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Abstract 

Cross-linking mass spectrometry (XL-MS) is an increasingly popular technique for capturing 

large-scale interactions and their structural dynamics. Almost all proteome-wide XL-MS studies 

to date validate their identified cross-links by mapping them onto the available 3D structures of 

representative complexes such as ribosome and proteasome. Here, we theoretically demonstrate 

and experimentally confirm that such a structure-based validation approach can drastically under-

estimate the underlying error rate. Given the broad use and interest in these XL-MS datasets, the 

unexpected high number of false positives will severely hinder the development of the field and 

the utility of these datasets. Thus, it is of utmost importance to bring this problem to the attention 

of the field. 
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Cross-linking mass spectrometry (XL-MS) is a powerful platform to unveil protein interactions 

and capture their structural dynamics1. Development of efficient MS-cleavable chemical cross-

linkers such as disuccinimidyl sulfoxide (DSSO)2, disuccinimidyl dibutyric urea (DSBU)3 and 

protein interaction reporters (PIRs)4 has expanded the applications of XL-MS from studying 

individual functional complexes to discovering proteome-wide interactions and their structural 

dynamics. In addition to using false discovery rate (FDR) for filtering the list of cross-link 

identifications at expected quality, available three-dimensional (3D) structures are utilized for  

their validation and quality assessment by almost all proteome-wide XL-MS studies5, 6. Here, we 

demonstrate fundamental flaws in such a structure-based quality assessment approach that 

drastically under-estimates the error rates of large-scale XL-MS datasets. 

In order to assess the quality of proteome-wide XL-MS datasets, researchers map the cross-

links onto available 3D structures of highly abundant and representative complexes such as 

ribosome and proteasome. Then, they use the fraction of cross-linked residue pairs that satisfy the 

theoretical distance constraint of the cross-linker (e.g., 30Å for DSSO) to evaluate the dataset. 

While this approach may  provide a sense of quality about the intraprotein cross-links, it suffers 

from massive underestimation of false positives in case of the interprotein cross-links (Fig. 1a), 

which are key for inferring novel protein-protein interactions and modeling 3D structure for 

functional complexes. In other words, such approach would selectively pre-filter only highly likely 

true positives for the distance-based validation, ignoring the potential false positives.    

Theoretically, the probability of both peptides of an interprotein cross-link from a human 

proteome-wide experiment (~20,000 proteins) being mapped to the same protein complex 

structure consisting of 100 subunits is ~5×10-3 (99/19999). The probability would be much lower 

for the currently used representative complexes such as ribosome (76 subunits: PDB ID 5T2C) 

and proteasome (34 subunits: PDB ID 5GJQ). Considering such a low probability, any interprotein 

cross-link mapped to different subunits of a single complex structure is highly likely to be a true 

positive identification. On the other hand, most false positives will have only one peptide mapped 

to the complex structure (Fig. 1a). Because the current structural-mapping approaches explicitly 

validate crosslinks that have both peptides mapped to the same complex structure, they tend to 

result in a massive underestimation of error rate for proteome-wide XL-MS datasets. 
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Consequentially, these methods may erroneously annotate artifacts as novel interactions, resulting 

in less reliable experimental datasets for further studies. 

To validate our theory experimentally, we performed a proteome-wide human XL-MS 

experiment using MS-cleavable cross-linker DSSO on K562 cell lysate (25 fractions). Next, in 

order to generate three sets of cross-links with drastically different qualities, we ran XlinkX search 

engine (Proteome Discoverer 2.2) using three criteria of decreasing stringency (1% FDR with 

∆XlinkX score ≥50, 1% FDR, and 10% FDR). As shown in Fig, 1b panel (i), at 1% FDR with 

∆XlinkX score ≥50, only 70 interprotein crosslinks were identified; whereas at 10% FDR, 2,925 

were identified (we intentionally chose 10% FDR to obtain a low-quality set of cross-links with 

many false positives). Further, we mapped the interprotein cross-link residue pairs from these three 

sets separately onto the 3D structures of human ribosome and proteasome. We then calculated the 

percentage of mapped residue pairs that satisfied DSSO’s theoretical constraint (≤30Å). We 

observed that there was no significant difference (all P > 0.59) among the three datasets in terms 

of their percentage of satisfying residue pairs (Fig. 1b panel (ii)), even though the overall quality 

of these three sets are drastically different by design. Our experimental results confirm that the 

current structure-mapping approach overestimates the fraction of true positives and thereby fails 

to capture the underlying error rate. Furthermore, it also indicates an urgent need for additional 

measures to estimate the quality of proteome-wide cross-linking datasets. 

To further illustrate the problem, we used a comparative quality metric called “Precision”, 

which is often used in machine learning7, 8. Some of the previous studies utilized the known 

protein-protein interaction networks to visualize and infer biological insights from XL-MS 

datasets9, 10. Here we utilized the known set of interactions to calculate precision for comparative 

quality assessment among the three datasets: 

Precision (%) = Number of true positives
Total number of postives

 𝑋𝑋 100     (1) 

where, ‘positives’ refer to all the identified interprotein cross-links, and ‘true positives’ refer to the 

interprotein cross-links between known interacting proteins. We calculated precision for the three 

datasets shown in Fig. 1b, utilizing a comprehensive set of 403,355 experimentally-confirmed 

human binary and co-complex protein interactions compiled from seven primary databases11 

(namely DIP12, BioGRID13, MINT14, iRefWeb15, IntAct16, HPRD17, and MIPS18). It should be 
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noted that, because a large fraction of true protein interactions is yet to be discovered, precision 

can only be used as a relative estimate and should not be used as an absolute measure for data 

quality.  

As shown in Fig. 1b panel (i), precision exhibits great agreement with the expected data 

quality of different data sets (at 1% FDR with ∆XlinkX score ≥50, precision is 80.0%; but at 10% 

FDR, precision is merely 8.2%; P < 1×10-20). It should be noted that the cross-links in Fig. 1b 

panel (ii) would have a precision of 100% by definition. Importantly, the precisions for interprotein 

cross-links where only one peptide was mapped onto the ribosomal or proteasomal structures 

across all three sets are abysmal (≤2.4%). 

We acknowledge that this issue of drastically under-estimating quality by structure-based 

measurements would not be applicable for XL-MS studies on specific proteins and individual 

complexes if the cross-link search is performed against only proteins that are included in the 

experiment; however, it will be applicable if the search is performed against the entire proteome. 

Importantly, it is highly relevant for the increasingly popular proteome-wide XL-MS experiments5, 

6 and cross-linking immunoprecipitation MS (xIP-MS) studies19. In these studies, structure-based 

evaluation (which is used in almost all studies) does not provide an adequate assessment of the 

data quality and will make even low-quality datasets seem good. Given the broad use and interest 

in these XL-MS datasets20, 21, the unexpected high number of false positives will severely hinder 

the development of the field and the utility of these datasets. Thus, it is of utmost importance to 

bring this problem to the attention of the field. Going forward, a more comprehensive and accurate 

quality assessment framework needs to be developed to aid in the rapid advancement of XL-MS 

technologies.      
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Figure 1. Evaluation of 3D structure-based validation approaches for proteome-wide cross-linking 
mass spectrometry (XL-MS) datasets. (a) Illustration of our theory about the limitation of 
structure-mapping approach in validating the false positive XL identifications. (b) Assessment of 
data quality for XL-MS datasets (filtered using different quality filters from a single experiment) 
by mapping them onto the known 3D structures of human ribosome (PDB ID: 5T2C) and 
proteasome (PDB ID: 5GJQ). Panel (i) shows the total number of interprotein XLs (Precision for 
‘1% FDR with ∆XlinkX score ≥50’ set is significantly higher than that of ‘1% FDR’ set (P < 1×10-

20) and that of ‘10% FDR’ set (P < 1×10-20)). Panel (ii) shows the number of interprotein XLs 
where both the residues in the pair are mapped to the same structure (Fraction of XLs within 30Å 
for ‘1% FDR with ∆XlinkX score ≥50’ set is statistically indistinguishable to that of ‘1% FDR’ 
set (P = 0.81) and that of ‘10% FDR’ set (P = 0.87)). All the P values were calculated using a two-
sided Z-test. Panel (iii) shows the number of XLs and the corresponding Precision, where only one 
of the two residues mapped to the same structure.     
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Supplementary Methods 

Cell culture and whole cell lysate preparation 

The K562 cells (ATCC® CCL-243™) were purchased from American Type Culture Collection 
(ATCC). The cells were maintained in the Iscove's Modified Dulbecco's Medium (IMDM) 
(ATCC) supplemented with 10% fetal bovine serum (FBS) (ATCC) at 37°C with humidified 
ambient atmosphere containing 5% CO2. The K562 cells were collected and washed three times 
with cold PBS. The cells were then resuspended in cold buffer composed of 50 mM HEPES, 150 
mM NaCl, pH 7.5 supplemented with Protease Inhibitor Cocktail (Roche). The resuspended cells 
were lysed on ice by sonication (Amplitude 10% for 5 sec and repeat 6 times), followed by 
centrifugation at 15,000 g for 10 min at 4oC. The supernatant was collected and measured the 
protein concentration using Bio-Rad Protein Assay Dye (Bio-Rad). 

Cross-linking of human proteome 

DSSO (Thermo Fisher Scientific) was freshly prepared as a 50 mM stock solution by dissolving 
in anhydrous DMSO. The 1 mg/mL lysate of K562 cells was reacted with 1 mM DSSO in 50 mM 
HEPES buffer, 150 mM NaCl, pH 7.5 for 1 hour at room temperature. The cross-linking reactions 
were terminated by 50 mM Tris-Cl buffer, pH 7.5.  

Processing of cross-linked samples for analysis 

The DSSO-treated cell lysate was processed by being denatured in 1% sodium dodecyl sulfate 
(SDS), reduced by dithiothreitol (DTT), and alkylated with iodoacetamide, followed by 
precipitated in cold acetone-ethanol solution (acetone:ethanol:acetic acid=50:49.9:0.1, v/v/v). The 
precipitates were dissolved in 50 mM Tris-Cl, 150 mM NaCl, 2 M urea, pH 8.0 and digested by 
TPCK-treated trypsin (Worthington Biochemical Corporation) at 37oC overnight. After digestion, 
the sample was acidified by 2% trifluoroacetic acid-formic acid solution, desalted through Sep-
Pak C18 cartridge (Waters), and dried using SpeedVacTM Concentrator (Thermo Fisher Scientific).  

Fractionation of cross-linked peptides by Strong Cation Exchange (SCX) 

The 1 mg of desalted trypsin-digested sample was dissolved in 25% acetonitrile/0.1% formic acid 
(v/v) and passed through a Spin-X centrifuge tube filters (Corning). The sample was fractionated 
by a PolySULFOETHYL A column (5 µm, 200 Å, 2.1 x 200 mm; PolyLC) operated by a Dionex 
UltiMate 3000 Series instrument (Thermo Fisher Scientific). Two following buffers were used: 10 
mM potassium phosphate monobasic in 25% acetonitrile, pH 3.0 (Buffer A) and 10 mM potassium 
phosphate monobasic/500 mM potassium chloride in 25% acetonitrile, pH 3.0 (Buffer B). The 
fractionation was performed at a flow rate of 200 µL/min using a linear gradient from 5-60% of 
Buffer B in 40 min and 60-100% of Buffer B in an additional 10 min. The fractions were collected 
at 1-min intervals. The fractions from 23 to 60 min were desalted using SOLA HRP SPE cartridges 
(Thermo Scientific). The eluted peptides were dried by speed vacuum and stored at -20oC until 
LC-MS/MS analysis.      
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NanoLC-MSn analysis 

The fractionated samples were analyzed using UltiMate3000 RSLCnano (Dionex) coupled to an 
Orbitrap Fusion (Thermo Fisher Scientific) mass spectrometer. Each sample was loaded onto an 
Acclaim PepMap 100 C18 trap column (5 µm, 100 µm x 20 mm, 100 Å, Thermo Fisher Scientific) 
and separated on an Acclaim PepMap C18 nano column (3 µm, 75 µm x 25 cm, Thermo Fisher 
Scientific) by 5-40% B at 300 nL/min in 120 min. For MS data acquisition, the CID-MS2-MS3 
workflow was used. The Orbitrap Fusion was operating in positive ion mode with nano spray 
voltage set at 1.7 kV and source temperature at 275°C. The MS1 precursors were detected in 
Orbitrap mass analyzer (375-1575 m/z and resolution = 60,000). The precursor ions with the 
charge of 4+ to 10+ were selected for CID-MS2 acquisition in Orbitrap mass analyzer (resolution 
= 30,000, AGC target = 5 x 104, precursor isolation width = 1.6 m/z, and maximum injection time 
= 100 ms) with the collision energy of CID at 25%. The peaks with a mass difference (Δ = 31.9721) 
in the CID-MS2 spectrum triggered acquisition of CID-MS3 spectra in Ion Trap with CID collision 
energy of 35% and AGC target of 2 x 104. All spectra were recorded by Xcalibur 3.0 software and 
Orbitrap Fusion Tune Application v. 2.1 (Thermo Fisher Scientific).  

Data processing 

Cross-links were identified using XlinkX software (Proteome discoverer 2.2). 

Statistics 

Statistical analyses were performed using a two-sided Z-test as indicated in the figure legend. Exact 
P values are provided for all compared groups. 
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