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Abstract 

Perceptual decisions do not occur in isolation but instead reflect ongoing evaluation and 

adjustment processes that can affect future decisions. However, the neuronal substrates of 

these across-decision processes are not well understood, particularly for auditory decisions. We 

measured and manipulated the activity of choice-selective neurons in the ventrolateral prefrontal 

cortex (vlPFC) while monkeys made decisions about the frequency content of noisy auditory 

stimuli. As the decision was being formed, vlPFC activity was not modulated strongly by the 

task. However, after decision commitment, vlPFC population activity encoded the sensory 

evidence, choice, and outcome of the current trial and predicted subject-specific choice biases 

on the subsequent trial. Consistent with these patterns of neuronal activity, electrical 

microstimulation in vlPFC tended to affect the subsequent, but not current, decision. Thus, 

distributed post-commitment representations of graded decision-related information in prefrontal 

cortex can play a causal role in evaluating past decisions and biasing subsequent ones. 
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Perceptual decision-making is a deliberative process that produces a categorical 

judgment regarding the presence, identity, and other features of a sensory stimulus1. This 

deliberation often requires resolving potentially ambiguous interpretations of the current sensory 

stimulus with expectations that can be learned by evaluating prior decisions and their 

outcomes2, 3. This learning process can result in sequential effects on a subject’s choices and 

response times (RTs) when they participate in psychophysical tasks that require one decision 

after another4-12. Because sequential effects can be present even when a task is designed to 

generate independent trial-by-trial choices and after extensive training, these effects may 

represent fundamental, ongoing processes that evaluate and adjust decisions to account for 

changes in the sensory environment, reward contingencies, and other factors3, 13. Although 

neuronal substrates of these sequential effects have been identified in several brain regions2, 4-8, 

14-19, the exact nature of the signals that the brain uses to support these effects is still not well 

understood. 

In a previous study, we demonstrated that neurons in middle-lateral (ML) and 

anterolateral (AL) belt regions of the auditory cortex encode key features of the sensory 

evidence needed to solve an auditory-decision task20. This task required monkeys to report 

whether a tone-burst sequence contained more low- or high- frequency tone bursts. We found 

that both AL and ML neurons were modulated by the frequency content of the tone-burst 

sequence. However, in AL, but not ML, neuronal activity was weakly related to choice, and 

microstimulation biased the monkeys’ choices. These findings suggest a more direct role for AL 

in the decision process than for ML. They are also consistent with the idea that AL provides 

evidence for the decision but leave open the question of where and how in the brain is this 

evidence interpreted and combined with other information to form the decision1. 

The goal of the present study was to identify a role for the ventrolateral prefrontal cortex 

(vlPFC) in forming this auditory decision. We targeted vlPFC because it receives direct and 
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indirect projections from AL and is situated at the apex of the ventral auditory pathway, which is 

commonly thought to mediate auditory perception and decision-making20-25. Here, we show that, 

contrary to our initial expectations, vlPFC neurons do not appear to encode information relevant 

to forming the current decision. Instead, vlPFC population activity can encode rich, graded 

information about the just-completed decision process, including the strength of the sensory 

evidence, the resulting choice, and whether or not it was correct. These signals, which were 

apparent from just after the decision was formed until after feedback was received, were closely 

and causally related to the subsequent decision in a manner that matched each monkey’s 

idiosyncratic choice strategy. Together, these results imply a role for the vlPFC in the ongoing 

evaluation and adjustment of auditory decisions. 
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Results 

We recorded and manipulated vlPFC spiking activity in two monkeys while they reported 

whether a noisy auditory stimulus contained more low- or high-frequency tone bursts (Fig. 1a,b). 

A primary benefit of this task is that we could control the strength of the sensory evidence (the 

fraction of low or high tone bursts in a given stimulus; i.e., coherence) and relate that evidence 

to the monkeys’ choices and to vlPFC activity. These monkeys participated in our previous 

study20, but the behavioral and neuronal data presented here have not been reported 

previously.  

 

Idiosyncratic choice-bias behavior 

Both monkeys’ choice accuracy and RTs depended systematically on stimulus 

coherence (monkey T: n=29 behavioral sessions; monkey A: n=39 behavioral sessions; Fig. 

2a,b). For high-coherence stimuli, both monkeys almost always reported the correct answer with 

relatively short RTs. As absolute coherence decreased, performance accuracy decreased and 

RT increased. These psychometric (choice) and chronometric (RT) data were well described 

jointly by a drift-diffusion model (DDM; Fig. 2a,b, pink lines)1, 26. The DDM describes the process 

of forming a decision by accumulating incoming auditory (sensory) evidence over time to one of 

two pre-defined boundaries and accounts for both the choice (which boundary was reached) 

and the decision time (when the boundary was reached). These fits provided a consistently 

good match to the data (average deviance was 11.82 for monkey T [2 -cumulative distribution, 

p< 0.001] and 10.99 for monkey A [p<0.001])27. Moreover, because these fits partitioned the 

monkeys’ RTs into decision and non-decision times (Fig. 2a,b), it facilitated our ability to identify 

the contributions of vlPFC activity to decision-making28. In general, for both choices, decision 

times increased as the absolute stimulus coherence decreased, whereas non-decision times 
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tended to be strongly asymmetric for the two choices, reflecting the different joystick 

movements. In subsequent analyses, we define the time of the “decision commitment” as the 

end of the decision time plus an additional 50 ms to account for stimulus encoding20.  

We also identified idiosyncratic sequential choice biases for the two monkeys. Monkey T 

tended to use a “win-stay, lose-switch” strategy (top panels in Fig. 2c, d). That is, this monkey 

had a tendency to repeat the previous choice if that choice was correct and rewarded but switch 

choices if the previous choice was an error and not rewarded. This tendency was seen in both 

the pooled data (Fig. 2c; logistic regression: 0 [bias]=-0.46, p<0.01; 1 [stimulus 

coherence]=2.50, p<0.01; 2 [previous trial was correct]=0.14, p<0.01; 3 [previous trial was 

incorrect]=-0.30, p<0.01) and in the session-by-session data (Fig. 2d; median 0=-0.5, Wilcoxon 

sign-rank test, p=0.04; 1=3.73, p<0.01; 2=0.27, p<0.01; 3=-0.39, p=0.03). 

In contrast, monkey A tended to use a “win-switch” strategy (bottom panels in Fig. 2c, d). 

That is, this monkey had a tendency to switch choices following a correct choice. Once again, 

this result was evident in both the pooled data (Fig. 2c, 0=-0.45, p<0.01; 1=3.16, p<0.01; 2=-

0.19, p<0.01; 3=-0.02, p=0.88) and in the session-by-session data (Fig. 2d, 0=0.5, p<0.01; 

1=3.63, p<0.01; 2=-0.2, p<0.01; 3=-0.17, p=0.63). For both monkeys, we could not identify 

similar systematic effects on sequential RTs.  

 

Post-decision neuronal representations of choice, outcome, and stimulus strength 

Identifying the neuronal substrates of a perceptual decision typically involves identifying 

at least three forms of selectivity: (1) selectivity for choice, reflecting the consequence of the 

decision process; (2) selectivity for whether the choice was correct or an error, reflecting a 

closer association with perception than just sensory or motor processing; and (3) selectivity for 

stimulus strength, because the process of forming the decision should reflect not just the 
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categorical choice but also the strength of the evidence used to arrive at that choice1. As 

detailed below, we identified all three forms of selectivity in vlPFC activity but only after the time 

of decision commitment on the current trial. 

Individual vlPFC neurons had task-driven activity that was modulated selectively by the 

monkeys’ low- versus high-frequency choices (single-unit examples are shown in Fig. 3 and 

summary population data are shown in Fig. 4). Across the population of recorded neurons, the 

onset of choice selectivity for individual neurons (which were recorded in separate sessions and 

across the two monkeys) spanned the time from the inferred decision commitment through the 

motor response (joystick movement) and to the time of reward delivery on correct trials. This 

selectivity included preferences for both high- and low-frequency choices. We identified 13 and 

15 high-frequency (ipsilateral)-preferring neurons in monkeys T and A, respectively; and 10 and 

14 low-frequency (contralateral)-preferring neurons, respectively (there was not any evidence 

for laterality: 2-test for H0: no difference in the proportion of contralateral- and ipsilateral 

preferring neurons, p>0.05 for both monkeys).  

The choice selectivity of individual neurons was also affected by the outcome of the 

current trial. Specifically, choice selectivity tended to be higher on correct trials than on error 

trials (Fig. 5). This difference in choice selectivity could not be explained trivially by neuronal 

modulations resulting from the presence or absence of the juice reward, because this difference 

was apparent even before reward delivery. Instead, this difference likely reflected differences in 

decision processing on correct versus error trials, including more uncertainty in the neuronal 

representation of the sensory evidence.  

In contrast to these single-neuron modulations by choice and outcome, the responses of 

individual vlPFC neurons were not selective for stimulus coherence. In particular, we found that, 

at any given time point, at most 6 vlPFC neurons were modulated by stimulus coherence for 

either preferred or non-preferred choices (Fig. 4b). However, we found a more robust 
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representation of stimulus coherence at the level of population neuronal activity (Fig. 6). The 

intuition for this discrepancy can be seen in Fig. 4a: the fraction of neurons with choice 

selectivity was systematically smaller with decreasing coherence, implying that population-level 

signals were dependent on coherence. Although these effects did not correspond to statistically 

reliable differences in single-neuron coherence selectivity, there was enough information across 

the population of neurons for a linear classifier to decode both stimulus coherence and choice at 

well above chance levels following decision commitment (Fig. 6).  

Thus, the vlPFC population had access to the key features of the decision process, 

including the strength of the evidence used to form the decision, the choice, and whether the 

choice was correct or an error. These signals were not apparent before the decision 

commitment, implying that they did not contribute to the formation of the current decision. 

Instead, the timing of these signals suggests that they may play a role in post-decision 

processing that can link one decision to the next decision. 

 

Post-decision vlPFC activity encodes subsequent choice biases 

Single-unit activity in the post-decision epoch was selective for the current choice but 

also for the subsequent choice. Moreover, this selectivity matched each monkey’s idiosyncratic 

choice biases (Fig. 2c,d), particularly following correct trials. Monkey T’s tendency to repeat 

rewarded trials was reflected in post-decision neuronal responses that tended to be slightly 

larger on trials in which the subsequent choice matched the neuron’s choice selectivity (Fig. 7a). 

For example, if a neuron tended to respond more for a high-frequency choice in the post-

decision epoch of the current trial, its response tended to be slightly higher when the monkey 

made a high-frequency choice on the subsequent trial. In contrast, monkey A’s tendency to 

switch after rewarded trials was reflected in neuronal responses that tended to be slightly 
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smaller on trials in which the subsequent choice matched the neuron’s choice selectivity (Fig. 

7b). These effects had slightly different time courses in the two monkeys. Nonetheless, in both 

cases, these effects occurred after the decision commitment on correct trials, thus 

corresponding to a time period when evaluative processing could be used to adjust subsequent 

decisions. We could not identify similarly reliable effects following error trials, possibly reflecting 

the much smaller data sets from those trials. 

 

Electrical microstimulation biased subsequent choice  

We used electrical microstimulation to test whether vlPFC activity plays a causal role in 

driving choice biases on the subsequent trial. We applied microstimulation from the time of 

stimulus onset until just after the behavioral response on a randomly selected 50% of trials in a 

subset of sessions (n=11 sessions for monkey T, 21 sessions for monkey A). Despite the fact 

that this protocol was designed to test our initial hypothesis that vlPFC activity encoded 

formation of the current decision (and thus microstimulation was applied primarily during 

decision formation), we found that microstimulation did not systematically affect either the 

choice bias or the sensitivity of the decision on the current trial (single-site examples are shown 

in Fig. 8a,b; population summaries are shown in Fig. 8c,d).  

Instead, we found that microstimulation induced choice biases on the subsequent 

decision that depended systematically on the choice selectivity of the recorded vlPFC neuron at 

the microstimulation site. If microstimulation was applied at a site that was tuned for low-

frequency choices, it tended to cause a low-choice bias on the subsequent trial (single-site 

example in Fig. 8e). In contrast, if microstimulation was applied at a site that was tuned for high-

frequency choices, it tended to cause a high-choice bias on the subsequent trial (single-site 

example in Fig. 8f). Accordingly, across the population of microstimulation sites from both 
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monkeys, the induced choice bias on the subsequent trial was correlated positively with the 

strength and direction of choice selectivity at the given site (Fig. 8g), without any concomitant, 

systematic change in psychometric sensitivity (Fig. 8h).  

These microstimulation effects also depended on more specific choice patterns that 

differed for the two monkeys. When microstimulation was applied on a trial that resulted in a 

correct high choice, the subsequent choice tended to be biased in the same direction as the 

choice selectivity of the neuron recorded at the site of microstimulation for both monkeys 

(monkey T: Spearman’s rank correlation coefficient ρ=0.90, p<0.001; monkey A: ρ=0.61, 

p=0.04). When microstimulation was applied on a trial that resulted in a correct low choice, a 

similar effect was found only for one of the two monkeys (monkey T: ρ=0.91, p<0.001; monkey 

A: ρ=0.1, p=0.75). Together, these effects are consistent with the hypothesis that vlPFC activity 

is causally involved in evaluative processing that adjusts subsequent decisions. 
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Discussion 

We combined behavioral modeling, neuronal recordings, and electrical microstimulation to 

identify causal contributions of the primate vlPFC to a simple perceptual decision about the 

frequency content of a sequence of tone bursts. vlPFC activity had many of the hallmarks of a 

decision variable, including modulations by choice, outcome (i.e., whether the choice was 

correct or incorrect), and the strength of the sensory evidence used to arrive at the choice. 

However, these forms of selectivity were not evident until after the time of the decision 

commitment and thus were inconsistent with a role in forming the current decision. Instead, this 

activity was modulated by the monkeys’ subsequent choices in a manner that reflected their 

idiosyncratic choice biases. Further, there was a systematic relationship between vlPFC choice 

selectivity and the effects of microstimulation on the monkeys’ choices on the subsequent, but 

not current, trial. Together, these results imply that post-decision vlPFC activity can play a role 

in evaluating the prior judgment, generating subject-specific internal biases, and updating 

subsequent decision-making strategies.  

The post-decision signals that we identified appear to be a form of “decision-trace” activity 

that has been identified in a number of cortical and subcortical areas, including parts of the 

prefrontal cortex7, 8, 14-16, 29-31. These signals represent information about the immediately 

preceding decision, which in some cases is used as part of feedback-driven learning process 

that adjusts future decisions based on a comparison between the expected and actual 

outcome32. In our study, we found a strong, population-level representation of information 

related to the preceding decision that could, in principle, be used to compute a confidence or 

prediction signal. This representation was also modulated by trial outcome, but this modulation 

was apparent even before feedback was given. Thus, this outcome modulation seems more 

likely to represent uncertainty in the information used to form the decision than a direct 

comparison to  feedback, which may occur elsewhere in the brain for this task15, 16, 33, 34. 
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Nevertheless, we found reliable and causal relationships between these post-decision signals 

and choice behavior on the subsequent trial, a finding that is reminiscent of recent studies 

showing that parts of the posterior parietal cortex in rodents also drive history-dependent choice 

biases on an auditory-discrimination task8. Our results extend those findings to establish a role 

for the primate vlPFC in subject-specific versions of these kinds of history-dependent choice 

biases. 

Our findings of primarily post-decision processing in the vlPFC are somewhat inconsistent 

with other studies that have implicated the PFC in forming auditory and other decisions24, 35-38. 

The reasons for this discrepancy are not clear. One possible reason is that we sampled a 

different PFC population than in other studies. Another possibility is that previous reports of 

decision-related activity were also largely post-decisional. However, accounting for this 

possibility is not straightforward: because previous studies did not use RT tasks, it is difficult to 

interpret those results in terms of whether the reported decision-related signals occurred before 

or after the decision was formed on each trial24, 35, 39.  

We still do not know the brain regions that form the decision for our task and consequently 

do not understand the mechanisms underlying these decisions. Because the monkeys’ choice 

and RT patterns reflected both the temporal accumulation of sensory evidence and sequential 

choice biases, we would expect these putative brain regions to implement two key operations. 

First, they should temporally accumulate the sensory evidence that is represented in the 

auditory cortex, particularly AL20. Second, they should combine this accumulated evidence with 

historical sensory, outcome, and choice information such as is represented in vlPFC to drive 

sequential choice biases7, 8, 15, 16, 38.  

Future studies that focus on identifying neuronal activity related to decision formation will 

likely benefit not only from an RT design to better identify the temporal epoch of decision 

formation but also a more thorough understanding of the dynamic and possibly idiosyncratic 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/558759doi: bioRxiv preprint 

https://doi.org/10.1101/558759


Tsunada et al., 2019 

Page 13 

 

nature of the computations used to convert incoming sensory evidence into the categorical 

choice13, 28. These studies might also benefit from analyses that focus on substrates of subject-

specific decision strategies, which help to establish the behavioral relevance of the neuronal 

signals9, 11, 13. For example, in the present study, we found that our monkeys had different 

strategies of sequential choice biases (win-stay for monkey T versus win-switch for monkey A; 

Fig. 2). These subject-specific choice biases have been reported previously in humans and 

animals, but their neuronal correlates have yet to be fully explained9, 11, 15. Because the 

monkeys’ idiosyncratic behavioral strategies corresponded to different patterns of choice 

selectivity in vlPFC, it implies that these signals may play a behaviorally relevant, subject-

specific role in the evaluation and adjustment of the decision process, rather than providing a 

simple memory trace of common components of the decision process31, 40.  

Finally, it is worth emphasizing that in our study, the representations in the vlPFC of critical 

decision-related variables (i.e., choice, outcome, and the strength of the sensory evidence) were 

not all evident in the spiking activity of individual neurons but instead at the populations level. 

The time course of these representations was also distributed across the neuronal population: 

different neurons (in our case, recorded in separate sessions) responded selectively at relatively 

restricted times with onsets that tiled the task epoch in a manner similar to other reports of 

working memory in the prefrontal cortex41-45. These population-level representations highlight 

the importance of conducting population recordings and analyses to identify and understand 

complex decision-related computations in the brain46-51. 
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Methods 

The University of Pennsylvania Institutional Animal Care and Use Committee approved 

all of the experimental protocols. All surgical procedures were conducted using aseptic surgical 

techniques and with the monkeys kept under general anesthesia. A supplementary methods 

checklist is available. The authors were not blind to group allocation during the experiment and 

when assessing the data outcomes. 

Two male monkeys (Macaca mulatta; monkey T [15 years old] and monkey A [14 years 

old]) participated in this study. Both were used in a previous study of auditory cortex20, and 

monkey T was also used in a previous study of vlPFC52. In each session, the monkey was 

seated in a primate chair. A calibrated speaker (model MSP7, Yamaha) was placed in front of 

the monkey at eye level. The monkey moved a joystick, which was attached to the primate 

chair, to indicate their behavioral report. All experimental sessions took place in an RF-shielded 

room that had sound-attenuating walls and echo-absorbing foam on the inner walls.  

IDENTIFICATION OF VENTROLATERAL PREFRONTAL CORTEX. Prior to implantation of a 

recording chamber, the stereotactic location of vlPFC, which includes Brodmann area 45 and 46 

(Fig. 1b), was identified through structural MRI scans53. We centered the recording chamber 

over this cortical location. vlPFC was further identified by its auditory responses54, 55. 

AUDITORY TASKS AND STIMULI. Auditory stimuli were generated using Matlab (The 

Mathworks Inc.) and the RX6 digital-signal-processing platform (TDT Inc.). 

Frequency tuning. We measured the frequency tuning of vlPFC recording sites by 

presenting individual tone bursts in a random order while the monkey listened passively. The 

tone bursts (100-ms duration with a 5-ms cos2 ramp; 65 dB SPL) varied between 0.3–12 kHz in 

one-third octave steps. The monkeys did not receive any rewards during this time period. 
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Low-high task. The low-high task was a single-interval, two-alternative forced-choice 

discrimination task that required a monkey to report whether a temporal sequence of tone bursts 

contained more low-frequency or high-frequency tone bursts (Fig. 1a). A trial began with the 

monkey grasping the joystick. After a 400-ms delay, we presented a sequence of tone bursts 

(50-ms duration; 5-ms cos2 ramp; 10-ms inter-burst interval). The monkey moved the joystick: 

(1) to the right to report that the sequence contained more low-frequency tone bursts or (2) to 

the left to report that the sequence contained more high-frequency tone bursts. The monkey 

could report its choice at any time after stimulus onset.  

On a trial-by-trial basis, we randomly varied the proportion of low- and high-frequency 

tone bursts (coherence) in the auditory stimulus. We varied coherence from -100% (all low-

frequency tone bursts) to +100% (all high-frequency tone bursts), with 0% coherence 

corresponding to 50% of the tone bursts randomly assigned as low or high frequency. Based on 

each trial’s coherence, a tone-burst sequence was generated by randomly assigning the 

frequency of each tone burst to the low- or high-frequency value.  

All correct choices were rewarded with a drop of juice. For trials with fully ambiguous 

stimuli (50% coherence), the monkey was rewarded on 50% of randomly selected trials, 

independent of their behavioral report. The monkey’s reward did not depend on the speed of the 

behavioral report, only its accuracy. Errors resulted in an increased (by 2 s) inter-trial interval. 

RECORDING METHODOLOGY. At the start of each recording session, a tungsten 

microelectrode (~1.0 M @ 1 kHz; FHC Inc.) or a tetrode (0.5-0.8 M @ 1 kHz; Thomas 

RECORDING GmbH) was placed in a skull-mounted microdrive (Narishige, MO-95) and then 

lowered into the brain through a recording chamber. All neuronal signals were sampled at 24 

kHz, band-pass filtered between 0.7–7.0 kHz (RA16PA and RZ2, TDT Inc.), and stored for 

online and offline analyses. OpenEx (TDT Inc.), Labview (NI Inc.), and Matlab (The Mathworks) 

software synchronized behavioral control with stimulus production and data collection. Single-
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neuron activity was isolated from the neuronal signals with on-line (OpenSorter, TDT Inc.) and 

off-line (Offline Sorter, Plexon Inc.) spike-sorting programs. 

DATA-COLLECTION STRATEGY. In our initial sessions, once multi-unit spiking activity was 

detected, we presented tone bursts to generate a frequency-tuning curve. However, because 

most vlPFC neurons were not frequency tuned (only 3 out of 65 tested sites, Kruskal-Wallis test, 

p<0.05), we generally used one of three standardized sets of low and high frequencies: (1) 1000 

and 3000 Hz (n=52 sessions); (2) 1250 and 2500 Hz (n=40); and (3) an arbitrary value <1750 

Hz and a value 1–3 octaves above the selected low frequency (n=11). Next, the monkey 

participated in the low-high task. We varied stimulus coherence randomly on a trial-by-trial 

basis. 

During sessions with electrical microstimulation, we delivered negative-leading bipolar 

current pulses (rate: 300 Hz; pulse duration: 250 µs; amplitude: 25-75 µA) on 50% of randomly 

interleaved trials using a dual-output square-pulse stimulator (Grass S88) and two optical 

isolation units (Grass PSIU6)56, 59. Microstimulation started with stimulus onset and terminated at 

joystick movement. Because microstimulation trials were rewarded using the same schedule as 

non-microstimulation trials, the monkeys were not incentivized to respond differently during 

microstimulation trials than during non-microstimulation trials. 

 

BEHAVIORAL ANALYSES. For all analyses, stimulus coherence was calculated from the 

actual proportion of low- and high-frequency tone bursts that were presented from stimulus 

onset until the monkey indicated its choice by moving the joystick on a given trial.  

Drift-diffusion model. Psychophysical and chronometric data were fit to a standard drift-

diffusion model (DDM), which models a decision process in which noisy evidence is 

accumulated over time until it reaches a fixed bound56, 60-66. This version of the model had five 

free parameters: k, A, B, F1, and F2. k governed the stimulus sensitivity of the moment-by-
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moment sensory evidence. The evidence had a Gaussian distribution N(µ,1) in which the mean 

µ scaled with the stimulus coherence (COH): μ = k × COH. The decision variable was the 

temporal accumulation of this momentary sensory evidence. A decision occurred when this 

decision variable reached a decision bound (+A or -B, which corresponded to a high- and low-

frequency choice, respectively). “Decision time” was the time between stimulus onset and the 

crossing of either bound. Response time (RT; which was the time from stimulus onset to the 

onset of joystick movement) could also be defined as the sum of this decision time and a “non-

decision time” (F1 for a high-frequency choice and F2 for a low-frequency choice). Non-decision 

time includes processes such as stimulus encoding and motor preparation. We defined the time 

of “decision commitment” as the end of the decision time plus an additional 50 ms to account for 

sensory latency20. The probability that the decision variable crossed the +A bound first is 

e2μB−1

e2μB−e−2μA
 . The average decision time is 

A+B

μ
× coth(μ(A + B)) −

B

μ
coth(μB) for high-frequency 

choices and 
A+B

μ
× coth(μ(A + B)) −

A

μ
coth(μA) for low-frequency choices.  

Logistic analysis of psychophysical data. We also used a logistic function to fit 

psychophysical choice data56, 67, 68. This function related the probability (p) that the monkey 

reported high-frequency choices as a function of coherence (COH): p = L + (1 −

2L)
1

1+e−(βCOH∗COH+β0)
. L represents the upper and lower asymptotes (lapse rates) of the logistic 

function. COH quantifies the effect of coherence on the monkey’s choices and governs the slope 

of the psychometric function. 0 quantifies choice biases and governs the function’s horizontal 

position. In a separate analysis, we used indicator variables to determine additional choice 

biases conditioned on the outcome of the previous trial: (1) if the choice on the previous trial 

was correct (correct high choice = +1, correct low choice = -1, error = 0), and (2) if the choice on 

the previous trial was incorrect (error high choice = +1, error low choice = -1, correct = 0). If a 

monkey repeated the same choice, the coefficient values of the indicator variables would be 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/558759doi: bioRxiv preprint 

https://doi.org/10.1101/558759


Tsunada et al., 2019 

Page 18 

 

positive. If a monkey switched one’s choice, the coefficients values would be negative. For our 

session-by-session analyses (Fig. 2d), we removed some sessions from this analysis due to the 

small number of trials per condition. A maximum-likelihood procedure fit the logistic function to 

the behavioral data.  

To quantify the effects of microstimulation on behavior, we fit the logistic function (with 

additional indicator variables and assumed that each session had a single lapse rate across all 

microstimulation and non-microstimulation trials) to choice data from subsets of trials in 

individual sessions and tested whether the choice bias and perceptual sensitivity differed: (1) 

when microstimulation was applied on the current trial (+1) versus when it was not applied (0) 

and (2) when microstimulation was applied on the previous trial (+1) versus when it was not 

applied (0). “Choice bias” was defined as the horizontal shift of psychometric functions. More 

specifically, the shift was calculated as the difference between stimulus coherences that elicited 

50% high-frequency choices. “Perceptual sensitivity” was defined as the change in the slope of 

the psychometric function determined from the 25% and 75% high-frequency choice points. 

NEURONAL ANALYSES. We did not use statistical methods to predetermine sample sizes. 

Our sample sizes were similar to those reported in previous publications, including our recent 

study of auditory cortex20, 69, 70. 

Single-neuron choice selectivity. To identify if and when each neuron had statistically 

significant choice-related activity, we performed a running Wilcoxon rank-sum test for each pair 

of stimulus coherence bins with the same magnitude but different signs (H0: firing rates elicited 

by the coherence pair are the same, p<0.05, FDR corrected)15, 16. For correct trials, this 

convention equates the sign of stimulus coherence with the sign of the associated choice. That 

is, negative values map onto low-frequency stimuli and choices, whereas positive values map 

onto high-frequency stimuli and choices. We analyzed choice-related activity in 300-ms time 

bins, shifted in 10-ms steps. Choice selectivity was quantified using an ROC analysis, which 
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measures the ability of an ROC-based ideal observer to predict a monkey’s choice based only 

on firing rates20, 24, 71.  

Linear-classifier analysis for population activity. We used linear classifiers72, 73 to test 

whether vlPFC population activity was modulated by stimulus coherence (using four binned 

ranges of coherence: [1] -100% – -50%, [2] -50% – 0%, [3] 0% – +50%, and [4] +50% – +100%) 

or by behavioral choice (high- versus low-frequency choices across all coherences). This 

analysis was restricted to data generated on correct trials only to help to ensure that we could 

quantify the effects of stimulus coherence and behavioral choice on vlPFC population activity 

and not outcome effects (correct versus incorrect trials). For each classifier and for each 

neuron, we z-scored firing rate and randomly subsampled the trials so that we had equal 

number of trials for each condition. Each classification analysis underwent a 10-fold cross-

validation procedure to avoid overfitting. This procedure divided the neuronal data into 10 

groups in an iterative fashion, such that one group was a test set and the remaining nine formed 

a training set. We implemented a linear read-out procedure in which we fit the training set to a 

linear hyperplane that separated the population response vectors corresponding to the two 

choices. For the coherence classifier, we implemented a “one-versus-all” classification in which 

we built four classifiers (one for each binned coherence range) and trained each of them, in an 

iterative fashion, to discriminate between one particular coherence range versus all of the 

remaining three coherence ranges. Using the test data, we identified which of the four classifiers 

had the best performance and report average performance across coherence. For both 

classifiers, we calculated the fraction of times that the test data was classified correctly and 

report average performance over 1000 different instantiations of a classifier. 

CODE AVAILABILITY. The data analyses were performed in Matlab; this code is available 

https://github.com/CohenAuditoryLab/Joji. 
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Figure Legends  

Figure 1: Task and stereotactic location of vlPFC. a, Each monkey decided whether a 

temporal sequence of tone bursts was predominantly “low frequency” or “high frequency” and 

responded with a rightward or leftward movement, respectively, of the joystick. The monkey 

could report its choice any time after stimulus onset. b, vlPFC (pink square) is ventral to the 

posterior aspect of the principal sulcus (PC) and anterior to the arcuate sulcus (AS)54. The 

dotted box indicates the circumference of the recording chamber. Arrows indicate the anterior 

(A)-posterior (P) axis and the medial (M)-lateral (L) axis.  

 

Figure 2: Psychophysical performance on the low-high task. Psychometric (a) and 

chronometric (b) functions for Monkey T (top) and Monkey A (bottom). These functions were 

generated from their responses on the current trial. Psychometric functions are plotted as the 

percentage of trials in which a monkey chose “high frequency” as a function of signed 

coherence, in which larger negative/positive coherence values indicate more low/high frequency 

tone bursts. The horizontal grey lines on the psychometric plots indicate lapse rates (errors for 

strong stimuli, presumably reflecting lapses in attention or inappropriate application of the 

decision-motor mapping), which were estimated from logistic fits (solid blue lines). Chronometric 

functions are plotted using the mean RT, which was the time interval between stimulus onset 

and onset of joystick movement. Grey dots are low-frequency choices, and black dots are high-

frequency choices. Solid pink curves are simultaneous fits of both the psychometric and 

chronometric data to a drift-diffusion model (DDM). The horizontal dashed grey lines on the 

chronometric plots indicate choice-dependent non-decision times (NDT) estimated by the DDM 

fits. Decision times (DT) were estimated as the difference between the trial-specific RT and the 

choice-specific NDT. c, Psychometric functions computed separately for different sequential 

conditions, as indicated in the top panel. d, Distributions of best-fitting, session-by-session 

coefficients from the logistic fits: 0, overall choice bias; 1, sensitivity to coherence; 2, the 
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tendency to repeat a correct choice; and 3, the tendency to repeat an erroneous choice. Filled 

data points indicate likelihood-ratio test, H0: regression coefficient equals 0, p<0.05. Horizontal 

bars indicate median values; red bars indicate Wilcoxon sign-rank test, H0: median value equals 

0, p<0.05. 

 

Figure 3: Neuronal sensitivity to choice in single vlPFC neurons. (a-d) The left plots are 

raster and peristimulus-time histograms from correct trials only showing sensitivity to low-

frequency (<0% coherence; red) and high-frequency choices (>0% coherence; blue). The thick 

lines indicate mean firing rate, and the dotted lines indicate the 95% confidence intervals. Data 

are aligned relative to stimulus onset. Grey circles in the raster plots indicate the time of onset of 

joystick movement. The middle plots show the responses of the same neurons but aligned 

relative to the onset of joystick movement. The arrow indicates the time of peak choice 

selectivity. The right plot summarizes each neuron’s firing rate during its peak firing rate ±100 

ms: correct low-frequency choices are shown in red, high-frequency choices in blue, and 

incorrect choices in grey (only for coherences with at least 5 trials). Error bars indicate the 

standard error of the mean. 

 

 Figure 4: Population selectivity for vlPFC neurons. a, Summary of choice selectivity. Data 

from individual neurons are sorted by the onset of choice selectivity (open circles), defined as 

the first of three consecutive time bins for which Wilcoxon rank-sum test, H0: no median 

difference in firing rates for the two choices, p<0.05, FDR corrected. Color indicates the ROC 

value of choice selectivity from correct trials (see legend). Rows show data for high (<-80% 

versus >+80%), middle (-80% to -20% versus +80% to +20%), and low (-20% to 0 versus 0 to 

+20%) coherence trials, as indicated. b, Percentage of neurons with significant selectivity for 

choice or coherence (Wilcoxon rank-sum test for H0: no median difference in firing rates elicited 

by high- versus middle- coherence stimuli for each choice, p<0.05, FDR corrected) computed in 
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300-ms time bins with 10-ms steps. Choice selectivity is shown separately for high, middle, and 

low coherences, as indicated. Red points indicate times corresponding to a significant difference 

in the proportion of choice-selective neurons at each coherence level (running 2-test for H0: 

proportion is the same, p<0.05, FDR corrected). Coherence selectivity is shown in dark red for 

preferred choices (i.e., the choice direction that elicits higher firing rates) and light red for non-

preferred choices. In the leftmost panel, the horizontal bars represent the range of the inferred 

times of the decision commitment for high (black), middle (dark grey), and low (light grey) 

coherence stimuli (the range is indicated by the large vertical bar). In a and b, the data in each 

panel are aligned relative to different task epochs (from left to right): stimulus onset, inferred 

decision commitment, onset of joystick movement, and time of reward delivery. 

 

Figure 5: Choice selectivity on correct and error trials. Scatterplots showing, on a neuron-

by-neuron basis, the peak ROC choice-selectivity value computed on correct versus error trials. 

Both values were computed from spiking data occurring at the time of peak ROC-based choice 

selectivity from correct trials for the given neuron. Black/gray points correspond to data from 

high/middle coherence stimuli. The line in each panel is the line of unity. The panels show data 

computed relative to different task epochs (from left to right): stimulus onset, inferred decision 

commitment, onset of joystick movement, and time of reward delivery. Across all epochs, error 

ROC values tended to be smaller than peak ROC values (Wilcoxon sign-rank test for H0: 

median ROC values are the same, p<0.05). Different panels have different numbers of data 

points because for some sessions, there were not enough trials to reliably calculate the error 

ROC. 

 

Figure 6: Classifier analysis. The ability of a linear classifier to determine from the population 

of vlPFC neurons the current choice (low frequency [-100%–0%] vs. high frequency choice 
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[0%–100%]; a) and stimulus coherence (<-50% versus -50%–0% versus 0%–+50% versus 

>+50%; b), computed using correct trials only in 300-ms time bins with 10-ms steps. Thick lines 

represent median decoding performance; dashed lines are the interquartile range. In the 

leftmost panel, the horizontal bar represent the range of the inferred times of the decision 

commitment for high (black), middle (dark grey), and low (light grey) coherence (the range is 

indicated by the large vertical bars). Choice- and coherence-decoding performance is aligned 

relative to different task epochs (from left to right): stimulus onset, inferred decision 

commitment, onset of joystick movement, and time of reward delivery. We did not conduct a 

classifier analysis on error trials because there was not enough data to generate reliable results. 

 

Figure 7: Choice selectivity for the current and next trial. For Monkey T (top) and Monkey A 

(bottom), choice selectivity is plotted as a function of time relative to the onset of joystick 

movement (a) and reward delivery (b). Lines indicate ROC-based choice selectivity computed in 

300-ms time bins, with 10-ms steps from pooled spiking data across all recorded neurons (z-

scored per neuron) that contributed at least 121 for monkey T and 54 trials for monkey A under 

the given conditions. Solid/dotted lines correspond to correct/error outcomes on the current trial. 

Black lines indicate selectivity for repeated (ROC values >0.5) versus switched (<0.5) choices 

on the next trial, relative to the choice on the current trial (i.e., values >0.5 imply that the 

neuronal population tended to respond more in anticipation of a repeated choice). For 

reference, gray lines indicate selectivity for the preferred choices on the current trial (i.e., values 

>0.5 indicate, by definition, selectivity for the choice that elicited the larger average spike rate 

during peak firing rate ±100 ms for each neuron). Red points, computed only for the black 

curves, indicate permutation test for Ho: ROC value equals 0.5, p<0.05. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/558759doi: bioRxiv preprint 

https://doi.org/10.1101/558759


Tsunada et al., 2019 

Page 30 

 

Figure 8: Effect of microstimulation on behavioral performance on the current and next trial. 

a and b, Single-site examples of the effects of vlPFC microstimulation on psychometric 

performance on the current trial for a low-choice site (a) and a high-choice site (b). 

Psychometric functions are plotted as in Fig. 2. Red/blue symbols are for data from trials 

with/without microstimulation. Solid lines are logistic fits, computed separately for the two 

conditions. Dotted lines are 95% confidence intervals of the non-microstimulation trials that were 

calculated by a bootstrap procedure56. c and d, Scatterplots showing session-by-session effects 

of microstimulation on the correlation between neuronal choice selectivity and the percent 

change in psychometric choice bias (c; Spearman’s rank correlation coefficient =0.15, p=0.42) 

and the change in psychometric threshold (d; =0.15, p=0.43) of the current decision. e and f, 

Single-site examples of microstimulation’s effects on psychometric performance on the next trial 

for a low-choice site (e) and a high-choice site (f). The data are formatted in the same manner 

as panels a and b. g and h, Scatterplots show session-by-session effects of microstimulation on 

the correlation between neuronal choice selectivity and the percent change in psychometric 

choice bias (g; =0.6, p=0.0003) and the change in psychometric threshold (h; =0.11, p=0.56) 

of the next decision. Filled data points are significant single-session microstimulation-induced 

changes in the given psychometric property (permutation test, p<0.05). 
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