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Most carcinomas have characteristic chromosomal aneuploidies specific to the tissue of 
tumor origin. The reason for this specificity is unknown. As aneuploidies directly affect 
gene expression, we hypothesized that cancer-type specific aneuploidies, which emerge at 
early stages of tumor evolution, confer adaptive advantages to the physiological 
requirements of the tissue of origin. To test this hypothesis, we compared chromosomal 
aneuploidies reported in the TCGA database to chromosome arm-wide gene expression 
levels of normal tissues from the GTEx database. We find that cancer-type specific 
chromosomal aneuploidies mirror differential gene expression levels specific to the 
respective normal tissues which cannot be explained by copy number alterations of resident 
cancer driver genes. We show that cancer-type specific aneuploidies “hard-wire” 
chromosome arm-wide gene expression levels present in normal tissues and propose that 
the clonal evolution of cancer is initiated by tissue-specific transcriptional requirements. 
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The generally accepted concept of tumorigenesis is based on the notion that genetic alterations 
that result in malignant transformation are a priori tumor promoting. These alterations occur as 
activating mutations or amplifications of proto-oncogenes, inactivating mutations or deletions of 
tumor suppressor genes, and chromosomal translocations, that result in the constitutive activation 
of proliferation-promoting or the inhibition of anti-cell death pathways1. The initial driver of 
tumorigenesis would therefore be “oncogenic” and inherent to the emerging cancer cell.  

In solid tumors of epithelial origin, i.e., carcinomas, and in certain other solid tumors 
such as glioblastoma multiforme and malignant melanoma, aneuploidies of specific 
chromosomes define the landscape of somatically acquired genetic changes2-6. Remarkably, the 
distribution of ensuing genomic imbalances is strictly cancer-type specific6,7. For instance, 
colorectal carcinomas are defined by extra copies of chromosomes and chromosome arms 7, 8q, 
13q and 20q, accompanied by losses of 8p, 17p and 18q8. In contrast, cervical carcinomas 
invariably carry gains of chromosome arms 1q and 3q. In other words, a gain of 3q is not 
observed in colorectal cancer, and cervical carcinomas do not have copy number gains of, e.g., 
chromosomes 7 or 13q (Fig. 1A). Tissue-specific chromosomal aneuploidies emerge in 
dysplastic, i.e., not yet malignant, lesions (Fig. 1B), that, when these aneuploidies are present, 
are prone to progress to invasive disease9,10. 

The cancer-type specific distribution of genomic imbalances was recently confirmed in 
two comprehensive pan-cancer analyses of several thousand tumors11,12. The pattern of 
chromosome-arm and whole chromosome gains and losses allows classification of tumor 
entities. Of note, this distinctive power dissipates when solely considering focal copy number 
alterations (defined as copy number alterations with lengths < 0.5 chromosome arms) including, 
but not limited to, presumed or known oncogenes or tumor suppressor genes5,11.  

The reason for the remarkable cancer-type and tissue specificity of chromosomal 
aneuploidies is not known. What is well known, however, is that chromosome-wide alterations 
of gene expression levels follow genomic copy number changes13,14, i.e., the transcripts of genes 
that are located on gained chromosomes are more, and those on lost chromosomes are less 
abundant. This correlation has been firmly established in primary human carcinomas, in derived 
cell lines, and in experimental models13,15-18. Given the direct effect of genomic copy number on 
gene expression, chromosomal aneuploidies are therefore a mechanism by which gene dosage 
can be altered in a “hard-wired” fashion to persist in subsequent generations. This correlation is 
exemplarily shown for colorectal and cervical cancer based on TCGA data (Fig. 1C)19,20. 
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We therefore hypothesized that cancer-type specific chromosomal aneuploidies create a 
transcriptional landscape beneficial for cells in the respective normal tissue of origin. Our 
hypothesis predicts that cancer-specific chromosomal imbalances mirror gene expression 
patterns in the normal tissues of origin. For example, we surmise that the gain of chromosomes 7 
and 13q in colorectal cancers means that genes located on these chromosomes are expressed in 
normal colorectal tissue more abundantly than in other normal tissues. Accordingly, tissue-
specific aneuploidies at early stages of tumorigenesis may not reflect an a priori oncogenic 
stimulus, but rather manifest a proliferative advantage triggered by the physiological 
requirements of the respective normal tissue.   

Assuming random chromosome segregation errors in different tissues, cells that gain 
chromosomes required for physiological function would be selected for in the context of the 
respective tissues, triggering a “benign” clonal expansion. The increasing pool of such cells, 
associated with higher tissue-specific fitness, higher proliferative activity or less cell-death, 
however, may increase the risk for subsequent genetic damage21, while maintaining the 
overexpression of genes that are required for the physiology of the organ.  

To verify or falsify our hypothesis, we analyzed whether cancer-type specific patterns of 
chromosomal aneuploidies correlate with patterns of chromosome arm-wide gene expression in 
the respective normal tissues. If the hypothesis is valid, one would expect, for instance, that 
genes on chromosome arm 13q, which is frequently gained in colorectal, but not in other cancers, 
are expressed higher in normal colorectal epithelium compared to other normal tissues. 

  
RESULTS 
Comparison of cancer-type specific chromosome arm-wide genomic imbalances with the 
chromosome arm-wide gene expression levels in their respective normal tissues 
Copy number alterations based on the TCGA database were extracted from Taylor and 
colleagues12 for 15 different tumor entities and are consistent with previous results2,3,6,11. Gene 
expression levels in the respective normal tissues were retrieved from the GTEx database22. We 
found that, consistent with our hypothesis, across distinct cancer entities, gene expression levels 
in normal tissues are upregulated on those chromosomes that were gained in the respective 
tumors, whereas expression levels were lower on lost chromosomes (Fig. 2A). The correlations 
of arm-level copy number changes in the tumors and the arm-wide gene expression levels in the 
corresponding normal tissues were invariably positive (Fig. 2B,C). With the exception of acute 
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myeloid leukemia, a tumor without recurrent copy number changes (see Fig. 2A), the 
correlations were statistically highly significant, and could not be obtained with randomly 
shuffled data (empirical P-value <0.001).  

 
Classification of normal tissues by chromosome arm-wide gene expression levels 
Our hypothesis predicts that if cancers can be identified by cancer-type specific aneuploidies, 
then normal tissues can be identified by the patterns of gene expression from the corresponding 
chromosome arms. Hence, we asked whether chromosome arm-wide gene expression levels can 
classify normal tissues. To this end, we used the median expression levels of each chromosome 
arm, and applied K-Nearest-Neighbors (KNN) multi-tissue classification with leave-one-out 
cross validation and principal component analysis. We found that arm-level gene expression in 
normal tissues could classify tissue-type with high accuracy for almost all tissues (exceptions 
occurred when the sample size was too small for KNN)(Fig. 3A, Supplementary Fig. 1). These 
results could not be obtained when randomly assigning genes to chromosomes (empirical P-
value < 0.001). Moreover, chromosome arm-wide median gene expression levels were a better 
predictor of normal tissue origin than global gene expression profiles.  

After having established that (i) cancer-type specific chromosomal aneuploidies mirror 
chromosome arm-wide gene expression levels in the respective normal tissues and (ii) that these 
expression levels can predict the tissue of origin, we asked whether those aneuploidies that occur 
earlier in tumorigenesis have a stronger correlation with normal tissue specific gene expression 
compared to late events. Hence, the timing of changes in each tissue was computationally 
determined (Materials and Methods). Indeed, across the tumors analyzed, earlier changes 
matched tissue-specific chromosome arm-wide gene expression levels better than later events 
(Fig. 3B). We also showed that frequently gained chromosomes across cancer types correlate 
with chromosome arm-wide gene expression level in the respective normal tissues better than 
chromosomes that are rarely gained (Fig. 3C). Finally, we compared chromosome arm-wide 
gains in cervical and colorectal cancer with chromosome arm-wide gene expression levels in the 
respective normal tissues. The results confirm our findings: more genes on chromosome arms 1q 
and 3q, which are gained at early stages of cervical tumorigenesis, are expressed in normal 
cervix compared to normal colon (Fig. 3D). 
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Cancer-type specific aneuploidies cannot be explained by the chromosome arm-wide 
distribution of cancer genes and methylation patterns 
One possible explanation for the correlation of cancer-type specific chromosomal aneuploidies 
with chromosome arm-wide gene expression levels in the respective normal tissues could be the 
distribution of oncogenes and tumor suppressor genes5. We therefore asked whether the 
chromosome-arm wide distribution of oncogenes and tumor suppressor genes known to be 
involved in different tumor types correlates with the acquisition of cancer-type specific 
imbalances. For the 15 tumor types analyzed we found that the gain or loss of oncogenes or 
tumor suppressor genes, respectively, does not match the patterns of chromosome arm-wide copy 
number changes observed in the corresponding tumors (Supplementary Fig. 2). This implies that 
the distribution of cancer-type genomic imbalances is likely not a reflection of specific cancer 
genes acting in the respective tumors, which is in accordance with previous results obtained by 
Beroukhim and colleagues11. Potential mechanisms regulating tissue-specific chromosome arm-
wide gene expression include DNA methylation, histone acetylation and higher order nuclear 
organization, the 4D Nucleome23. Data for chromosome-specific histone acetylation and nuclear 
organization are not readily available, but the Gene Expression Omnibus (GEO) database 
provides genome-wide methylation patterns. Based on these data we analyzed chromosome arm-
wide methylation patterns for 11 tissues from 765 samples (Materials and Methods). While 
differences in the methylation status of specific genes and their expression were readily apparent, 
arm-level differences in methylation levels did not allow the discernment of specific tissues from 
each other (Supplementary Fig. 3) and could not explain the chromosome-arm wide tissue-
specific gene expression patterns. 
 
DISCUSSION 
Overall, our results indicate that differences of chromosome arm-wide gene expression levels in 
normal human tissues are enhanced by the acquisition of aneuploidies in the cognate tumors, 
suggesting a non-oncogenic, tissue-specific physiological basis for clonal expansion. 
Interestingly, Sack and colleagues24 have demonstrated that the inclusion of tissue-specific 
growth promoting genes strengthens the correlation between chromosome arm loss/gain ratios 
and the proliferation-driving capability of each chromosome-arm in breast and pancreatic 
cancers. A general, yet not tissue-specific, role of copy number alterations and metabolic 
selection pressure was reported by Graham and colleagues25. Of note, several publications point 
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to a reduction of cellular fitness as a consequence of general aneuploidy26-28. We show that, 
unlike general aneuploidy, tissue-specific aneuploidies that enhance chromosome arm-wide 
normal tissue-specific gene expression levels result in clonal expansion. Notably, we previously 
showed that the gain of chromosome 13 in colorectal cancer activates both Notch and Wnt 
signaling29, and that the acquisition of extra copies of chromosome 7 results in upregulation of 
the Wnt pathway (Braun et al., accepted for publication, Neoplasia), which supports our finding 
that the enhancement of tissue-type specific chromosome arm-wide gene expression levels by 
copy number alterations can promote cellular fitness.  

In conclusion, we found that (i) chromosome arm-wide gene expression patterns are 
tissue-type specific and predict the respective normal tissue of origin. (ii) The acquisition of 
cancer-type specific aneuploidies mirrors chromosome arm-wide gene expression patterns of the 
respective normal tissues, i.e., the changes are inherited after cell division and become “hard-
wired”. Our observations are schematically summarized in Fig. 4. Rather than being acquired 
and maintained based on an a priori oncogenic advantage, the dominant and ubiquitous cancer-
type specific chromosomal aneuploidies are under strong selection to optimally fit the 
physiological transcriptional requirements of their respective normal tissues.  
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MATERIALS AND METHODS 
 
Tissue and tumor type inclusion 
In this study, the cancer types and respective normal tissues included were all those for which 
there was availability of (1) genomic copy number of the cancerous tissue from The Cancer 
Genome Atlas (TCGA) and (2) gene expression of normal tissues from Genotype-tissue 
Expression (GTEx) Database. Epithelial tumor types with no chromosomal aneuploidy (i.e. no 
chromosomal arm was gained or lost in 25% of the samples, as defined throughout this study, see 
below) were excluded from the analysis. For tissues with more than one matching cancer type in 
TCGA (e.g., lung), the cancer type with the larger number of samples with somatic copy number 
alteration data was selected (e.g., TCGA LUAD rather then LUSC).  
 
Computation of chromosomal arm gain and loss score in cancerous tissues 
We used the TCGA sample-wise chromosomal arm gain and loss data provided12, where the 
ploidy was determined via the ABSOLUTE algorithm30. Each segment was designated as 
amplified, deleted, or neutral compared to the ploidyof each sample. Tumors altered <20% were 
considered “non-aneuploid,” and others were designated “other.” The scores of each arm are -1 if 
lost, +1 if gained, 0 if non-aneuploid, and “NA” otherwise.  
 For each of the 39 chromosomal arms we define an arm aneuploidy score for each cancer 
type by subtracting the number of chromosomal arm losses from the number of chromosomal 
arm gains and normalized by the sample size. Formally: 

𝐴𝑛𝑒𝑢𝑝𝑙𝑜𝑖𝑑𝑦𝑆𝑐𝑜𝑟𝑒.𝐴/, 𝑇23 = 	
∑ 𝐼89	(𝐴/)8<=>?@8	8	/A	BC	 − 	∑ 𝐼8E	(𝐴/)8<=>?@8	8	/A	BC	

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑇2
 

 
Where 𝐴/ is chromosomal arm 𝑖 (of 1-39 chromosomal arms), 𝑇2 is tumor type 𝑗 (of overall 15 

tumor types considered) and the indicators 𝐼89	(𝐴/) and 𝐼8E	(𝐴/) are defined by: 
 

𝐼89	(𝐴/) = 	 M
1, 𝑖𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑠	ℎ𝑎𝑠	𝑎	𝑔𝑎𝑖𝑛	𝑜𝑓	𝑎𝑟𝑚	𝐴/

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 
  𝐼8E	(𝐴/) = 	 M

1, 𝑖𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑠	ℎ𝑎𝑠	𝑎	𝑙𝑜𝑠𝑠	𝑜𝑓	𝑎𝑟𝑚	𝐴/
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Computation of chromosome-arm level gene expression changes in normal tissues 
We count the number of up and down regulated genes in each arm, for every cancer type, using 
the following: 

1. Up regulated genes: for each chromosomal arm, we first identify the cancer types that are 
gaining this arm (if more than 25% of the TCGA samples of that cancer type has a gain 
of the arm) and those that do not (all other cancer types). Then, for each normal tissue 
corresponding to a cancer type with a gain of that arm, we find the genes (on that 
chromosomal arm) which are up-regulated vs. the normal tissues corresponding to tumors 
with no gain of that arm, using one-sided Rank-sum test P-value<0.05. Similarly, for 
each normal tissue corresponding to a cancer type with no gain of the arm, we find the 
genes (on that chromosomal arm) which are up-regulated vs. normal tissues 
corresponding to tumors with gain of that arm, using one-sided Rank-sum test P-
value<0.05. 

2. Down regulated genes: similarly, for each chromosomal arm, we identify the cancer types 
that are losing that arm (if more than 25% of the TCGA samples of that cancer type has a 
loss of the arm) vs. those that do not. For each normal tissue corresponding to a cancer 
type with a loss of the arm, we then find the genes (on that arm) which are down-
regulated vs. normal tissues corresponding to tumors with no loss of that arm, using one-
sided Rank-sum test P-value<0.05. Similarly, for each normal tissue corresponding to a 
cancer type with no loss of the arm, we find the genes (on that arm) which are down-
regulated vs. normal tissues corresponding to tumors with loss of that arm, using one-
sided Rank-sum test P-value<0.05. 
 

Then, the arm-level gene expression regulation score is defined by subtracting the number of 
down-regulated genes from the number of up-regulated genes on each chromosomal arm, for 
each tumor type, which is then normalized by the number of genes lying on each arm. Formally: 
 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒.𝐴/, 𝐻23 =
∑ 𝐼XY	(𝐻2)X@A@	X	/A	Z[	 − 	∑ 𝐼X\	(𝐻2)X@A@	X	/A	Z[		

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑖𝑛	𝐴/
 

Where 𝐴/ is chromosomal arm 𝑖	(of 1-39 chromosomal arms), 𝐻2 is normal tissue 𝑗 (of overall 15 

normal tissues considered) and the indicators 𝐼XY	(𝐻2) and 𝐼X\	(𝐻2) are defined by: 

𝐼XY	(𝐻2) = 	 ]
1, 𝑖𝑓	𝑔𝑒𝑛𝑒	𝑔	𝑖𝑠	𝑢𝑝 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑖𝑛	ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑡𝑖𝑠𝑠𝑢𝑒	𝐻2

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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  𝐼X\	(𝐻2) = 	 ]
1, 𝑖𝑓	𝑔𝑒𝑛𝑒	𝑔	𝑖𝑠	𝑑𝑜𝑤𝑛 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑖𝑛	ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑡𝑖𝑠𝑠𝑢𝑒	𝐻2

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
Correlation of arm level regulation across normal tissues 
We evaluate the correlation between the arm gain/loss score in each cancer type and the score of 
up/down-regulation in each normal tissues via two approaches (for both using Spearman rank 
correlation rho and P-value): 

1. Arm-level correlation: for each chromosomal arm, we correlate the number of samples 
with gain of that arm for each cancer type, with the number of up regulated genes in that 
arm for the corresponding normal tissues. Similarly, for each arm we correlate the 
number of samples with loss of that arm for each cancer type, with the number of down 
regulated genes in that arm of the corresponding normal tissues.  

2. Tumor/normal tissue correlation: For each tumor type considered, we correlate the arm 
aneuploidy score with the arm gene expression regulation score of the respective normal 
tissue.  

 
Normal tissue classification  
To classify normal tissues using the chromosomal-arm regulation map of those tissues, we 
calculate for each sample, the median gene expression level of the genes in each chromosomal 
arm. We then perform K-Nearest-Neigbors (KNN, with K=5) classification with a Leave-One-
Out cross validation (LONCOV), aiming to classify each sample by the median chromosomal 
arm expression of the normal tissues that are closest to it, and calculate the resulting accuracy 
(percentage of correctly classified samples in the LONCOV). For comparison, we perform a 
similar KNN analysis with the full gene expression data. 
 
Evaluating the correlation between arm-level gain and loss in tumors with the localization 
of oncogenes and tumor suppressor genes 
We downloaded oncogene and tumor suppressor classifications for each gene in each tissue 
from31. Then, for each arm and tissue, we counted the number of genes on that arm classified as 
oncogene (respectively tumor suppressor) resulting in a tissue specific oncogene (respectively, 
tumor suppressor) enrichment profile for the arm. Finally, to evaluate whether an arm is gained 
more often in tissues where it harbors oncogenes (respectively, lost more often in tissues where it 
harbors tumor suppressors) we measure the spearman rank correlation between the tissue-
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specific gain (respectively, loss) frequency of that arm and its tissue specific oncogene 
(respectively, tumor suppressor) enrichment profile. 
  
Tissue specific methylation analysis 
We curated a list of 18 Illumina 450K methylation datasets from Gene Expression Omnibus 
covering tissues from 11 organs. These datasets span different studies comparing methylation 
profiles of tissues between diseased and normal control individuals. We only selected 
methylation profiles of normal control individuals for further analysis. Multiple datasets 
containing samples coming from the same tissue were merged to generate one methylation 
dataset. (See Supplementary Table 1 for more information on each of the datasets). In order to do 
a comparison of methylation levels on each arm across tissues, we first pre-process each dataset 
in the following three steps. 

1. Filtering out probes overlapping with single nucleotide polymorphisms to control for 
population specific differences in methylation levels32. 

2. Rescaling the beta values between type 1 and type 2 probes using beta mixture quantile 
normalization. This minimizes technical differences that may arise between two different 
probe designs33. 

3. Rescaling beta values of each sample in a dataset by the median value of the dataset to 
adjust for dataset-specific differences in methylation levels.. 

Given a chromosome arm, we find each tissue where that arm is gained in the corresponding 
cancer (as defined above). We measure the fold change in methylation levels of each probe on 
that arm in that tissue, relative to tissues where that arm is not gained. Likewise, we find each 
tissue where the arm is lost in the corresponding cancer (as defined above). We measure the fold 
change in methylation levels of each probe on that arm in that tissue, relative to tissues where 
that arm is not lost. Finally, we find each tissue where the arm is neither gained nor lost in the 
corresponding cancer. We measure the fold change in methylation levels of each probe on that 
arm in that tissue, relative to tissues where the arm is either gained or lost. 
 

We define 𝐼>Y	.𝐻23 = 1, if fold change of probe 𝑝 located on chromosome arm 𝐴/ in tissue 𝐻2 > 

2 (hypermethylation). Similarly, 𝐼>\	.𝐻23 = 1 if the fold change of probe 𝑝 in tissue 𝐻2 < 1/2 

(hypo-methylation). The tissue-specific methylation score of arm 𝐴/ in tissue 𝐻2 is then 

evaluated as follows: 
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𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒.𝐴/, 𝐻23 =
∑ 𝐼>Y	(𝐻2)>_`a@	>	/A	Z[	 − 	∑ 𝐼>\	(𝐻2)>_`a@	>	/A	Z[		

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑜𝑏𝑒𝑠	𝑜𝑛	𝑎𝑟𝑚	𝐴/
 

 
To assess whether chromosome arm level differences in gene expression of different normal 
tissues can be explained by chromosome arm level differences in methylation, we measure the 
spearman rank correlation between number of downregulated genes on an arm in a tissue and 
number of hypermethylated probes (rho-). This follows from the observation that genes in close 
genomic proximity to hypermethylated regions are less likely to be expressed. Likewise, we also 
measure the spearman rank correlation between number of upregulated genes on an arm in a 
tissue (see above) and number of hypomethylated probes (rho+). The results of this analysis are 
shown in Supplementary Figure 3. 
 
Inferring which arm aneuploidies occur early in tumorigenesis 
For each of the 15 tissues considered, given the aneuploidy profiles of 39 chromosome arms in 
corresponding primary tumors of different patients, one can partially order these aneuploidies by 
time using the following score: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐴/)

= 	d
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑤ℎ𝑒𝑟𝑒	𝑎𝑟𝑚𝑠	𝐴/	𝑎𝑛𝑑	𝐴2	𝑎𝑟𝑒	𝑔𝑎𝑖𝑛𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑢𝑚𝑜𝑟	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑤ℎ𝑒𝑟𝑒	𝑎𝑟𝑚	𝐴/	𝑖𝑠	𝑔𝑎𝑖𝑛𝑒𝑑	𝑎𝑛𝑑	𝐴2	𝑖𝑠	𝑛𝑜𝑡	𝑔𝑎𝑖𝑛𝑒𝑑

ef

2gh

 

 
This score estimates the likelihood of occurrence of an event given the occurrence of other 
events. It has been previously shown that the lower this score, the earlier the event34. Given that 
tumors of different tissues may evolve at different rates, we defined an event as early if the event 
was among the first 10 events after sorting them in increasing order by the above score. Our 
downstream analyses are robust at more stringent definitions of an early event (i.e., first 9, first 
8, first 7, … , first 2, first event; results not shown). 
 
 
 
 
  

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/563858doi: bioRxiv preprint 

https://doi.org/10.1101/563858


 13 

ACKNOWLEDGEMENTS 
 
The authors are indebted to Drs. Thomas Cremer, Marion Cremer, Reinhard Ebner, Kenneth C. 
Carter, W. Michael Kuehl, Javed Khan, Alejandro Schäffer and E. Michael Gertz for valuable 
comments on the manuscript and to Buddy Chen for editorial assistance. The study was 
supported by the Intramural Research Program, National Cancer Institute/NIH. DH and RB were 
supported by the Deutsche Krebshilfe, GE through the Deutsche Forschungsgemeinschaft, NA 
through the NCI/University of Maryland Graduate Partnership Program, and DB by a Wellcome 
Trust/NIH PhD Studentship. The results published here are in part based upon data generated by 
the TCGA Research Network: http://cancergenome.nih.gov/. 
 
  

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/563858doi: bioRxiv preprint 

https://doi.org/10.1101/563858


 14 

REFERENCES 
 
1. De Vita, T., Hellman, S. & Rosenberg, S.A. Cancer. Principles and practice of oncology, 

(JB Lippincott, Philadelphia, 1993). 
2. Knuutila, S., Autio, K. & Aalto, Y. Online access to CGH data of DNA sequence copy 

number changes. Am J Pathol 157, 689 (2000). 
3. Ried, T. Homage to Theodor Boveri (1862-1915): Boveri's theory of cancer as a disease 

of the chromosomes, and the landscape of genomic imbalances in human carcinomas. 
Environ Mol Mutagen 50, 593-601 (2009). 

4. Knutsen, T. et al. The interactive online SKY/M-FISH & CGH database and the Entrez 
cancer chromosomes search database: linkage of chromosomal aberrations with the 
genome sequence. Genes Chromosomes Cancer 44, 52-64 (2005). 

5. Myllykangas, S., Bohling, T. & Knuutila, S. Specificity, selection and significance of 
gene amplifications in cancer. Semin Cancer Biol 17, 42-55 (2007). 

6. Heim, S. & Mitelman, F. Cancer Cytogenetics, (John Wiley & Sons, Hoboken, 2009). 
7. Ried, T., Heselmeyer-Haddad, K., Blegen, H., Schrock, E. & Auer, G. Genomic changes 

defining the genesis, progression, and malignancy potential in solid human tumors: a 
phenotype/genotype correlation. Genes Chromosomes Cancer 25, 195-204 (1999). 

8. Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of 
chromosomal gains and losses during the genesis of colorectal tumors. Genes 
Chromosomes Cancer 15, 234-45 (1996). 

9. Heselmeyer, K. et al. Gain of chromosome 3q defines the transition from severe 
dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A 93, 479-
84. (1996). 

10. Heselmeyer-Haddad, K. et al. Genomic amplification of the human telomerase gene 
(TERC) in pap smears predicts the development of cervical cancer. Am J Pathol 166, 
1229-38 (2005). 

11. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human 
cancers. Nature 463, 899-905 (2010). 

12. Taylor, A.M. et al. Genomic and Functional Approaches to Understanding Cancer 
Aneuploidy. Cancer Cell 33, 676-689 e3 (2018). 

13. Upender, M.B. et al. Chromosome transfer induced aneuploidy results in complex 
dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res 
64, 6941-9 (2004). 

14. Ried, T. et al. The consequences of chromosomal aneuploidy on the transcriptome of 
cancer cells. Biochim Biophys Acta 1819, 784-93 (2012). 

15. Wolf, M. et al. High-resolution analysis of gene copy number alterations in human 
prostate cancer using CGH on cDNA microarrays: impact of copy number on gene 
expression. Neoplasia 6, 240-7 (2004). 

16. Tsafrir, D. et al. Relationship of gene expression and chromosomal abnormalities in 
colorectal cancer. Cancer Res 66, 2129-37 (2006). 

17. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the 
response to aneuploidy in human cells. Mol Syst Biol 8, 608 (2012). 

18. Durrbaum, M. & Storchova, Z. Effects of aneuploidy on gene expression: implications 
for cancer. FEBS J 283, 791-802 (2016). 

19. Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and 
rectal cancer. Nature 487, 330-7 (2012). 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/563858doi: bioRxiv preprint 

https://doi.org/10.1101/563858


 15 

20. Cancer Genome Atlas Research, N. et al. Integrated genomic and molecular 
characterization of cervical cancer. Nature 543, 378-384 (2017). 

21. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-
74 (2011). 

22. Consortium, G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot 
analysis: multitissue gene regulation in humans. Science 348, 648-60 (2015). 

23. Ried, T. & Rajapakse, I. The 4D Nucleome. Methods 123, 1-2 (2017). 
24. Sack, L.M. et al. Profound Tissue Specificity in Proliferation Control Underlies Cancer 

Drivers and Aneuploidy Patterns. Cell 173, 499-514 e23 (2018). 
25. Graham, N.A. et al. Recurrent patterns of DNA copy number alterations in tumors reflect 

metabolic selection pressures. Mol Syst Biol 13, 914 (2017). 
26. Weaver, B.A. & Cleveland, D.W. The aneuploidy paradox in cell growth and 

tumorigenesis. Cancer Cell 14, 431-3 (2008). 
27. Sheltzer, J.M. et al. Single-chromosome Gains Commonly Function as Tumor 

Suppressors. Cancer Cell 31, 240-255 (2017). 
28. Gronroos, E. & Lopez-Garcia, C. Tolerance of Chromosomal Instability in Cancer: 

Mechanisms and Therapeutic Opportunities. Cancer Res 78, 6529-6535 (2018). 
29. Camps, J. et al. Genetic Amplification of the NOTCH Modulator LNX2 Upregulates the 

WNT/beta-Catenin Pathway in Colorectal Cancer. Cancer Res 73, 2003-13 (2013). 
30. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. 

Nat Biotechnol 30, 413-21 (2012). 
31. Bailey, M.H. et al. Comprehensive Characterization of Cancer Driver Genes and 

Mutations. Cell 174, 1034-1035 (2018). 
32. Daca-Roszak, P. et al. Impact of SNPs on methylation readouts by Illumina Infinium 

HumanMethylation450 BeadChip Array: implications for comparative population 
studies. BMC Genomics 16, 1003 (2015). 

33. Teschendorff, A.E. et al. A beta-mixture quantile normalization method for correcting 
probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29, 
189-96 (2013). 

34. Desper, R. et al. Inferring tree models for oncogenesis from comparative genome 
hybridization data. J Comput Biol 6, 37-51 (1999). 

 
  

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/563858doi: bioRxiv preprint 

https://doi.org/10.1101/563858


 16 

FIGURE LEGENDS 
 
Figure 1: Chromosomal aneuploidies and genomic imbalances and the consequences on the 
transcriptome of cancer cells 
A: Genomic imbalances specific for cervical (red) and colorectal (green) carcinomas. Gains of 
chromosomes or chromosome arms are presented as bars on the right side of the ideograms, 
losses on the left. Changes that are visualized as solid blocks occurred in more than 50% of 
analyzed cases. The distribution of imbalances allows discernment of the tumor entities.  
B: Interphase FISH analysis of the sequential clonal copy number gain of chromosome arm 3q 
during cervical tumorigenesis. The FISH analysis shows diploid copy numbers for the probes 
targeting the centromere of chromosome 7 (red), and the human telomerase gene TERC on 
chromosome arm 3q (green) in normal cervical cells. The gain of chromosome arm 3q results in 
the clonal expansion of cells in dysplastic lesions (3 copies in all cells), and continues to be 
gained or even amplified in invasive carcinomas despite increased chromosomal instability and 
intratumor heterogeneity.  
C: Genomic copy number changes affect resident gene expression levels. Transcripts from genes 
on chromosomes that are recurrently gained are more abundant, those on lost chromosomes less 
abundant. The analysis reflects the TCGA dataset. 
 
Figure 2:  
A: Correlation of chromosome arm-wide copy number levels in 15 tumor entities (left column) 
and arm-wide gene expression levels in the respective normal tissues (right column), 
respectively. Red, gains; blue, losses. The hue of the colors indicates the frequency of copy 
number changes and the level of chromosome-arm wide gene expression changes, respectively. 
BLCA, bladder cancer; LAML, acute myelocytic leukemia; GBM, glioblastoma multiforme; 
BRCA, breast cancer; CESC, cervical squamous carcinoma; COAD, colorectal adenocarcinoma; 
ESCA, esophageal squamous carcinoma; KIRC, renal cell carcinoma; LIHC, hepatocellular 
carcinoma; OV, ovary carcinoma; PAAD, pancreatic adenocarcinoma; SKCM, melanoma; 
STAD, stomach adenocarcinoma; UCEC, uterine endometrial carcinoma.  
B: Significance of correlation between the frequency of the gain of each arm in every cancer 
type, and the number of up-regulated genes in the corresponding normal tissue (Rho+), and the 
frequency of the loss of each arm in every cancer type, and the number of down-regulated genes 
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in the corresponding normal tissue (Rho-). Black (Nan) indicates those chromosomes that were 
neither gained (rho+) or lost (rho-) in any of the tumors (with the threshold defined in Materials 
and Methods) and therefore not included in the analysis. 
C: Correlation coefficient and statistical significance between chromosome-arm wide copy 
number changes (Y-axis) and arm-wide gene expression in respective normal tissues (x-axis). 
With the exception of LAML (no copy number changes), all correlations are highly significant. 
Relevant chromosome arms are indicated with different colors. 
 
Figure 3:  
A: Chromosome arm-wide gene expression profiles allow tissue classification. The PCA analysis 
of chromosome arm-wide gene expression of normal tissues is displayed for six tissues analyzed 
for clarity. The different normal tissues can be predicted with high accuracy. 
B: Chromosome arms that are gained early in tumorigenesis show a stronger correlation with 
chromosome arm-wide gene expression levels in normal tissues. X-axis: number of tissues for 
which a chromosome arm is gained early (Materials and Methods), Y axis: correlation of arm 
gain with tissue specific expression (Rho+; Figure 2B) 
C: Chromosome arms that are gained more frequently across tumor entities show a stronger 
correlation with chromosome arm-wide gene expression levels in normal tissues. An arm was 
defined to be frequently gained in a tissue if it was among the top 5 most frequently gained arms 
in that tissue. X-axis: number of tissues for which a chromosome arm is frequently gained, Y 
axis: correlation of arm gain with tissue specific expression (Rho+; Figure 2B) 
D: Comparison of chromosome arm aneuploidies in cervical colorectal cancer with respective 
gene expression levels in normal cervical and colorectal epithelium. More genes on chromosome 
arms 1q and 3q are upregulated in normal cervix (red) than in normal colorectum while more 
genes on, i.e., 7, 8q, 13q and 20q are upregulated in normal colorectum compared to normal 
cervix. 
 
Figure 4:  
Schematic presentation of the results. Genes on the red chromosomes are expressed at slightly 
higher levels compared to other chromosomes in normal tissue A, whereas in normal tissue B, 
the yellow chromosomes shows increased tissue-specific expression and genes on the green 
chromosome are expressed at lower levels. This results in a subtle increase or decrease in 
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chromosome arm-wide transcript levels, respectively. The acquisition of chromosomal 
aneuploidies in the respective tumors (gain of the red chromosome in tumor A and the yellow 
chromosome in tumor B, accompanied by the loss of the green chromosome in tumor B) 
amplifies this effect and provides the genetic basis of “hard-wiring” tissue-specific chromosome 
arm-wide gene expression levels as the basis for clonal expansion.  
 
Figure S1: 
Chromosome arm-wide gene expression profiles allow tissue classification. The PCA analysis of 
chromosome arm-wide gene expression of normal tissues is displayed for nine additional tissues 
analyzed. The different normal tissues can be predicted with high accuracy. 
 
Figure S2: 
(A) Correlation of oncogenes and tumor suppressor genes with the gains and losses of 
chromosome arms, respectively, on which they reside. The correlation does not reach 
significance. BLCA, bladder cancer; LAML, acute myelocytic leukemia; GBM, glioblastoma 
multiforme; BRCA, breast cancer; CESC, cervical squamous carcinoma; COAD, colorectal 
adenocarcinoma; ESCA, esophageal squamous carcinoma; KIRC, renal cell carcinoma; LIHC, 
hepatocellular carcinoma; OV, ovary carcinoma; PAAD, pancreatic adenocarcinoma; SKCM, 
melanoma; STAD, stomach adenocarcinoma; UCEC, uterine endometrial carcinoma. 
(B) The circle indicates the distribution of the number of oncogenes and tumor suppressor genes 
on each chromosome and is the basis for the results presented in the Figure. 
 
Figure S3: 
(A) Chromosome arm-wide methylation, chromosome arm-wide gene expression in normal 
tissues, and cancer type-specific chromosomal aneuploidy patterns in the respective tumors. (B) 
The correlations of the arm-wide methylation and gene expression in normal tissues are not 
significant. 
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Supplementary Table 1: 
Methylation Datasets  
    
Dataset 
ID Platform Tissue Brief Description 

GSE32146 Illumina 
450K  Colon 10 normal Colon mucosa tissue, 10 Crohn’s disease, 4 ulcerative 

colitis 

GSE40360 Illumina 
450K  

Brain, frontal 
lobe 

47 samples analyzed in total: 17 MS females, age 55.5 ± 10.3 
years; 11 MS males, age 55.0 ± 9.9 years; 7 control females, 69.1 
± 9.2 years; 12 control males, 64.7 ± 8.0 years 

GSE61107 Illumina 
450K  

Brain, frontal 
cortex 

Genome-Wide DNA methylation analysis was performed on post-
mortem human brain tissue from 24 patients with schizophrenia 
and 24 unaffected controls 

GSE88890  Illumina 
450K  Brain, cortex 

Tissue (n=75) from two regions of the cortex (Brodmann area 11 
(BA11, n=40) and Brodmann area 25 (BA25, n=35)) from 20 MDD 
MDD suicide cases and 20 non-psychiatric sudden death controls 

GSE89702 Illumina 
450K  

Brain, 
cerebellum 

33 post-mortem brain (cerebellum) samples were obtained from 
the Douglas Bell-Canada Brain Bank (DBCBB; 16 schizophrenia 
and 17 controls), Montreal, Canada 

GSE89703 Illumina 
450K  

Brain, 
hippocampus 

27 post-mortem brain (hippocampus) samples were obtained 
from the London Brain Bank for Neurodegenerative Disorders 
(LBBND; 14 schizophrenia and 13 controls), London, UK 

GSE89705 Illumina 
450K  

Brain, 
Striatum 

33 post-mortem brain (striatum, putamen) samples were 
obtained from the Douglas Bell-Canada Brain Bank (DBCBB; 16 
schizophrenia and 17 controls), Montreal, Canada 

GSE62640 Illumina 
450K  Pancreas 

53 male and 34 female human pancreatic islet samples. Normally 
methylated, non-methylated and fully methylated human DNA 
samples were included as controls 

GSE51954 Illumina 
450K  Skin 

10 younger sun protected dermal samples, 10 younger sun 
exposed dermal samples, 10 older sun protected dermal samples, 
10 older sun exposed dermal samples, 9 younger sun protected 
epidermal samples, 9 younger sun exposed epidermal samples, 
10 older sun protected epidermal sample, 10 older sun exposed 
epidermal samples 

GSE90124 Illumina 
450K  Skin Samples: Bisulphite converted DNA from the 322 samples were 

hybridised to the Illumina HumanMethylation450 BeadChip 

GSE52401 Illumina 
450K  Lung 

Bisulphite converted DNA from 244 fresh-frozen primary human 
lung samples were hybridised to the Illumina Infinium 450k 
Human Methylation Beadchip v1.2. This file has 60 samples. 

GSE61258 Illumina 
450K  Liver Bisulphite converted DNA from the 79 samples were hybridised 

to the Illumina Infinium 450k Human Methylation Beadchip 
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GSE61446 Illumina 
450K  Liver 

Bisulphite converted DNA from the 67 Liver samples were 
hybridised to the Illumina Infinium 450k Human Methylation 
Beadchip 

GSE51820 Illumina 
450K  Ovary 

This study included 96 total samples, including 53 serous ovarian 
cancers, 11 endometrioid ovarian cancers, 13 clear cell ovarian 
cancers, 8 mucinous ovarian cancers, 4 fallopian tube epithelium 
specimens, 4 ovarian surface epithelium specimens, 1 universally 
methylated DNA sample, 1 normal human lymphocyte sample, 
and 1 50:50 mixture of the normal human lymphocyte DNA and 
universally methylated DNA samples 

GSE46306 Illumina 
450K  Cervix 

In this study 20 normal cervical samples (HPV negative), 18 
samples with CIN3 lesions (HPV positive) and 6 cervical cancer 
tissues (HPV positive) were included. 

GSE45187 Illumina 
450K  Uterus 

Bisulphite converted DNA from the three uterine leiomyoma, 
three myometrium with leiomyoma and three myometrium 
without leiomyoma were hybridised to the Illumina infinium 
HumanMethylation450 BeadChip. 

GSE52826 Illumina 
450K  Esophagus 

DNA methylation profiles of esophageal squamous cell carcinoma 
(4 samples), paired adjacent normal surrounding tissues (4 
samples) and normal esophagus mucosa from healthy individuals 
(4 samples) were generated using Infinium methylation 450K 
BeadChips from Illumina (Illumina, San Diego, USA) 

GSE59157 Illumina 
450K  Kidney 

Genome wide DNA methylation profiling of normal kidney 
(n=36), nephrogenic rest (n=22) and Wilms tumour (n=37) was 
performed using the Illumina 450k array. 
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