e., resulting in increasing or                  
decreasing ts) (Figure 5e). One constraint in the translation experiment was that the network could not tolerate                 
large negative shifts (i.e., intervals shorter than 400 ms for the short prior and 800 ms for the long prior). Such                     
translations placed the network state in regions of the state space in which the latent dynamics were no longer                   
governed by the rotating manifold. 
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