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SUMMARY 26 
 27 
Performance on cognitive tasks during learning is used to measure intelligence, yet it remains 28 

controversial since such testing is susceptible to contextual factors. To what extent does 29 

performance during learning depend on the testing context, rather than underlying knowledge? 30 

We trained mice, rats and ferrets on a range of tasks to examine how testing context impacts the 31 

acquisition of knowledge versus its expression. We interleaved reinforced trials with “probe” 32 

trials in which we omitted reinforcement. Across tasks, each animal species performed 33 

remarkably better in probe trials during learning and inter-animal variability was strikingly 34 

reduced. Reinforcement feedback is thus critical for learning-related plasticity but, paradoxically, 35 

masks the expression of underlying knowledge. We capture these results with a network model 36 

in which learning occurs during reinforced trials while context modulates only the read-out 37 

parameters. Probing learning by omitting reinforcement thus uncovers latent knowledge and 38 

identifies context—not “smartness”—as the major source of individual variability.  39 

  40 
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HIGHLIGHTS 41 

• Knowledge acquisition and expression can be segregated by the introduction of non-42 

reinforced probe trials across a variety of animal species and behavioral tasks. 43 

• Animals learn much faster and in a more stereotyped way in non-reinforced probe trials 44 

than their performance in the presence of reinforcement suggests. 45 

• Underperformance and variability in performance arise from sensitivity to the behavioral 46 

testing context, not acquisition of sensorimotor associations.  47 

• A circuit model accounts for context-dependent performance by modulating the 48 

integration of sensorimotor associations. 49 

 50 

eTOC  51 

Kuchibhotla et al. show the acquisition and expression of knowledge can be behaviorally 52 

dissociated in mice, rats, and ferrets across a variety of sensorimotor tasks. Across animals, 53 

variability in performance arises from the testing context, not underlying aptitude.  54 
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INTRODUCTION 55 

Assessment of learning and aptitude often requires animals and humans to report their 56 

underlying knowledge at a given moment, often in specific testing environments or contexts 57 

(Maloney and Beilock, 2012). In reinforcement learning paradigms, learning rates are inferred 58 

from behavioral reports (Lee et al., 2012). Self-reporting, however, is highly sensitive to a 59 

variety of contextual factors unrelated to knowledge of the core task demands (Godden and 60 

Baddeley, 1975; Wright and Shea, 1991), potentially confounding the interpretation of 61 

behavioral performance. Animal models of learning have gained traction in recent years because 62 

they allow more direct links to be established between behavioral performance, computations 63 

and algorithms used for learning, and neural implementations of these algorithms (Marr). The 64 

ability to monitor the activity of the same neurons over many days using chronic two-photon 65 

imaging (Huber et al., 2012) and single-unit electrophysiology (Dhawale et al., 2017) has further 66 

accelerated the exploration of neural mechanisms of learning. To date, studies focused on 67 

acquisition of task knowledge (i.e., learning rate) depend upon measuring expression of that 68 

knowledge by an animal’s own self-report. This is true for sensorimotor tasks typically used 69 

across sensory modalities (Chu et al., 2016; Huber et al., 2012; Jurjut et al., 2017; Kato et al., 70 

2015; Peron et al., 2015; Peters et al., 2014; Poort et al., 2015).  71 

Moreover, a key tenant of behavioral and systems neuroscience posits that humans and other 72 

animals learn tasks at vastly different rates (Bathellier et al., 2013; Halpern et al., 1999; Huber et 73 

al., 2012; Luksys et al., 2009; Matzel et al., 2003; Poort et al., 2015). This has led to the idea that 74 

inter-animal variability in performance arises from differences in underlying learning rate 75 

parameters that impact the rate of task acquisition (Bathellier et al., 2013; Doya, 2000; Sutton 76 

and Barto, 1998). While attempts have been made to link learning-related performance 77 

variability to various modulatory factors (Joëls et al., 2006; Luksys et al., 2009), these 78 

approaches mostly focus on the acquisition of task-related contingencies. 79 

Here, we examined whether manipulating the testing context could dissociate the acquisition of 80 

underlying stimulus-action associations from context-dependent expression of acquired 81 

knowledge. We introduced a simple behavioral manipulation, removing access to reinforcement 82 

(“probe context”), and then measured behavioral performance in two distinct contexts, one with 83 

reinforcement and the other without. We probed behavioral performance in mice, rats and ferrets 84 
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on a range of tasks to ensure that our approach is generalizable. Finally, we modeled our 85 

behavioral results with a network model in which learning occurs during reinforced trials while 86 

context modulates only the read-out parameters. In doing so, we sought to reveal whether 87 

performance variability during learning depends more on underlying knowledge or testing 88 

context.  89 
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RESULTS 90 

Expression of task knowledge during learning is context-dependent  91 

To determine how context affects the behavioral assessment of learning, we first trained mice on 92 

an auditory go/no-go stimulus recognition task (Kuchibhotla et al., 2016) (Figure 1A). Mice 93 

learned to lick for a water reward provided through a lick tube after hearing a conditioned 94 

stimulus (the ‘target’ tone) and to withhold from licking after hearing an unrewarded (‘foil’) tone 95 

of a different frequency (Figure 1B). Similar to a previous report (Kuchibhotla et al., 2016), 96 

animals learned to perform the task at expert levels in the reinforced context over the course of 97 

multiple training sessions (Figure 1C). At expert levels, mice consistently licked to the target 98 

tone (Figure 1D) and withheld from licking to the foil tone (Figure 1D, Movie S1). 99 

Over the course of learning, we interleaved the reinforced context with a smaller number of trials 100 

without reinforcement by removing the licktube (‘probe context’, Figure 1E). In the probe 101 

context, we removed the licktube for a subset of trials (<40) in order to test whether absence of 102 

reinforcement would change the self-report of the mice. First, we focused on a trial block early in 103 

learning (trial block 1500-2000) when animals were tone responsive; i.e., they licked 104 

indiscriminately to both target and foil tones in the reinforced context, but did not lick during the 105 

inter-trial interval (Figure 1F, ‘reinforced context’, Figure 1G, Movie S2; hits: 96.0±1.4%, 106 

false-alarms: 81.0±4.6%). Surprisingly, when we removed the licktube for the probe trials, all 107 

mice discriminated between the tones by reliably licking to targets while rarely licking to foils, 108 

exhibiting expert performance despite their variable and often poor performance in the presence 109 

of the licktube (Figure 1F, ’probe context’, Figure 1G, Movie S3, hit rate: 93.0±2.1%, false-110 

alarm rate: 19.0±3.5%). The improvement of behavioral performance was specific to the probe 111 

context, and did not drive improvements in performance in reinforced trials immediately 112 

following the probing (Figure 1H-J). Mice therefore appeared to understand the task 113 

contingencies many days before they expressed this knowledge in the presence of reinforcement. 114 

We then tracked probe learning trajectories throughout learning in a subset of mice (Figure 1K-115 

M). Differences in acquisition versus expression were particularly acute early in learning 116 

(Figure 1K, example mouse; Figure 1L, summary of all mice, reinforced trials to expert: 117 

4728±647 trials; probe trials to expert: 1765±108 trials; N=7 mice, p=0.0055). Interestingly, 118 
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behavioral performance in the probe context more judiciously separated the stages of associative 119 

learning as shown by the hit and false alarm rates over learning (Figure 1M). Animals 120 

discriminated poorly early in learning  (trials 0-500) in both contexts, with a markedly lower 121 

action rate in the probe context (Figure 1M, trials 0-500: reinforced hit rate: 82.3±3.8%, 122 

reinforced false-alarm rate: 78.2±2.8%; probe hit rate: 35.8±7.8%, probe false-alarm rate: 123 

25.1±6.9%, N=7 mice, F(3,18)=33.17, p<0.001 between contexts, p>0.05 within contexts, one-124 

way repeated-measures ANOVA followed by Tukey’s post-hoc correction; probe context. Figure 125 

1L d’: 0.3±0.2; reinforced context: d’: 0.2± 0.1; t(6)=0.7055, p=0.51, Student’s paired two-tailed 126 

t-test). Moreover, hit and false alarm rates were equally affected by the presence of 127 

reinforcement at this early stage (∆Target= 46.6±6.8%, ∆Foil= 53.1±8.3%, t(6)=-0.988, p=0.36, 128 

Student’s paired two-tailed t-test). As learning progressed in the probe context, animals first 129 

acquired a generalized tone-reward association. This resulted in a modest increase in both the hit 130 

and false-alarm rates in the probe context (Figure 1M). Subsequently, performance in the probe 131 

context subsequently rapidly improved as the tone-reward association became increasingly 132 

stimulus specific. Overall, these data show that the acquisition of task knowledge or 133 

contingencies (e.g., some stimuli predict positive outcomes, others do not) can be dissociated 134 

from the expression of that knowledge (e.g., the decision to lick or not).  135 

Learning studies often focus on single task structures and single animal models, making it 136 

difficult to distill general principles of learning across species and behavior. In particular, using 137 

licking as the operant response is a potential confound, as the motor action of licking is used as 138 

both the learned motor action and the consummatory appetitive response. Moreover, head-fixed 139 

mice may use different strategies and/or be particularly sensitive to reinforcement given their 140 

limited ability to forage (due to head-fixation). For example, freely-moving rodents may engage 141 

in different types of exploratory foraging than head-fixed animals. To address whether testing 142 

context influences performance in other task structures and other species, we performed 143 

additional studies in mice, rats and ferrets. 144 

First, we tested whether separating the motor action from the consummatory response would 145 

retain (or abolish) the dissociation between task acquisition and expression. In the reinforced 146 

context, head-fixed mice were trained to press a lever in response to the target tone to gain access 147 

to water reward provided through a licktube (Figure S1A-B). This design added an additional 148 
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key feature: the licktube was normally absent in the reinforced context and was only introduced 149 

for a short period to deliver the water and then immediately retracted. As a result, the sensory 150 

environment in the probe and reinforced contexts were identical, removing the possibility of the 151 

licktube presence in the reinforced context as an impulsive driver of licking; instead, the 152 

possibility of reinforcement was more abstract. Early in learning (trial block 1500-2000), we 153 

found that mice pressed the lever at high rates for both the target and foil tones in the reinforced 154 

context (Movie S4; Figure S1C, hit rate=95.3±3.3%, false-alarm rate=80.0±7.1%, p=0.3). In the 155 

probe context, however, we observed a high response rate for the target tone but a stark reduction 156 

in responding to the foil tone, similar to what we observed in the lick-version of this task (Movie 157 

S5; Figure S1C, hit rate=86.5±5.4%, false-alarm rate=37.5±7.8%, p=0.014). Later in learning, 158 

we observed high hit rates and low false-alarm rates in both the reinforced and probe contexts 159 

(Figure S1D). This demonstrates a clear dissociation between acquisition and expression and is 160 

similar to our observations in the previous lick-based version of this task. 161 

Second, we assessed whether task acquisition and expression were dissociated in freely-moving 162 

rats using a different audiovisual behavioral paradigm. In the reinforced context of this Pavlovian 163 

feature-negative discrimination task, a tone alone (S+) predicts the appearance of food in a food 164 

cup, whereas a light presented 5s before the same tone (S-) reverses its predictive quality such 165 

that no food is delivered. In the probe context, food was not delivered to the food cup for either 166 

the S+ or S-. This task benefits from an “analog” measure of performance: rather than a binary 167 

decision (such as lick or no-lick), responses to each stimulus type was recorded as the percentage 168 

of the food-sampling window (5 s post-stimulus) rats spent in the food cup. We found that rats 169 

learned this task in the reinforced context within 8 trial blocks (Figure 2B, 3-8 trial blocks to 170 

expert). Remarkably, freely-moving rats reliably discriminated in probe trials much earlier in 171 

training than they did in reinforced trials – all rats spent significantly less time at the food cup 172 

following the S- stimulus than following the S+ stimulus (Figure 2C). Thus, paralleling the task-173 

learning in head-fixed mice, probe trials revealed that rats in this freely-moving task had 174 

acquired the correct stimulus-action associations long before their performance in the presence of 175 

reinforcement reached expert levels (Figure 2D). Animals also performed significantly better in 176 

the probe context even after their performance had reached expert levels in the reinforced context 177 

(Figure 2E) 178 
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Third, we aimed to determine whether dissociation between acquisition and expression could be 179 

observed in a fear conditioning task. To determine how general these results are across different 180 

tasks, we examined the behavior of rats in a previous study of fear conditioning (Holland and 181 

Lamarre, 1984). In this feature-negative discrimination task, rats were first trained to press a 182 

lever for sucrose reinforcement, and Pavlovian fear conditioning procedures were subsequently 183 

superimposed on this operant lever pressing baseline. When a tone target stimulus was presented 184 

alone (S+), it was paired with foot shock, but not when it was presented following a light feature 185 

(S-). Fear conditioning was assessed by measuring the suppression of operant lever press 186 

responding during the tone, and discrimination as the difference in suppression ratio to the S+ 187 

and S-. In this earlier study, Holland and Lamarre (Holland and Lamarre, 1984) assessed 188 

performance in reinforced versus probe contexts but did not explicitly compare the two. We 189 

found that – similar to our results with appetitive conditioning – performance in the probe 190 

context was greatly improved compared to the reinforced context in trained animals (Figure 2F).  191 

Fourth, we tested whether the dissociation between reinforced and probe contexts occurs could 192 

be observed in freely-moving animals when the motor action was distinct from the 193 

consummatory response. In an operant task in freely-moving rats in which a lever press was 194 

required (Gallagher and Holland, 1992) (see methods and figure legend), we also observed a 195 

significant improvement in performance in the probe compared to the reinforced contexts 196 

(Figure 2G-H).  197 

Finally, we ensured that these results were not specific to rodents, by performing similar 198 

behavioral experiments in two ferrets. Ferrets are carnivores with gyrencephalic brains and well-199 

differentiated frontal cortices similar to primates (Smart and McSherry, 1986). We trained head-200 

fixed ferrets to discriminate between two click-trains in a go/no-go task design. Ferrets also 201 

performed substantially better in the probe context much earlier in training as compared to the 202 

reinforced context (Figure S2A-C). Taken together, the dissociation between acquisition and 203 

expression reveals latent knowledge in mice, rats, and ferrets and across a variety of task designs 204 

suggesting that this may be a general principle of learning. 205 

 206 
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A network model dissociates acquisition and expression of knowledge during reinforcement 207 

learning  208 

What computational mechanisms may underlie the dissociation between learning curves in 209 

reinforced and probe trials? Classical reinforcement learning theory describes behavioral 210 

learning in terms of two systems, one that updates values of different stimulus-action 211 

associations based on the obtained reinforcement, and another that generates actions in response 212 

to stimuli by reading out the values of the different options. We hypothesized that learning of 213 

action values takes place only during reinforced trials, while the changes between contexts 214 

(reinforced and probe trials) do not change the learned values of different options, but modulate 215 

only the read-out parameters to consider factors such as impulsivity or exploration. Such a 216 

mechanism would lead to a difference at the level of behavioral performance between contexts, 217 

without any change of the underlying action values which represent task knowledge.  218 

To test this hypothesis, we focused on a specific network implementation of reinforcement 219 

learning for go/no-go tasks (Bathellier et al., 2013; Fusi et al., 2007). We constructed a 220 

computational model of reinforcement learning in which action values were represented at the 221 

level of synapses projecting from a sensory (S+, S-, and S) to output populations (D and I) 222 

(Figure 3A, gray), while action generation was governed by the parameters of the upstream 223 

readout units (Figure 3A, orange). This type of model is biologically plausible and has been 224 

found to more accurately characterize rodent behavioral data than standard reinforcement 225 

learning models (Bathellier et al., 2013). In our model, the equation by which the readout units 226 

processed information from the sensory population was changed in a context dependent fashion 227 

by way of a single parameter. We fit the model to our mouse, rat and ferret data and examined 228 

whether contextual modulation of the readout could quantitatively account for the behavioral 229 

learning trajectories (Figure 3C-F).  230 

We found that our model simultaneously captured the learning curves in the reinforced and probe 231 

trials in each of the tasks across mice, rats, and one ferret. This minimal model therefore 232 

provided a parsimonious description of a large and diverse dataset (Figure 3C-F, S2D), and 233 

validated our hypothesis that changes between contexts only modulate how the learned values of 234 

stimulus-action associations are read out, but not the values themselves (Figure 3B). The model 235 

moreover constrained the possible mechanisms underlying the contextual modulation of the 236 
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readout. One possibility was that context modulated only the behavioral readout via scaling of 237 

the readout gain that classically determines the amount of exploration (Daw et al., 2006; Silver, 238 

2010). This candidate mechanism accounted poorly for the behavioral data (Figure S4A), largely 239 

because of its symmetry between target and foil stimuli. This symmetry ensured that if the false-240 

alarm rate was greater than 50% in the reinforced context in a given session, the false-alarm rate 241 

could not be below 50% in the probe context, inconsistent with the behavioral data (Figure S3A, 242 

Figure S4A, reinforced and probe). A second possibility was an additive modulation equivalent 243 

to a threshold shift (Figures S3B)(Silver, 2010). While this mechanism provided a better fit to 244 

the data, it still did not simultaneously capture the trajectories in both contexts (Figure S4B, 245 

reinforced and probe), as again the readout function for target and foil trials was affected in a 246 

highly correlated manner (Figures S3B, 4B). A third approach was to scale independently the 247 

drive for no-go or go responses by modulating either the gain of inhibition (Figures 3B, S3C), or 248 

the excitatory drive to the decision unit (Figures S3D, S4D). Interestingly, selectively scaling the 249 

gain of feed-forward inhibition provided the best fit of behavioral data with a small number of 250 

adjusted parameters for mice, rats, and ferrets (Figures 3C-D, S2E, S8F, S9F). This 251 

straightforward mechanism for selectively scaling the no-go response is absent in classical 252 

reinforcement learning models yet quantitatively describes the dissociation between acquisition 253 

and expression of task knowledge. 254 

One alternative computational explanation in the case of the head-fixed mice is that the licktube-255 

reward association supersedes the target-reward association; this would predict continuous or 256 

random licking. However, early in learning, baseline lick rates in the reinforced context were 257 

low, with a robust increase in licking after the tone (Figure S5A-B). Theoretically, these effects 258 

could also be mediated by a compound association, whereby the licktube provides an additive 259 

drive to lick, bringing animals closer to an internal response threshold, even if baseline lick rates 260 

are low. If this were the case, for reinforced sessions in which the hit and false-alarm rates were 261 

both below 100%, we would expect that removal of the licktube would equally reduce hits and 262 

false-alarms (i.e., subtracting the additive drive to lick by the licktube). This was not the case; 263 

our behavioral data show that false alarm rates were significantly more affected than hit rates by 264 

context switching (Figures S5C-D; ∆Target= 14.9±18.7%, ∆Foil= 48.6±18.7%, p=2.79x10-5). 265 

Moreover, in the experiments with freely-moving rats, the food cup was always present with 266 

only the reinforcer (i.e., food pellets) either being present or absent; a compound association 267 
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would thus impact both contexts. Similarly, in the lever-based task in head-fixed, the licktube 268 

was always absent in both the reinforced and probe context, except to deliver water for correct 269 

licking to the target tone in the reinforced context. A compound association cannot explain the 270 

behavioral results since there is no licktube present when the animal executes the operant lever 271 

press. Taken together, these data largely negate the possibility of a compound association as the 272 

likely mechanism.  273 

What contextual factors might be responsible for this? Some context-dependent responses may 274 

be maladaptive; for example, impulsivity or over-motivation may hasten the response function 275 

by reducing inhibition under motivated conditions. Interestingly, animals responded more 276 

quickly in the reinforced context (Figure S6) suggesting that impulsivity may be one such 277 

contextual factor. Others may be adaptive such as increased foraging and exploration early in 278 

learning in the presence of reinforcement, which in the case of our mouse task would drive an 279 

increase in false alarm rate. Computing the reward rate shows that non-discriminant licking in 280 

the reinforced context to both target and foil tones maximizes reward at early stages of training 281 

(Figure S7). Thus, both adaptive and maladaptive factors likely contribute to context-dependent 282 

scaling. 283 

Inter-individual variability is driven more by testing context than underlying sensorimotor 284 

abilities  285 

One challenge in evaluating behavioral data and building robust learning models is that learning 286 

curves appear highly variable across individual animals (Bathellier et al., 2013; Luksys et al., 287 

2009) and humans (Wu et al., 2014). Typically, this variability has been thought to arise from 288 

differences in how quickly animals learn stimulus-action associations; “smarter” animals make 289 

associations faster, represented in formal reinforcement learning models via parameters related to 290 

reward-based plasticity. We examined individual animal learning trajectories in animals in which 291 

we collected both reinforced and probe behavioral performance consistently during learning 292 

(N=7 mice, N=6 rats). We found that selective scaling of the decision read-out could capture 293 

parallel behavioral trajectories of individual mice and rats with high fidelity (Figures 3D-F, S8-294 

9). As expected, mice exhibited significant behavioral variability in how quickly they reached 295 

expert levels in the reinforced context (Figure 4A, left panel). Surprisingly, in the probe context, 296 

this variability was strongly suppressed, revealing that different animals had acquired task 297 
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knowledge at nearly identical rapid rates (Figure 4A, right panel). We quantified this by 298 

calculating the number of trials it took mice to reach expert performance and the variance of this 299 

between animals (Figure 4B, d’>2.0 with false-alarm rates <50% for 100+ trials). Probe learning 300 

trajectories were stereotyped across animals while reinforced learning trajectories were much 301 

more variable (Figure 4B). For rats, the inter-animal variability in learning rates was also much 302 

lower in the probe context than in the reinforced context (Figure 4C-D) further emphasizing the 303 

generalizability of our findings across species.  304 

We tested in our model whether the inter-individual variation in performance was primarily 305 

explained by variability in reward-based plasticity parameters or variability in contextual scaling 306 

of the decision readout. To do so, we utilized a one-factor-at-a-time approach to examine how 307 

much each parameter could alter the learning curve versus how much real learning curves 308 

differed. Interestingly, the contextual scaling of inhibition could explain nearly all of the 309 

variation in performance in the reinforced context while reward-based plasticity parameters 310 

(learning rates, initial conditions, and noise) were less explanatory (Figure 4E, F). Individual 311 

performance variance therefore appears to emerge more from contextual factors than from 312 

differences in underlying rates of associative learning.  313 

  314 
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DISCUSSION 315 

In the 1930s, Edward Tolman and colleagues elegantly demonstrated that the introduction of 316 

reinforcement can critically mediate the generation and expression of a “cognitive map” 317 

(Tolman, 1948; Tolman and Honzik, 1930). Since its inception, Tolman’s cognitive map 318 

hypothesis of has profoundly impacted how neuroscience and behavioral psychology think about 319 

and approach cognitive behaviors. In the intervening years, however, this behavioral 320 

manipulation (introduction and removal of reinforcement) has rarely been used to understand 321 

sensory-guided behaviors. Here, we show that this simple yet powerful behavioral manipulation 322 

can dissociate between the acquisition and expression of sensorimotor task knowledge during 323 

learning. Across a wide range of behavioral tasks and animal species, we demonstrate that the 324 

apparent lack of discrimination between two conditioned stimuli early in learning can be 325 

attributed to contextual factors rather than underlying knowledge. Access to reinforcement 326 

masked the ability to execute correct stimulus-action associations, which can be revealed simply 327 

by testing animals in a different context where the reinforcement is absent. This hidden learning 328 

appears to be faster and highly stereotyped across animals, indicating that apparently-robust 329 

inter-individual differences in the presence of reinforcement are not driven by inter-individual 330 

differences in sensorimotor abilities.  331 

In these sensorimotor behaviors, the acquisition of task knowledge likely operates via reward-332 

based plasticity from a sensory to decision-making population. These projections rapidly 333 

stabilize and enable discrimination between the action values of the stimuli. Interestingly, neural 334 

data acquired during learning suggests that perhaps this rapid learning of stimulus-action 335 

associations may be reflected in sensory cortex. In the primary visual cortex of mice, for 336 

example, neural sensitivity to trained stimuli increases well before “behavioral” improvements 337 

(Jurjut et al., 2017). These behavioral measurements, however, were performed in the testing 338 

context suggesting that an alternate measure of behavior, such as our probe context, may have 339 

shown that the neuronal sensitivity tracks sensorimotor task acquisition (i.e., probe context 340 

learning rate) but precedes task expression (i.e., reinforced context learning rate) in the testing 341 

context. Thus, rapid changes in V1 may reflect core task learning while performance-correlated 342 

neural changes observed in other studies (Makino and Komiyama, 2015; Poort et al., 2015) 343 

reflect a more complex mix of contextual factors including behavioral state and cost-benefit 344 
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considerations. The relative timing of neural changes versus behavioral improvements has 345 

profound implications for neural models of learning and the underlying neural implementation, 346 

particularly as it relates to how specific brain structures instruct versus permit plasticity (Kawai 347 

et al., 2015; Otchy et al., 2015). Similar re-interpretations of existing results (Chu et al., 2016; 348 

Huber et al., 2012; Kato et al., 2015) may help us improve our understanding of the population-349 

level and single-neuron dynamics during learning across sensorimotor regions.  350 

The circuit mechanism of reward-based plasticity of sensorimotor projections is a critical area 351 

for future exploration. Dopaminergic neurons have been implicated in calculating reward 352 

prediction error (Schultz et al., 1997) yet whether and how these signals propagate to sensory 353 

cortices remains unclear. One possibility involves the entrainment of a neuromodulatory system 354 

with broader cortical projection patterns, such as cholinergic projection neurons in the basal 355 

forebrain (Zaborszky et al., 2015). Recent work in trained animals suggests that the cholinergic 356 

projection systems signals reinforcement feedback in a phasic manner (Hangya et al., 2015). 357 

Future studies will explore how phasic cholinergic signals are involved in learning-related 358 

plasticity and the forms of behavioral changes documented here. 359 

Our model further suggests that task expression is influenced by contextual scaling of the 360 

decision-making population. What might be the neural implementation of this contextual 361 

scaling? The state-dependent nature of the behavioral transitions and the potential role of 362 

inhibition suggest that neuromodulation, e.g., acetylcholine or noradrenaline, may be involved. 363 

Moreover, prefrontal mechanisms of top-down control may also play a role in stabilizing 364 

behavior in the presence of reinforcement. Behaviorally isolating the underlying learning rates 365 

and drivers of variability, however, will be critical if we want to link behavioral output, the 366 

computational algorithms that enable this output, and the relevant neural implementations 367 

(Krakauer et al., 2017; Wright and Shea, 1991).  368 

More broadly, the dissociation between knowledge and expression has critical implications for 369 

how we understand the distributed computations that enable learning. The possibility that 370 

acquisition and expression rely on different physiological mechanisms may help us isolate the 371 

root causes of under-performance and variability in learning rates. This dissociation may be 372 

particularly relevant when motivation, anxiety, and arousal are high and intermingled. 373 
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Regardless, behavioral and theoretical dissociation of acquisition and expression of knowledge in 374 

learning now provides us with a conceptual framework to better explore the neural basis of 375 

learning and individual variability. The possibility of distinct mechanisms between acquisition 376 

and expression may help us identify the neural basis for learning and performance variability 377 

across a wide range of behavioral, perceptual, cognitive, and intelligence testing contexts, 378 

including possibly in humans.  379 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

https://doi.org/10.1101/489450


FIGURES 380 
 381 
Figure 1  382 

 383 

  384 
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Figure 1. Expression of underlying task knowledge is context-dependent. A, Behavioral 385 

schematic of task set-up in the reinforced context with the licktube present. B, Mice are trained 386 

to lick to the target tone for a water reward and to withhold from licking to the foil tone. C, 387 

Behavioral sensitivity (d’) as a function of the number of reinforced trials (max d’: 2.7±0.2, 388 

mean±sem, N=14 mice, black line is sigmoidal fit to the average of all animals). D, Hit and 389 

false-alarm rates of individual animals at peak performance rates (hit rate: 96.0±0.9%, 390 

mean±sem, N=14 mice; false-alarm rate: 28.0±2.9%, mean±sem). E, Top: same as A, mice 391 

predominantly undergo training in the reinforced context. Middle: 20-40 probe trials are 392 

interleaved with reinforced training each day. In the probe context, the licktube was removed and 393 

there was no reinforcement for target or foil trials. Bottom: typical daily training structure, 200-394 

300 reinforced trials followed by 20-40 probe trials, and a final 70-200 reinforced trials. F, Still-395 

frames from a behavioral movie in a typical training session around trials 1500-2000. Reinforced 396 

context (licktube present); mouse correctly responding to a target tone in the reinforced context 397 

with a lick, water reward delivered in frame 4; mouse erroneously responding to a foil tone in the 398 

reinforced context with a lick. Probe context (no licktube present, same session): mouse correctly 399 

responding to a target tone in the probe context with a lick; mouse correctly withholding a 400 

response to a foil tone in the probe context. G, Top: average hit rate (95.8±1.4%, mean±sem, 401 

N=14 mice) and false-alarm rate (81.6±4.6%, mean±sem) across trials 1500-2000 in the 402 

reinforced context. Bottom: average hit rate (92.8±2.1%, mean±sem, N=14 mice) and false-403 

alarm rate (18.7±3.5%, mean±sem). F(3,39)=198.05, one-way repeated-measures ANOVA 404 

followed by Tukey’s post-hoc correction, p=0.84 between hit rates, p<0.05 for all other 405 

comparisons. H, Hit rates do not systematically vary with behavioral context early in learning 406 

(Trials 1500-2000, hit rates, pre-reinforced=91.3±3.21%, probe=89.1±2.92%, post-407 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

https://doi.org/10.1101/489450


reinforced=89.7±2.90%, mean±sem, n=14 animals; F(2,26) = 0.1932, p=0.851  between pre-408 

reinforced and probe contexts, p = 0.914 between reinforced contexts, p=0.973 between post-409 

reinforced and probe contexts, one-way repeated measures ANOVA followed by Tukey’s post-410 

hoc correction). I, False-alarm rate during probe trials is significantly lower than during the 411 

reinforced trials that immediately precede or follow them (Trials 1500-2000, pre-reinforced 412 

false-alarm rate: 81.9±4.5%, probe false-alarm rate: 15.5±2.7%, post-reinforced false-alarm rate: 413 

77.7±4.9%, mean±sem, n=14 animals; F(2,26) = 107.8, p<0.0001 between reinforced sessions 414 

and probe contexts, p=0.548 between reinforced contexts, one-way repeated measures ANOVA 415 

followed by Tukey’s post-hoc correction). J, Behavioral sensitivity (d’) is significantly higher 416 

during probe trials than in the reinforced sessions that precede or follow (Trials 1500-2000, pre-417 

reinforced d’: 0.40±0.18, probe d’: 2.46±0.18, post-reinforced d’: 0.53±0.19, mean±sem, N=14 418 

mice; F(2,26) = 44.56, p<0.001 between reinforced sessions and probe contexts, p=0.827 419 

between reinforced contexts, one-way repeated measures ANOVA followed by Tukey’s post-hoc 420 

correction). K, Learning trajectories of an individual animal in the reinforced (black, n=24 421 

training sessions) and probe (grey, n=6 training sessions) context. Dots indicate individual 422 

training sessions; lines indicate a sigmoidal fit to the behavioral data. L, Average d’ of a subset 423 

of animals whose learning was tracked in both the reinforced (black, N=7 mice) and probe (grey, 424 

N=7 mice) contexts. Dots indicate trial bins; solid lines indicate a sigmoidal fit. Reinforced trials 425 

to expert: 4728±647 trials; probe trials to expert: 1765±108 trials; N=7 mice, t(6)=4.359, 426 

p=0.0055. M, Left: average learning trajectories (mean±sem) in the reinforced context. Right: 427 

average learning trajectories (N=7 mice, mean±sem) in the probe context. Green lines indicate 428 

average hit rate, red lines indicate average false-alarm rate (N=7 mice, mean±sem)  429 
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Figure 2 430 
 431 

 432 
 433 
Figure 2. Dissociation of acquisition and expression generalizes to freely-moving rats. A, 434 

Behavioral schematic of task set-up in the reinforced context. Feature-negative discrimination 435 

task: a tone alone (S+) predicts the appearance of food in the food cup, whereas a light presented 436 

5s before the tone (S-) reverses its predictive quality. Neither stimulus is rewarded during probe 437 

trials. B, Discrimination between stimuli as a function of trial blocks in the reinforced context; 438 

gray lines indicate individual animals, black line is the average performance across animals 439 

(peak discrimination: 35.5±3.8%, mean±s.e.m, N=6 rats). C, Left: average time spent with nose 440 

in food cup after S+ stimulus (61.2±4.8%, mean±sem, N=6 rats) and S- stimulus (50.1±3.5%, 441 

mean±sem) across trial blocks 2-5 in the reinforced context. Right: average time spent with nose 442 

in food cup after S+ stimulus (70.1±4.9%, mean±sem, N=6 rats) and S- stimulus (31.0±3.6%, 443 

mean±sem) across trial blocks 2-5 in the probe context. F(3,20)=15.49, one-way repeated-444 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

https://doi.org/10.1101/489450


measures ANOVA followed by Tukey’s post-hoc correction, p=0.84 between S+ rates, p = 0.39 445 

between reinforced S+ and S- rates, p<0.05 for all other comparisons. D, Average discrimination 446 

of animals in the reinforced and probe contexts as a function of trial blocks. Dots indicate 447 

experimental data averaged across all rats, lines are the least-squares sigmoidal fit. E, 448 

Discrimination between S+ and S- stimuli for rats fully trained (trial block 8) on the Pavlovian 449 

serial feature discrimination task in A. Rats discriminated significantly more between the S+ and 450 

S- during non-reinforced probe trials (Reinforced discrimination: 33.8±3.4%, mean±s.e.m., N=6 451 

rats; Probe discrimination: 43.2±3.7%, mean±s.e.m.; two-tailed Student’s paired t-test, t(6) = 452 

2.693, p=0.036). F, Discrimination of rats in a fear-conditioning based feature negative 453 

discrimination task. Rats were first trained to press a lever for sucrose reinforcement feature. 454 

Pavlovian fear conditioning procedures were then superimposed on this operant lever pressing 455 

baseline.  When a tone target stimulus was presented alone (S+), it was paired with foot shock, 456 

but not when it was presented following a light feature (S-). Fear conditioning was assessed by 457 

measuring the suppression of operant lever press responding during the tone, and discrimination 458 

as the difference in suppression ratio to the S+ and S-. All rats discriminated significantly more 459 

between stimuli in the probe context than in the reinforced context (Reinforced discrimination: 460 

25.1±2.4%, mean±s.e.m., N=8 rats; Probe discrimination: 37.6±3.1%, mean±s.e.m.; two-tailed 461 

Student’s paired t-test, t(7) = 7.349, p=1.56x10-4). G, Performance of rats in a operant 462 

ambiguous feature discrimination in both reinforced and probe contexts to the feature positive 463 

portion of task. In this task, a single light feature stimulus indicated both that sucrose 464 

reinforcement was available for lever pressing during a tone target stimulus and that 465 

reinforcement was not available during a white noise stimulus. C Shows the discrimination of 466 

individual rats on the feature-positive portion of trials (i.e., light + tone vs. tone alone). Rats 467 
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discriminated significantly better in the probe context than in the reinforced context (Reinforced 468 

discrimination: 59.2±4.0%, mean±s.e.m., N=7 rats; Probe discrimination: 66.6±3.6%, 469 

mean±s.e.m.; two-tailed Student’s paired t-test, t(6) = 3.15, p=0.020). H, Performance of rats on 470 

the same task as c on the feature negative discrimination portion (i.e., light + noise vs. noise 471 

alone). Rats discriminated significantly better in the probe context than in the reinforced context 472 

(Reinforced discrimination: 40.71±3.7%, mean±s.e.m., N=7 rats; Probe discrimination: 52.4±5. 473 

7%, mean±s.e.m.; two-tailed Student’s paired t-test, t(6) = 4.534, p=0.004). 474 

  475 
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Figure 3 476 

 477 
 478 

Figure 3. Contextual scaling in a reinforcement learning model. A, Schematic of the model, 479 

which implements reinforcement-driven learning of stimulus-action associations, with a readout 480 

function that can be contextually modulated. The model simultaneously captures reinforced and 481 

probe learning trajectories by dissociating between reward-driven plasticity representing task 482 

acquisition (gray, reinforcement signals) and context-dependent changes in expression (orange, 483 

contextual scaling) of the learned values. Plastic synapses between sensory and decision-making 484 

populations represent stimulus-action values, and their weights are only updated during 485 

reinforced trials (gray shading, reinforcement signals). Actions are generated by the decision-486 

making (D and I) units (orange shading), which read out the sensory input filtered through the 487 
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synaptic weight matrix (W). The parameters of the readout units (orange shading) are modulated 488 

between the reinforced and the probe contexts, either via selective scaling of inhibition and 489 

excitation, noise modulation, or threshold changes (see Figure S3). B, Right: illustration of the 490 

effects of selective scaling of inhibition on the decision unit’s activity (D). Decision activity 491 

represents the net input to the decision-making unit, i.e. the difference between the values of the 492 

go and no-go actions, for the target (green) and foil (red) tone over the course of learning. Solid 493 

and dashed lines respectively indicate probe and reinforced context (inhibition scaling cI: 0.52). 494 

Left: schematic of the contextually modulated model via inhibitory scaling, and a description of 495 

how inhibitory scaling would be implemented. Orange highlights the context-dependent 496 

parameters. C, Comparisons between average mouse behavioral data (n = 7 mice)  and fits of the 497 

inhibitory scaling model for the two contexts. D, same as C but for the learning trajectory of one 498 

individual mouse. E-F, same as C-D, but for rat behavioral data (E: n = 6 rats; F: rat rt003).  499 
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 500 

Figure 4 501 

 502 

Figure 4: Performance variance across rodents arises from contextual factors. A, Left: 503 

normalized discrimination of all mice in the auditory go/no-go task over the over the course of 504 

learning (N=7 mice) in the reinforced context; right: same as left but in the probe context (N=7 505 

mice). B, Number of trials required for individual animals to reach expert performance levels (d’ 506 

> 2.0, false-alarm rate < 50% for at least 100 trials) in the reinforced (black) and probe (grey) 507 
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contexts. The number of trials required for expert performance is significantly more stereotyped 508 

across animals in the probe context than in the reinforced context (probe: st.d. = 358 trials , range 509 

= 1348-2332, n =7 animals; reinforced: st.d. = 2047 trials, range = 2187-8838 trials, N=7 mice, 510 

F(6,6) =32.63, p = 5.025x10-4, two-tailed two-sample F-test for equal variances). C, Left: 511 

normalized discrimination of rats in the Pavlovian feature-negative discrimination task over the 512 

over the course of learning (N=6 rats) in the reinforced context; right: same as left but in the 513 

probe context (N=6 rats). D, Number of trials required for individual animals to reach expert 514 

performance levels (discrimination > 25% for at least 1 day of training, i.e. 16 trials) in the 515 

reinforced (black) and probe (grey) contexts. The number of trials required for expert 516 

performance is significantly more stereotyped across animals in the probe context than in the 517 

reinforced context (probe: st.d. = 0.51 days, range = 2-3 days, N=6 rats; reinforced: st.d. = 1.72 518 

days, range = 3-8 days, F(5,5) =11.12, p = 0.0194, two-tailed two-sample F-test for equal 519 

variances). E, Schematic of network model with colors indicating parameter groups. F, Left: 520 

Percentage of inter-individual variation for mice performing the auditory go/no-go task 521 

explained by the four core model parameters: inhibitory scaling: 99.7%; learning rates: 74.8%; 522 

initial weights: 70.8%; noise: 54.6%. Each parameter is constrained by the values given by 523 

individual animal fits. Right: same as left but for modelling of rats learning the Pavlovian 524 

feature-negative discrimination task (variation explained by inhibitory scaling: 80.7%; learning 525 

rates: 53.0%; initial weights: 65.2%; noise: 60.6%. Each parameter is constrained by the values 526 

given by individual animal fits.    527 
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STAR METHODS 528 

 529 

CONTACT FOR REAGENT AND RESOURCE SHARING 530 

Further information and requests for resources and reagents should be directed to and will be 531 

fulfilled by the Lead Contact, Kishore Kuchibhotla (kkuchib1@jhu.edu). 532 

 533 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  534 

Animals:  All mice procedures were approved under a New York University IACUC protocol 535 

and a Johns Hopkins University IACUC protocol. Male and female mice of mixed sex were used 536 

at 8-16 weeks of age. Multiple strains were used (C57/BL6, PV-cre, ChAT-ChR2). Behavior was 537 

a quantitative assessment with no "treatment" groups, and animals were thus not randomly 538 

assigned into experimental groups. The care and experimental treatment of rats was conducted 539 

according to the National Institutes of Health’s Guide for the Care and Use of Laboratory 540 

Animals, and the protocol for “Experiment 1” was approved by an IACUC at Duke University. 541 

“Experiment 2” was conducted at the University of Pittsburgh before the establishment of 542 

IACUCs. All rats were male Long-Evans rats tested around 90 days of age. All experimental 543 

procedures involving ferrets conformed to standards specified and approved by the French 544 

Ministry of Research and the ethics committee for animal experimentation n°5. Blinding of 545 

experimenters was not relevant for this study as behavior was assessed quantitatively based on 546 

objective, measured criteria. 547 

 548 

 549 

 550 
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METHOD DETAILS  551 

Behavioral training: head-fixed mice. All behavioral events (stimulus delivery, reward 552 

delivery, inter-trial-intervals) were monitored and controlled by a custom-written MATLAB 553 

(MathWorks) program interfacing with an RZ6 auditory processor (Tucker-Davis Technologies), 554 

and an infrared beam for lick detection. Training was initiated after surgery for head-fixation and 555 

at least 7 days of water restriction in adult mice (8-16 weeks of age, mixed sex, mixed 556 

background strain). Training was conducted during the day and began with habituation to head-557 

fixation, which was followed by 1-2 water-sampling sessions while animals were immobilized in 558 

a Plexiglas tube facing a licktube. The licktube was typically placed at the maximal distance 559 

away from the mouse. Animals were then immediately placed in the complete behavioral 560 

paradigm with minimal shaping. Task training began with a 200-400 trials in the reinforced 561 

behavioral context, where we used a go/no-go auditory discrimination task with the target and 562 

foil stimuli set at 9.5 kHz or 5.6 kHz (stimuli-salience pairing randomly assigned, 0.75 octave 563 

spacing). Target versus foil trials were pseudo-randomly ordered, each of which consisted of a 564 

pre-stimulus period (1.25 s), stimulus period (100 ms), delay (50 ms), response period (1.75 s), 565 

and an inter-trial interval (ITI) with variable duration as described below.  566 

 Tones were presented to animals under two different behavioral contexts. In the 567 

‘reinforced context’, a licktube delivering water was positioned within tongue reach (0.5-1.0 568 

cm). In this context, mice only received water for correct licks to the target tone during the 569 

response period. Incorrect licks during the response window to the foil tone (a false-alarm) 570 

resulted in a mild negative punishment consisting of an extended ITI. Animals were not punished 571 

if they licked during any other time epoch (i.e., if animals licked in the pre-stimulus period, tone 572 

presentation or delay period, the trial continued with the standard ITI). This enabled us to 573 
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confirm that animals were actively increasing lick rate for target tones during hit trials and 574 

reducing lick rate for foil tones during correct reject trials. This measurement confirmed that 575 

both the target and foil tone had behavioral effects on the animal; without this, animals could 576 

take a single-tone strategy (i.e., learn to lick only for the target tone or withhold licking for the 577 

foil tone). Hit trial ITIs were 4–5 s (to enable licking for full reward), miss trials were not 578 

punished and had an ITI of 2–3 s, false-alarm trials were punished with an ITI lasting 7–9 s, and 579 

correct rejects immediately moved to the next trial with an ITI of 2–3 s. In the second context, 580 

the ‘probe context’, the licktube was removed from the behavioral space by an automated 581 

actuator, such that it was out of sight and whisker reach. Target and foil trials were again 582 

presented in a pseudo-random order, but did not correlate to the presence of potential rewards or 583 

punishments. We continued to monitor behavioral responses made during the response period 584 

following stimulus presentation, but trial durations were not dependent on such behavioral 585 

responses (ITI ~2-3 s).  586 

 Each day, animals were typically trained on two blocks of trials in the reinforced context 587 

(100-300 each, total of ~400 reinforced trials per day), and one randomly interleaved block of 588 

probe trials (20-40 trials). Importantly, because mice were not presented with any direct 589 

incentives to execute behavioral responses in the probe contexts, the number of trials in probe 590 

blocks could not be further extended, as this caused rapid cessation of behavioral responses. 591 

Utilizing the short probe blocks, behavioral responses (hit rate and false-alarm rates) in the probe 592 

context (i.e. in the absence of reinforcement) begun to decline after 60-150 total passive trials 593 

across 3-6 days of training. For a subset of mice (N=4), we introduced probe blocks more 594 

sparsely (~1 probe block per 1500 reinforced trials) to ensure that the decline of behavioral 595 
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responses in the probe context occurred independently from the training in the reinforced 596 

context. 597 

 Average performance in the reinforced condition was measured by segmenting 598 

performance into discrete blocks, such that we averaged all false-alarm and hit rates recorded in 599 

blocks of 100 trials. A similar process was utilized for measurements of average performance in 600 

the probe context, but because of the smaller number of probe blocks, block sizes were adjusted 601 

to ensure that probe blocks from at least two animals were incorporated into each measurement 602 

(max 500 trials/block). For analysis of probe learning trajectories, we only included probe blocks 603 

up until the hit rate reached a peak value, as behavioral responses in the probe context were 604 

subsequently diminished because of the absence of a positive reinforcer. Behavioral sensitivity 605 

(d’) to the task-relevant tones was calculated as the z-scored hit rate minus the z-scored false-606 

alarm rate. To avoid infinite values during sensitivity calculations rates of zero and one were 607 

corrected by 1
2𝑁𝑁

 and 1 − 1
2𝑁𝑁

, respectively, where N is the number of trials in each measurement.  608 

 For the lever-pressing task, the licktube was normally absent and mice were initially 609 

trained to reliably press the lever for access to the licktube. After this initial period of lever 610 

training, the animals were then placed into the go/no-go task with no additional behavioral 611 

shaping. The task structure was similar to the lick-version of the task described above but now a 612 

lever press was required for the motor action and the licktube was only advanced for correct 613 

target trials (hit trials) in the reinforced context. 614 

 615 

Behavioral training: rats. The subjects (N=7) of the Pavlovian serial feature negative 616 

discrimination task (Figure 2A) were male Long-Evans rats (Charles River Laboratories, 617 

Raleigh, NC, USA). Rats were housed individually in a colony room with a 4:10 hr light-dark 618 
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cycle. After one week of acclimation to the vivarium with ad libitum access to food and water, 619 

rats were food-restricted such that their weights reached and were maintained at 85% of their 620 

free-fed weights. Beginning three days before the first day of food restriction, all rats were 621 

handled, weighed, and fed daily until the end of the experiment. For all rats, daily behavioral 622 

testing sessions began 7 days after the beginning of food restriction, and were conducted during 623 

the light portion of the light-dark cycle. The rats were tested at about 90 days of age. The animal 624 

protocols were approved by an IACUC at Johns Hopkins University. 625 

 For the Pavlovian serial feature negative discrimination task, the behavioral training 626 

apparatus consisted of eight individual chambers (22.9 x 20.3 x 20.3 cm) with stainless steel 627 

front and back walls, clear acrylic sides, and a floor made of 0.48-cm stainless steel rods spaced 628 

1.9 cm apart.  A food cup was recessed in a 5.0 x 5.0 cm opening in the front wall, and 629 

photocells at the front of the food cup recorded time spent in the cup. Grain pellets were 630 

delivered to the food cups by pellet feeders (Coulbourn H14-22, Allentown, PA, USA). A 631 

jeweled 6-w signal lamp was mounted 10 cm above the food cup; illumination of this “panel 632 

light” served as the visual stimulus. Each chamber was enclosed inside a sound attenuating shell.  633 

An audio speaker and 6-w house light were mounted on the inside of each shell. 634 

 All rats were first trained to eat grain pellets (45 mg, Formula 5TUM, Test Diets, 635 

Richmond, IN, USA) from the food cups, in a single 64-min session, which included 16 un-636 

signaled deliveries of 2 pellets each. In this and all subsequent session, events were delivered at 637 

random inter-trial intervals (ITIs, mean: 4 min, range: 2 to 6 min). Then, the rats received a 638 

single 64-min pre-training session, which included 16 reinforced trials; each trial consisted of a 639 

5-s presentation of a 78 dB SPL, 1500 Hz square wave tone followed immediately by the 640 

delivery of 2 grain pellets. Finally, the rats received eight 64-min daily training sessions, each 641 
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including 4 reinforced trials (S+; as before) and 12 foil trials (S-), in which a 5-s illumination of 642 

the panel light was followed, after a 5-s empty interval, by the 5-s tone, but no food delivery. The 643 

trials occurred in random order, changed daily.  Four hours before each of training sessions 2-8, 644 

and 20 hr after session 8, rats received a probe test, which comprised two light-tone and 2 tone-645 

alone trials. No food was delivered in these tests. Responses to each stimulus type was recorded 646 

as the percentage of the food-sampling window (5 s post-stimulus) rats spent in the food cup. 647 

Performance, or discrimination, was recorded as the raw difference rats spent in the food cup 648 

following the S+ versus S- stimulus. Expert performance levels was defined as a discrimination 649 

> 25% for at least 1 day of training, 16 trials. 650 

 The operant ambiguous feature discrimination task (“Experiment 1”; Figure 2A-E) and 651 

the fear conditioning (conditioned suppression) in feature-negative discrimination task 652 

(“Experiment 2”; Figure 2B) have been previously described in detail(Gallagher and Holland, 653 

1992; Holland and Lamarre, 1984). The subjects of Experiment 1 (N=7) were male Long-Evans 654 

rats (Charles River Laboratories, Raleigh, NC, USA) and the subjects of Experiment 2 were 4 655 

males and 4 female Sprague-Dawley rats (bred at the University of Pittsburgh). The rats in 656 

Experiment 1 received sham lesions of the hippocampus (Gallagher & Holland, 1992) prior to 657 

training procedures. Rats were individually housed in a colony room with a 12:12 hr light-dark 658 

cycle. All rats were carefully food-restricted to maintain 85% of their free-feeding weights, as 659 

described above. The care and experimental treatment of rats was conducted according to the 660 

National Institutes of Health’s Guide for the Care and Use of Laboratory Animals, and the 661 

protocol for Experiment 1 was approved by an IACUC at Duke University. Experiment 2 was 662 

conducted at the University of Pittsburgh before the establishment of IACUCs. The training 663 

apparatus for these experiments was identical to the chamber-divided box described above, with 664 
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sucrose solution being delivered to the food cup via solenoid valves. A 2.5 x 2.5 cm response 665 

lever was mounted 2 cm left of the food cup. 666 

 Experiment 1. This experiment was designed to assess performance in a discrete-trial 667 

operant ambiguous feature discrimination. A single light feature stimulus indicated both that 668 

sucrose reinforcement was available for lever pressing during a tone target stimulus and that 669 

reinforcement was not available during a white noise stimulus. Thus, the rats were trained with a 670 

discrimination procedure in which lever presses were reinforced during a light + tone compound, 671 

but not during that tone alone, and during a noise when it was presented alone but not during a 672 

compound of light and noise. Rats were first trained to consume sucrose reinforcement from the 673 

food cups and to press the lever. In the initial session, they first received 20 response-674 

independent 0.3-mL deliveries of 6.4% (v/v) sucrose (the reinforcer used throughout this 675 

experiment) on a variable-time 1-minute schedule. Each lever press was reinforced during that 676 

20-min period and during the remaining 40 min of the session. In the n e x t  session, lever 677 

presses were reinforced, but there were no response-independent sucrose presentations; each 678 

rat was allowed to remain in its chamber until it had made about 50 lever presses. All 679 

subsequent training sessions were 60 min in duration. 680 

The next 5 sessions were designed to establish lever pressing during the two reinforced 681 

stimuli, light (PT+) and a white noise stimulus ( N+). During each of these sessions, there were 682 

30 15 s presentations of a 73 dB SPL white noise (N) and 30 15 s presentations of a 683 

compound that comprised a 74 dB SPL 1500 Hz tone and the illumination of the panel light 684 

(PT). In the first 2 sessions, each lever press made during one of these cues was followed by 685 

sucrose delivery. In the remaining sessions (of both this and subsequent phases), 686 

reinforcement was available only during the final 5 s of each reinforced cue. During all 687 
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sessions throughout this experiment, trial sequences were generated randomly for each session. 688 

Inter-trial intervals were randomized daily, with the constraint that the range of intervals was 689 

from 0.5 to 2.0 times the mean interval (60 s). 690 

Next, discrimination training began, in which illumination of the panel light (P) 691 

indicated the availability of reinforcement during the tone (T) and the nonavailability of 692 

reinforcement during the noise (N). All rats received four kinds of trials in each of the 20 693 

discrimination sessions. Reinforced PT+ and N+ trials were identical to those received 694 

previously. In addition, there were 15-s presentations of the tone alone (T-), and of a 695 

compound of the panel light and the noise (PN-). In each of sessions 1-10 there were 15 of 696 

each trial type, randomly intermixed, and in each of sessions 11-20 there were 10 N+, 10 PT+, 697 

20 PN-, and 20 T- trials. After the 20 discrimination sessions, a single non-reinforced probe 698 

test was given, which included 12 presentations of each of these trial types, plus 12 15-s 699 

presentations of P alone, to assess conditioning established to that stimulus.  700 

 Experiment 2: The experiment was designed to assess learning of a serial feature negative 701 

discrimination in a conditioned suppression experiment. Rats were first trained to press a lever 702 

for sucrose reinforcement feature. Pavlovian fear conditioning procedures were then 703 

superimposed on this operant lever pressing baseline.  When an auditory stimulus (pure tone) 704 

was presented alone, it was paired with foot shock; when it was presented following a visual 705 

stimulus (light flash), no shock was delivered. Fear conditioning was assessed by measuring the 706 

suppression of operant lever pressing during the tone. Rats were first trained to consume the 707 

sucrose reward (0.3 ml of 8% v/v sucrose solution) from the food cup in 2 60-min sessions. In 708 

each of these sessions, there were 60 sucrose deliveries delivered on a variable-time 60-s 709 

schedule. Next, a single lever press training session was given, in which each lever press was 710 
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followed by sucrose delivery; each rat was removed from the chamber after approximately 50 711 

presses. Then, to establish strong operant baseline lever-press responding, the rats received a 712 

single session in which lever presses were reinforced on a variable-interval 60-s schedule, 713 

followed by 4 sessions in which lever-pressing was reinforced on a variable-interval 120-s 714 

schedule. These and all subsequent sessions were 90 min in duration. No other stimuli were 715 

delivered. 716 

Pavlovian fear conditioning began with two 90-min sessions designed to establish 717 

conditioned suppression to the target cue to be used in discrimination training and another cue to 718 

be used in a transfer test. Each session included one 1-min presentation of an intermittent (2 Hz) 719 

1,500-Hz tone and one 1-min presentation of a white noise, each reinforced with a 0.5-s, 0.5-mA 720 

shock. During the first 45 min of the next session the rats received 3 non-reinforced presentations 721 

of a 1-min illumination of the house light as a pretest of responding to that feature cue. 722 

Discrimination training began in the last 45 min of that session. The rats received a single 1-min 723 

tone presentation that is rewarded and 3 non-rewarded presentations of a serial compound 724 

consisting of a 1-min presentation of the house-light followed by the 1-min tone. During the 725 

remaining 47 discrimination training sessions, the rats received two rewarded tone presentations 726 

and six non-rewarded presentations of the light-tone compound. The trial sequences were 727 

randomized and changed daily; the inter-trial intervals averaged 11 min, ranging from 6 to 18 728 

min. Finally, all rats received a non-reinforced probe test which examined responding to the tone 729 

and noise excitors and to serial compounds of those excitors with the light (2 presentations each 730 

of the tone, the noise, the light+tone compound and the light+noise compound). No shocks were 731 

delivered during this test regardless of stimulus identity. Because the light+noise trials were 732 

unique to the probe test, we present data only for the tone and light+tone trials. The measure of 733 
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conditioning was a standard suppression ratio(Annau and Kamin, 1961) computed by dividing 734 

the lever-press response rate during CS presentations by the sum of response rates during CS 735 

presentations and for 2 min prior to CS presentations. Discrimination performance was measured 736 

by constructing a difference score, suppression during the tone on light+tone compound trials 737 

minus suppression on tone-alone trials. 738 

For both Experiments 1 and 2, we examined only performance in the reinforced and non-739 

reinforced contexts at the end stages of training, as probe trials were not conducted over the 740 

entire course of training.  741 

 742 

Behavioral training: ferrets. All experimental procedures conformed to standards specified and 743 

approved by the French Ministry of Research and the ethics committee for animal 744 

experimentation n°5. Adult female ferrets were housed in pairs in normal outside light cycle 745 

vivarium. After headpost implantation, ferrets were habituated to head-fixed holder for a week. 746 

They were then trained until they reached performance criterion. Two adult female ferrets were 747 

trained to discriminate 1.1 s-long click trains in different paradigms (one on low vs. high rate 748 

click train discrimination and the other on regular vs. irregular click train) in a Go/No-Go task 749 

under appetitive reinforcement. The first ferret was trained to discriminate between a high-750 

frequency (24Hz) foil stimulus and a low-frequency (4Hz) target stimulus, with a response 751 

window of 1.85 sec following the stimulus presentation, and performance was tracked in both 752 

contexts throughout learning. The second ferret was trained to discriminate between a 12Hz 753 

irregular click-train (foil) and a 12Hz regular click-train (target), with a response window of 0.8 754 

sec following stimulus presentation. Performance on probe versus reinforced trials were only 755 

assessed at an early stage of training (trial 1-1150). Animals were rewarded with water (0.2 mL) 756 
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for licking a waterspout in the response window. Licks during the foil response window were 757 

punished with a timeout, as well as licks during the earlier part of the target click train (Early 758 

Window). We present and model only the learning trajectory of the first ferret, but we note that 759 

average behavioral performance was similar across animals. 760 

All sounds were synthesized using a 100 kHz sampling rate, and presented through a free-field 761 

speaker that was equalized to achieve a flat gain. Clicks were mono-polar, rectangular pulses of 762 

1ms duration with amplitude set at 70 dB SPL. Behavior and stimulus presentation were 763 

controlled by custom software written in Matlab (MathWorks). Target and foil stimuli were 764 

preceded by an initial silence lasting 0.2 s (Ferret 1) and 0.5 s (Ferret 2) followed by the 1.1 s-765 

long click trains. On each session, foil and target stimuli were randomly presented and kept 766 

constant through training. 767 

 768 

Reinforcement learning model. We constructed a decision-making model that implements 769 

reinforcement-driven learning of stimulus-action associations(Bathellier et al., 2013), with a 770 

readout function that can be contextually modulated. The core model consisted of a sensory 771 

coding population which sends excitatory projections to a decision-making population through 772 

feed-forward inhibition (Figure 3A). The sensory population consists of two tone-selective 773 

populations representing target (S+) and foil tones (S-), and one additional population that is 774 

tone-responsive but has no preference for targets or foils (S), consistent with the functional 775 

organization of auditory cortical networks(Issa et al., 2014; Kuchibhotla et al., 2016; Polley et 776 

al., 2006; Rothschild et al., 2010; Winkowski and Kanold, 2013). The non-selective sensory 777 

population (S) captures any generalized stimulus-action associations, and greatly improves 778 
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model performance. The three sensory populations projected to inhibitory (I) and excitatory 779 

populations (D) with plastic synapses in the decision-making area. The strengths of these 780 

synapses changed through reward-driven plasticity on a trial-by-trial basis; in reinforcement 781 

learning terms, the synaptic weights here represented the action values of the stimuli. The 782 

excitatory decision-making unit read out and compared the values of the two actions (Go and 783 

No-Go) by computing total synaptic input, i.e., the difference between direct excitation for a Go 784 

response, and feed-forward inhibition that promotes a No-Go response. This total input 785 

corresponded to a decision variable, which the decision-making unit transformed into an action 786 

through a noisy all-or-none activation function.  787 

Sensory representations were assumed fixed during learning, and thus this layer formally reduces 788 

to a binary 3D vector �⃗�𝑥 = [S S+ S-] (i.e. the sensory representation layer can be represented as [1 789 

0 1] during a foil trial). The instantaneous strengths of the projections from the sensory layer to 790 

the decision layer are determined by two 3D weight vectors, 𝑊𝑊���⃗ 𝐷𝐷 =  [𝑤𝑤𝐷𝐷/𝑆𝑆  𝑤𝑤𝐷𝐷/𝑆𝑆+  𝑤𝑤𝐷𝐷/𝑆𝑆−] and 791 

𝑊𝑊���⃗ 𝐼𝐼 =  [𝑤𝑤𝐼𝐼/𝑆𝑆 𝑤𝑤𝐼𝐼/𝑆𝑆+  𝑤𝑤𝐼𝐼/𝑆𝑆−]. We assumed that initial weights from the two tone –selective units 792 

were identical, but allowed the initial weights from the non-selective population to be 793 

independently determined. The inhibitory unit provides graded linear feed-forward inhibition to 794 

the decision unit. The decision unit reads out the utility values of the two possible actions, Go or 795 

No-go, by computing its net synaptic input. The probability of generating a Go decision is given 796 

by 797 

𝑃𝑃 (𝑦𝑦 = 1| �⃗�𝑥) =  
1

1 + exp (−�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 −𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇�𝜎𝜎−1)
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where σ is a parameter that regulates the stochasticity of behavioral decision making, analogous 798 

to the temperature parameter in canonical reinforcement models. We denote by y the output of 799 

the decision unit, with y=1 for a Go and y=0 for a No-Go. 800 

 Synaptic weights from the sensory to the decision-making layer were updated at the end 801 

of each trial on the basis of the obtained reinforcement. Because of the relatively slower change 802 

in false-alarm rates than hit rates, we allowed the synaptic changes following rewarded and non-803 

rewarded trials to have different learning rates α and αNR. To account for the learning delay 804 

observed in many individual animals, we followed Bathellier et al. (2013) and utilized a 805 

multiplicative learning rule in which the learning rates are multiplied by synaptic strengths, so 806 

that strong synapses are updated more rapidly than weak synapses (Figure  S10A). This 807 

multiplicative rule enabled the model to capture both exponential and sigmoidal learning 808 

trajectories, and predicts that the initial weights between the sensory representation layer and the 809 

decision circuitry regulates the general shape of learning trajectories for individual 810 

animals(Bathellier et al., 2013). An additive model failed to account for the learning trajectories 811 

of individual animals (Figure S10B). Taken together, synaptic weights are strengthened and 812 

weakened according the following learning rules:  813 

 814 

Rewarded trials ∶
𝛿𝛿𝑊𝑊���⃗ 𝐷𝐷,𝑗𝑗 =  𝛼𝛼𝑊𝑊���⃗ 𝐷𝐷,𝑗𝑗 �𝑅𝑅 − 𝜅𝜅−1�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼 �⃗�𝑥𝑇𝑇��𝑦𝑦 

𝛿𝛿𝑊𝑊���⃗ 𝐼𝐼 ,𝑗𝑗 =  −𝛼𝛼𝑊𝑊���⃗ 𝐼𝐼 ,𝑗𝑗 �𝑅𝑅 − 𝜅𝜅−1�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼 �⃗�𝑥𝑇𝑇��𝑦𝑦
  

 815 

Unrewarded trials ∶
𝛿𝛿𝑊𝑊���⃗ 𝐷𝐷,𝑗𝑗 =  𝛼𝛼𝑁𝑁𝑁𝑁𝑊𝑊���⃗ 𝐷𝐷,𝑗𝑗�𝑅𝑅 − 𝜅𝜅−1(𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇)�𝑦𝑦 
𝛿𝛿𝑊𝑊���⃗ 𝐼𝐼,𝑗𝑗 =  −𝛼𝛼𝑁𝑁𝑁𝑁𝑊𝑊���⃗ 𝐼𝐼 ,𝑗𝑗�𝑅𝑅 − 𝜅𝜅−1(𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇)�𝑦𝑦

  

 816 
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where R represents the reward (-1 if not rewarded, 1 if rewarded), 𝜅𝜅 is a parameter that regulates 817 

the asymptotic weights of each synapse, and 𝑦𝑦 is a Hebbian term that requires co-activation of 818 

pre- and post-synaptic terminals for synaptic modifications, as it does not provide any update if 819 

the decision neuron does not activate. During stochastic runs of the model, the target and foil 820 

stimuli were generated pseudorandomly with equal probability. 821 

 To account for the distinct learning trajectories in the reinforced context and the probe 822 

context, we extended the original model and introduced a 2D binary context vector 𝑠𝑠, indicating 823 

whether the licktube was present [1 0] or absent [0 1]. For the inhibitory scaling model, feed-824 

forward inhibition was scaled during reinforced trials during by the 2D vector 825 

𝑐𝑐𝐼𝐼 =  [𝑐𝑐𝐼𝐼(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 1], such that: 826 

𝑃𝑃 (𝑦𝑦 = 1| �⃗�𝑥) =  
1

1 + exp�−�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − (𝑐𝑐𝐼𝐼𝑠𝑠𝑇𝑇)(𝑊𝑊���⃗ 𝐼𝐼 �⃗�𝑥𝑇𝑇)�𝜎𝜎−1�
 

effectively shifting the decision-making unit’s readout from its baseline state during the 827 

reinforced context. Other models tested were subject to similar context dependent switches 828 

applied as follows:  829 

Gain Modulation: 𝑃𝑃 (𝑦𝑦 = 1| �⃗�𝑥) =  
1

1 + exp (−(𝑐𝑐𝐺𝐺𝑠𝑠𝑇𝑇)�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇�𝜎𝜎−1)
 

Threshold shift: 𝑃𝑃 (𝑦𝑦 = 1| �⃗�𝑥) =  
1

1 + exp (−�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 − 𝑊𝑊���⃗ 𝐼𝐼 �⃗�𝑥𝑇𝑇 + 𝑐𝑐𝑇𝑇𝑠𝑠𝑇𝑇�𝜎𝜎−1)
 

Excitatory scaling: 𝑃𝑃 (𝑦𝑦 = 1| �⃗�𝑥) =  
1

1 + exp (−�(𝑐𝑐𝐸𝐸𝑠𝑠𝑇𝑇)(𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇)−𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇�𝜎𝜎−1)
 

Note that gain modulation is effectively equivalent to a modulation of the noise parameter. 830 

Throughout training, we probed the model after every 100 reinforced trials (𝑠𝑠 = [1 0]) for its 831 

behavior across 100 probe (𝑠𝑠 = [0 1]) trials. Because mice received no positive reinforcer during 832 

the probe context trials, we assumed that synaptic weights were not updated during these probe 833 
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trials. This assumption allows probing to, theoretically, progress indefinitely to assess the 834 

baseline (non-scaled) behavior of the model, without altering the synaptic weights representing 835 

task knowledge. This allowed us to sample from the model during both behavioral contexts over 836 

the entire extent of learning.  837 

 838 

Modelling of rat behavioral data. To generalize our model to the behavior of freely moving 839 

rats in a task without a binary choice point, we simply altered the readout function to yield a 840 

continuum of possible values for the percentage of time spent in the food cup. Rather than 841 

having the readout function yield the probability of a ‘Go’ response, we took this same value to 842 

indicate the percentage of time spent at the food cup. For example, when the original readout 843 

function yielded a probability of a ‘Go’ response as 65%, we converted this to mean 65% of time 844 

spent at the food-cup. The readout function in the rat behavioral task can thus be written as:  845 

𝑇𝑇 =  
1

1 + exp (−�𝑊𝑊���⃗ 𝐷𝐷�⃗�𝑥𝑇𝑇 −𝑊𝑊���⃗ 𝐼𝐼�⃗�𝑥𝑇𝑇�𝜎𝜎−1)
 

where T is the percentage of the trial spent in the food cup. This thus preserves most aspects of 846 

the original model (with the exception of being slightly less stochastic), including the readout 847 

function serving as a measure of the animal’s bias toward one response given the stimulus.  848 

 849 

Model fitting. All simulations and fitting procedures were performed in MATLAB. All tested 850 

models were fitted to data in both contexts simultaneously. To increase computational efficiency, 851 

we constructed a coarse-grained version of our model by assuming slow variations in the 852 

synaptic weights. During fitting, the model weights were updated in chunks of 10 trials, with 853 

stochasticity solely arising from the target and foil ratios in the given block. Trial ratios were 854 

pseudo-randomly drawn from a normal distribution (μ=0.5, σ=0.1, <0.5 = F, >0.5 =T). During 855 
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each trial block, the reinforced-context performance was calculated given the synaptic weights 856 

preceding the given block, and synaptic weights subsequently updated on the basis of the 857 

probability of false-alarm and hit trials during the given 10 trials. For example:  858 

𝛿𝛿𝑊𝑊𝐷𝐷/𝑆𝑆+ =  𝛼𝛼𝑊𝑊𝐷𝐷/𝑆𝑆+�𝑅𝑅 − 𝜅𝜅−1(𝑊𝑊𝐷𝐷/𝑆𝑆+ + 𝑊𝑊𝐷𝐷/𝑆𝑆 − 𝑊𝑊𝐼𝐼/𝑆𝑆+ − 𝑊𝑊𝐼𝐼/𝑆𝑆�)𝑛𝑛𝑇𝑇𝑃𝑃(𝑦𝑦 = 1|𝑊𝑊���⃗ 𝐷𝐷,𝑊𝑊���⃗ 𝐼𝐼) 859 

where 𝑛𝑛𝑇𝑇 represents the number of target-tone trials in the given trial block, which is weighted 860 

by the probability of the model “licking” to the target tone given the current weights. The model 861 

was tested for the hit and false-alarm rates in the probe context. These approximations closely 862 

replicated the behavior of the fully stochastic model across a large number of runs, but required 863 

significantly less computational power. For each model, we minimized the Root Mean Square 864 

(RMS) error between the model performance and the behavioral S+ and S- response rates in both 865 

the reinforced and the probe context using Bayesian adaptive direct search (BADS)(Acerbi and 866 

Ma, 2017). BADS alternates between a series of fast, local Bayesian optimization steps and a 867 

systematic, slower exploration of a mesh grid.  868 

 To ensure a robust model fit to the acquisition and context-dependent expression of task 869 

knowledge, we excluded a small number of reinforced context training blocks during which a 870 

robust but temporary decline in satiety and/or motivation was observed. These were defined as 871 

training blocks during which false-alarm rates and hit rates both decreased by > 30% with 872 

respect to the preceding and proceeding training blocks (2 training blocks total across 7 animals). 873 

Additionally, one probe training block was excluded during model fitting because an insufficient 874 

number of trials for robust analysis (10 trials total). All other probe training blocks consisted of 875 

at least 20 trials and were included in analysis. For every trial after the peak hit rate was reached 876 

in the probe context, we assumed each animal achieved perfect discrimination based on our 877 

evidence from three animals in which the asymptotic hit rate was 92±4% and the false-alarm rate 878 
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was 3±3%. This assumption served a two-fold function: firstly, it allowed the model to ignore 879 

the cessation of behavioral responses in the probe context; secondly, it effectively penalized the 880 

model for adopting a strategy in which it assumed that perfect expression of task knowledge 881 

could not be achieved in the probe context, despite continued training. To allow the model to 882 

center its average performance around the generalized learning trajectories, we applied a light 883 

lowpass filter to behavioral learning trajectories during fitting, with filter coefficients equal to 884 

0.20 and 0.33 in the reinforced and probe context, respectively. 885 

 886 

Analysis of model results. Decision variables were generated from the average synaptic weights 887 

of stochastic models on a trial-by-trial basis, and serve to highlight the effects of contextual 888 

factors. The trajectories of these variables illustrate the decision read-out function as training 889 

progresses, and are separated into target and foil trials. For example, the instantaneous value of 890 

each trajectory is thus defined as 𝑊𝑊���⃗ 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�⃗�𝑥
𝑇𝑇 −𝑊𝑊���⃗ 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�⃗�𝑥

𝑇𝑇 in the probe context. Error rates of each 891 

tested model were quantified as the sum of the RMS error between the model and behavioral 892 

learning trajectories across both behavioral contexts. For comparison, we ran stochastic models 893 

200 times to capture the full extent of variance arising from random tone selection and noise in 894 

the decision read-out function.  895 

 To understand which of our parameter most strongly contributed to inter-individual 896 

variation observed in the reinforced context, we utilized a one-factor-at-a-time approach to 897 

examine how much each parameter could alter the learning curve versus how much real learning 898 

curves differed. First, we established the average parameters required to fit the average 899 

behavioral data (9 parameters). Next, we varied a single parameter (i.e. cI) within the range 900 

corresponding to all of the individual animal fits (i.e. cI = 0.07-0.48) and calculated the resulting 901 
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error relative to the average fit for each value of the parameter (RMSE with respect to average 902 

behavior). We found the maximum error generated by this entire range of values (Maximum 903 

Model Error). We then calculated the maximum error within the behavioral data (Maximum 904 

Behavioral Error; RMSE of individual learning trajectories with respect to average learning 905 

trajectories), and defined explained variation as Maximum Model Error
Maximum Behavior Error

 . Finally, we performed 906 

this calculation for each of the model parameters (α, αNR, σ, κ, WE, WI, WSE, WSI, and cI). To 907 

determine how different parameters contributed to the model error, we divided our parameters 908 

into four groups: learning rates (α, αNR), initial conditions (WE, WI, WSE, WSI), noise (σ), and 909 

inhibitory scaling (cI). To remain conservative in our analysis, the parameter in each group that 910 

explained most variation was selected to be representative.  911 

QUANTIFICATION AND STATISTICAL ANALYSIS 912 

 All statistical analyses were performed in MATLAB or GraphPad Prism 7. Data sets were tested 913 

for normality, and appropriate statistical tests applied as described in the text (for example, t-test 914 

for normally distributed data, Fischer’s exact test for categorical observations, Mann Whitney U-915 

test for non-parametric data, Friedman test with Dunn post hoc test for non-parametric data with 916 

repeated measurements). All statistical tests used were two-tailed. Model-variance designed to 917 

reflect the stochasticity of behavioral decision making was drawn from a standard normal 918 

distribution, and all model comparisons thus assumed normality. Shaded regions surrounding 919 

behavioral line-plots indicate ± s.e.m. unless otherwise stated. Shaded regions surrounding 920 

model line-plots indicate ± st.d. unless otherwise stated. Experimenters were not blind to the 921 

conditions of the experiments during data collection and analysis. 922 

 923 

DATA AND SOFTWARE AVAILABILITY 924 
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All behavioral data that underlies the findings of this study, as well as all code related to the 925 

modeling work, is available at:  926 

http://froemkelab.med.nyu.edu/sites/default/files/Learning_Circuits_Model.zip 927 
 928 

REFERENCES 929 
 930 
Annau, Z., and Kamin, L.J. (1961). The conditioned emotional response as a function of intensity of the US. Journal 931 
of comparative and physiological psychology 54, 428. 932 
Bathellier, B., Tee, S.P., Hrovat, C., and Rumpel, S. (2013). A multiplicative reinforcement learning model 933 
capturing learning dynamics and interindividual variability in mice. Proceedings of the National Academy of 934 
Sciences of the United States of America 110, 19950-19955. 935 
Chu, M.W., Li, W.L., and Komiyama, T. (2016). Balancing the Robustness and Efficiency of Odor Representations 936 
during Learning. Neuron 92, 174-186. 937 
Daw, N.D., O'doherty, J.P., Dayan, P., Seymour, B., and Dolan, R.J. (2006). Cortical substrates for exploratory 938 
decisions in humans. Nature 441, 876. 939 
Dhawale, A.K., Poddar, R., Wolff, S.B.E., Normand, V.A., Kopelowitz, E., and Ölveczky, B.P. (2017). Automated 940 
long-term recording and analysis of neural activity in behaving animals. eLife 6, e27702. 941 
Doya, K. (2000). Reinforcement learning in continuous time and space. Neural computation 12, 219-245. 942 
Fusi, S., Asaad, W.F., Miller, E.K., and Wang, X.J. (2007). A neural circuit model of flexible sensorimotor 943 
mapping: learning and forgetting on multiple timescales. Neuron 54, 319-333. 944 
Gallagher, M., and Holland, P.C. (1992). Preserved configural learning and spatial learning impairment in rats with 945 
hippocampal damage. Hippocampus 2, 81-88. 946 
Godden, D.R., and Baddeley, A.D. (1975). Context‐dependent memory in two natural environments: On land and 947 
underwater. British Journal of psychology 66, 325-331. 948 
Halpern, S.D., Andrews, T.J., and Purves, D. (1999). Interindividual variation in human visual performance. Journal 949 
of cognitive neuroscience 11, 521-534. 950 
Hangya, B., Ranade, S.P., Lorenc, M., and Kepecs, A. (2015). Central Cholinergic Neurons Are Rapidly Recruited 951 
by Reinforcement Feedback. Cell 162, 1155-1168. 952 
Holland, P.C., and Lamarre, J. (1984). Transfer of inhibition after serial and simultaneous feature negative 953 
discrimination training. Learning and Motivation 15, 219-243. 954 
Huber, D., Gutnisky, D.A., Peron, S., O'Connor, D.H., Wiegert, J.S., Tian, L., Oertner, T.G., Looger, L.L., and 955 
Svoboda, K. (2012). Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 956 
473-478. 957 
Issa, J.B., Haeffele, B.D., Agarwal, A., Bergles, D.E., Young, E.D., and Yue, D.T. (2014). Multiscale optical Ca2+ 958 
imaging of tonal organization in mouse auditory cortex. Neuron 83, 944-959. 959 
Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., and Krugers, H.J. (2006). Learning under stress: how does it work? 960 
Trends in cognitive sciences 10, 152-158. 961 
Jurjut, O., Georgieva, P., Busse, L., and Katzner, S. (2017). Learning Enhances Sensory Processing in Mouse V1 962 
before Improving Behavior. The Journal of neuroscience : the official journal of the Society for Neuroscience 37, 963 
6460-6474. 964 
Kato, H.K., Gillet, S.N., and Isaacson, J.S. (2015). Flexible Sensory Representations in Auditory Cortex Driven by 965 
Behavioral Relevance. Neuron 88, 1027-1039. 966 
Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A.L., Dhawale, A.K., Kampff, A.R., and Olveczky, B.P. 967 
(2015). Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800-812. 968 
Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., and Poeppel, D. (2017). Neuroscience Needs 969 
Behavior: Correcting a Reductionist Bias. Neuron 93, 480-490. 970 
Kuchibhotla, K.V., Gill, J.V., Lindsay, G.W., Papadoyannis, E.S., Field, R.E., Sten, T.A., Miller, K.D., and 971 
Froemke, R.C. (2016). Parallel processing by cortical inhibition enables context-dependent behavior. Nature 972 
neuroscience. 973 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

https://doi.org/10.1101/489450


Lee, D., Seo, H., and Jung, M.W. (2012). Neural basis of reinforcement learning and decision making. Annu Rev 974 
Neurosci 35, 287-308. 975 
Luksys, G., Gerstner, W., and Sandi, C. (2009). Stress, genotype and norepinephrine in the prediction of mouse 976 
behavior using reinforcement learning. Nature neuroscience 12, 1180-1186. 977 
Makino, H., and Komiyama, T. (2015). Learning enhances the relative impact of top-down processing in the visual 978 
cortex. Nature neuroscience 18, 1116-1122. 979 
Maloney, E.A., and Beilock, S.L. (2012). Math anxiety: who has it, why it develops, and how to guard against it. 980 
Trends Cogn Sci 16, 404-406. 981 
Marr, D. A computational investigation into the human representation and processing of visual information. 982 
Matzel, L.D., Han, Y.R., Grossman, H., Karnik, M.S., Patel, D., Scott, N., Specht, S.M., and Gandhi, C.C. (2003). 983 
Individual differences in the expression of a "general" learning ability in mice. The Journal of neuroscience : the 984 
official journal of the Society for Neuroscience 23, 6423-6433. 985 
Otchy, T.M., Wolff, S.B., Rhee, J.Y., Pehlevan, C., Kawai, R., Kempf, A., Gobes, S.M., and Olveczky, B.P. (2015). 986 
Acute off-target effects of neural circuit manipulations. Nature 528, 358-363. 987 
Peron, S.P., Freeman, J., Iyer, V., Guo, C., and Svoboda, K. (2015). A Cellular Resolution Map of Barrel Cortex 988 
Activity during Tactile Behavior. Neuron 86, 783-799. 989 
Peters, A.J., Chen, S.X., and Komiyama, T. (2014). Emergence of reproducible spatiotemporal activity during motor 990 
learning. Nature. 991 
Polley, D.B., Steinberg, E.E., and Merzenich, M.M. (2006). Perceptual learning directs auditory cortical map 992 
reorganization through top-down influences. The Journal of neuroscience : the official journal of the Society for 993 
Neuroscience 26, 4970-4982. 994 
Poort, J., Khan, A.G., Pachitariu, M., Nemri, A., Orsolic, I., Krupic, J., Bauza, M., Sahani, M., Keller, G.B., Mrsic-995 
Flogel, T.D., et al. (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual 996 
Cortex. Neuron 86, 1478-1490. 997 
Rothschild, G., Nelken, I., and Mizrahi, A. (2010). Functional organization and population dynamics in the mouse 998 
primary auditory cortex. Nature neuroscience 13, 353-360. 999 
Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593-1000 
1599. 1001 
Silver, R.A. (2010). Neuronal arithmetic. Nature reviews Neuroscience 11, 474-489. 1002 
Smart, I., and McSherry, G. (1986). Gyrus formation in the cerebral cortex in the ferret. I. Description of the 1003 
external changes. Journal of anatomy 146, 141. 1004 
Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: An introduction, Vol 1 (MIT press Cambridge). 1005 
Tolman, E.C. (1948). Cognitive maps in rats and men. Psychological review 55, 189. 1006 
Tolman, E.C., and Honzik, C.H. (1930). Introduction and removal of reward, and maze performance in rats. 1007 
University of California publications in psychology. 1008 
Winkowski, D.E., and Kanold, P.O. (2013). Laminar transformation of frequency organization in auditory cortex. 1009 
The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 1498-1508. 1010 
Wright, D.L., and Shea, C.H. (1991). Contextual dependencies in motor skills. Mem Cognit 19, 361-370. 1011 
Wu, H.G., Miyamoto, Y.R., Castro, L.N.G., Ölveczky, B.P., and Smith, M.A. (2014). Temporal structure of motor 1012 
variability is dynamically regulated and predicts motor learning ability. Nature neuroscience 17, 312. 1013 
Zaborszky, L., Csordas, A., Mosca, K., Kim, J., Gielow, M.R., Vadasz, C., and Nadasdy, Z. (2015). Neurons in the 1014 
basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity 1015 
patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cerebral cortex 25, 118-137. 1016 

1017 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

https://doi.org/10.1101/489450


Acknowledgments 1018 

We thank C. Firestone, C. Honey, J. Chen, K. Katlowitz, K. Narasimhan, and W.J. Ma for 1019 

comments on earlier versions of this manuscript; W.J. Ma, R. Kiani, M. Long and K. Louie for 1020 

assistance with the conceptual model; J. Multani for assistance with behavioral experiments. This 1021 

work was funded by grants from NIDCD (DC009635 and DC012557), a Hirschl/Weill-Caulier 1022 

Career Award, and a Howard Hughes Medical Institute Faculty Scholarship (R.C.F.); the 1023 

NIDCD (DC05014) (K.V.K.); and the Programme Emergences of City of Paris, ANR grants 1024 

ANR-17-ERC2-0005, ANR-16-CE37-0016, and the program “Investissements d’Avenir” ANR-1025 

10-LABX-0087 IEC and ANR- 11-IDEX-0001-02 PSL Research University (S.O.); and the NIH 1026 

training program in computational neuroscience (R90DA043849) (T.A.H.S.). 1027 

 1028 

Author Contributions 1029 

K.V.K., Y.B., P.C.H., R.K, and E.S.P. performed behavioral experiments. T.A.H.S., S.O. and 1030 

K.V.K. designed and T.A.H.S. implemented the theoretical model. K.V.K. and T.A.H.S. 1031 

performed analysis. All authors discussed experiments and contributed to the manuscript.  1032 

 1033 

Author information 1034 

The authors declare no competing financial interests. Correspondence and requests for additional 1035 

materials should be addressed to K.V.K. (kkuchib1@jhu.edu) 1036 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489450doi: bioRxiv preprint 

mailto:kkuchib1@jhu.edu
https://doi.org/10.1101/489450

	Expression of task knowledge during learning is context-dependent
	Figures

	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Rewarded trials :,𝛿,,𝑊.-𝐷,𝑗.= 𝛼,,𝑊.-𝐷,𝑗.,𝑅−,𝜅-−1.,,,𝑊.-𝐷.,,𝑥.-𝑇.−,,𝑊.-𝐼.,,𝑥.-𝑇...𝑦 -𝛿,,𝑊.-𝐼,𝑗.= −𝛼,,𝑊.-𝐼,𝑗.,𝑅−,𝜅-−1.,,,𝑊.-𝐷.,,𝑥.-𝑇.−,,𝑊.-𝐼.,,𝑥.-𝑇...𝑦.
	Unrewarded trials :,𝛿,,𝑊.-𝐷,𝑗.= ,𝛼-𝑁𝑅.,,𝑊.-𝐷,𝑗.,𝑅−,𝜅-−1.(,,𝑊.-𝐷.,,𝑥.-𝑇.−,,𝑊.-𝐼.,,𝑥.-𝑇.).𝑦 -𝛿,,𝑊.-𝐼,𝑗.= −,𝛼-𝑁𝑅.,,𝑊.-𝐼,𝑗.,𝑅−,𝜅-−1.(,,𝑊.-𝐷.,,𝑥.-𝑇.−,,𝑊.-𝐼.,,𝑥.-𝑇.).𝑦.
	All statistical analyses were performed in MATLAB or GraphPad Prism 7. Data sets were tested for normality, and appropriate statistical tests applied as described in the text (for example, t-test for normally distributed data, Fischer’s exact test fo...
	References
	Acknowledgments


