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1 Abstract 10 

 11 

The brain consists of many interconnected networks with time-varying activity. There 12 

are multiple sources of noise and variation yet activity has to eventually converge to a 13 

stable state for its computations to make sense. We approached this from a control-14 

theory perspective by applying contraction analysis to recurrent neural networks. This 15 

allowed us to find mechanisms for achieving stability in multiple connected networks 16 

with biologically realistic dynamics, including synaptic plasticity and time-varying inputs. 17 

These mechanisms included anti-Hebbian plasticity, synaptic sparsity and excitatory-18 

inhibitory balance. We leveraged these findings to construct networks that could 19 

perform functionally relevant computations in the presence of noise and disturbance.  20 

Our work provides a blueprint for how to construct stable plastic and distributed 21 

networks. 22 

 23 
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2 Introduction 24 

 25 

The brain is comprised of networks that are highly dynamic and noisy.  Neural activity 26 

fluctuates from moment to moment and varies considerably between experimentally 27 

identical trials (Latimer et al., 2015; Lundqvist et al., 2016; 2018; Churchland et al., 28 

2011).  These fluctuations can be due to a variety of factors including variability in 29 

membrane potentials, inputs, plastic changes due to recent experience and so on.  Yet, 30 

in spite of these fluctuations, networks must 31 

achieve computational stability.  Despite 32 

being “knocked around” by different starting 33 

conditions and noise, networks must reach a 34 

highly consistent state for their computations 35 

to make sense.  36 

The mechanisms that produce neural 37 

network stability have been characterized 38 

primarily in recurrent neural networks 39 

(RNNs)--a general form of brain network—in 40 

cases where the network weights are fixed 41 

and the input the network receives is 42 

constant (Fang and Kincaid 1996; Dayan and Abbot 2005). These stability conditions 43 

are bounds on the eigenvalues of the weight matrix and prevent networks from “blowing 44 

up”, that is, from running away to high levels of excitation (Fang and Kincaid 1996; 45 

Matsuoka 1992).  This is an important finding but it is not the whole story.  Eigenvalue 46 

analysis of the weight matrix is only guaranteed to work in RNNs receiving constant 47 

 

Figure 1: Cartoon demonstrating the 

contraction property. In a network with 𝑁 

neural units and 𝑆 dynamic synaptic 

weights, the network activity can be 

described a trajectory over time in an (𝑁 +

𝑆)-dimensional space. In a contracting 

system all such trajectories will converge 

exponentially towards each other over time, 

regardless of initial conditions.  In other 

words, the distance between any two 

trajectories shrinks to zero. 
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input and with fixed synaptic weights (or weights that change very slowly). Biological 48 

networks, however, have plastic synaptic weights that change rapidly under constant 49 

bombardment from environmental inputs. 50 

Such “dynamic stability” can be studied using contraction analysis, a concept developed 51 

in control theory. Unlike a chaotic system where perturbations and distortions can be 52 

amplified over time, the population activity of a contracting network will converge 53 

towards the same trajectory, thus achieving stable dynamics (Figure 1). One way to 54 

understand contraction is to represent the state of a network at a given time as a point 55 

in the network’s ‘state-space’. A commonly used state-space in neuroscience is the 56 

space spanned by the possible firing rates of all the networks’ neurons. A particular 57 

pattern of neural firing rates corresponds to a point in this state-space. As the activity of 58 

each neuron changes, this point moves around and traces out a particular trajectory. In 59 

a contracting network, all such trajectories converge.   60 

To examine how dynamic stability can be achieved with contraction under biologically 61 

realistic assumptions, we used RNNs that received time-varying inputs and had 62 

synapses that changed on biologically relevant timescales (Orhan and Ma 2019; 63 

Mongillo, Barak, and Tsodyks 2008; Lundqvist, Herman, and Lansner 2011).  This 64 

revealed several classes of synaptic plasticity that naturally produced contraction, 65 

including anti-Hebbian plasticity and sparse connectivity.  Further, stability is an 66 

emergent property, in the sense that two or more contracting systems can become 67 

chaotic when they interact (Ashby 2013; Lohmiller and Slotine 1998). Therefore, we 68 

also studied principles for connecting multiple networks in a way that preserved 69 

contraction as well as the functionality of each network. We then used these findings in 70 
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plastic RNNs to examine how networks can perform functionally relevant computations 71 

in the presence of noise and disturbance. These computations included context-72 

dependent sensory integration and retaining stimuli in working memory. Thus, we 73 

uncovered principles for achieving and maintaining stability in complex, modular and 74 

plastic networks.  75 

3 Results 76 

We used two main quantitative tools to characterize contraction.  One is the contraction 77 

rate, indicating how fast trajectories reconvene following a perturbation.  Another is a 78 

network’s Jacobian. The Jacobian of a dynamical system is a matrix essentially 79 

 

Figure 2:  Contracting dynamics of neural and synaptic activity. Euclidean distances between 

synaptic and neural trajectories demonstrate exponential shrinkage over time. The top row of 

panels shows the distance in synaptic (teal) and activity (grey) space across simulations with 

distinct, randomized starting conditions. The bottom row shows the activation of a randomly 

selected neural unit (black) and synapse (blue) across two simulations (dotted and solid line). 

Panel A): Simulations of a contracting system where only starting conditions differ over 

simulations. B): the same as in A) but with an additional random pulse perturbation in one of the 

two simulations indicated by a lightning bolt symbol. C): the same as B) but with additional 

sustained noise, unique to each simulation. 
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describing the local ‘traffic laws’ of nearby trajectories of the system in its state space. 80 

More formally, it is the matrix of partial derivatives describing how a change in any 81 

system variable impacts the rate of change of every other variable in the system. It was 82 

shown in  (Lohmiller and Slotine 1998) that if the matrix measure—also known as the 83 

logarithmic norm (Söderlind 2006) – of the Jacobian is negative, then all nearby 84 

trajectories are funneled towards one another (see S.I 1.2 for technical details) which, in 85 

turn, implies that all trajectories are funneled towards one another.  86 

3.1 Anti-Hebbian Dynamics Produce Contraction 87 

Anti-Hebbian plasticity is the decrease of the mutual synaptic weights if the activity of 88 

two neurons are correlated. This has been observed across many brain regions and 89 

species (Hosoya, Baccus, and Meister 2005; Enikolopov, Abbott, and Sawtell 2018).  It 90 

is believed to underlie important neural computations such as decorrelation of inputs 91 

(Földiák 1990).  We found that anti-Hebbian plasticity produces contraction in a broad 92 

class of neural networks. Specifically, we considered neural networks of the following 93 

form: 94 

𝑥̇𝑖 = ℎ(𝑥𝑖) + ∑ 𝑊𝑖𝑗𝑥𝑗

𝑁

𝑗=1

+ 𝑢𝑖(𝑡) 95 

The term 𝑥̇𝑖 ≡  
𝑑𝑥𝑖

𝑑𝑡
 denotes the change in the activation of neuron 𝑖 as a function of time. 96 

The term ℎ(𝑥𝑖) captures the ‘self-dynamics’ of neuron 𝑖 —the dynamics it would have in 97 

the absence of input from other neurons. The term being summed represents the 98 

weighted contribution of all the neurons in the network on the activity of neuron 𝑖. 99 

Finally, the term 𝑢𝑖(𝑡) represents external input into neuron 𝑖.  100 

To ensure our results would be applicable to many different networks, we did not 101 

constrain the inputs into the RNN (except that they were not infinite), and we did not 102 

specify the particular form of ℎ(𝑥𝑖) except that it be a leak term (see S.I 2.2 for what 103 

constitutes a leak term). Furthermore, we made no assumptions regarding the relative 104 

timescales of synaptic and neural activity—synaptic dynamics were treated on an equal 105 
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footing as neural dynamics. In particular, let 𝑥𝑖 be the activity of neuron 𝑖, and let 106 

𝑊𝑖𝑗 denote the weight between neurons 𝑖 and 𝑗, we considered anti-Hebbian synaptic 107 

plasticity of the following form:  108 

𝑊̇𝑖𝑗 =  −𝑘𝑖𝑗 𝑥𝑖𝑥𝑗 − 𝛾(𝑡) 𝑊𝑖𝑗 109 

where the term 𝑘𝑖𝑗 > 0 is the anti-Hebbian plasticity learning rate for each synapse and 110 

𝛾(𝑡) > 0 is a decay factor (the rate of forgetting) for each synapse. For technical 111 

reasons outlined in the supplementary, we restricted 𝐊, the matrix containing the 𝑘𝑖𝑗 112 

terms, to be positive-semidefinite, symmetric, and have positive entries. A particular 113 

example of 𝐊 satisfying these constraints is to have the learning rates of all synapses to 114 

be equal (i.e. 𝑘𝑖𝑗 = 𝑘 > 0). Plasticity of this form produced contracting neural and 115 

synaptic dynamics, regardless of the initial values of the weights and neural activity 116 

(Figure 2 and Figure 3). In particular, we found that even if an RNN is initially not 117 

contracting, it will become contracting when subject to anti-Hebbian plasticity (Figure 3). 118 

The red trace of Figure 3.a shows that this is not simply due to the weights decaying to 119 

0. Thus, anti-Hebbian plasticity is not only contraction preserving, it is contracting 120 

ensuring.  121 

 122 

Figure 3:(A, red trace) The anti-Hebbian plasticity pushes the weight matrix towards symmetry. A) Plotted is a 123 
measure (the norm) of how asymmetric the weight matrix is. Red curve shows that this measure decays to zero, implying the 124 
weight matrix becomes symmetric. The blue trace shows the sum of squares of all the elements in the weight matrix. If this 125 
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quantity does not decay to zero, it implies that not all the weights have decayed to zero. In (B), we plot the largest eigenvalue of 126 
the symmetric part of W (mu_2). A prerequisite for overall contraction in the network is that this quantity be less than or equal 127 
to the ‘leak-rate’ of the individual neurons. The purple line shows our theoretical upper bound for mu_2, and the green shows 128 
the actual value of mu_2 taken from a simulation. The purple decays exponentially to zero. Since the green line stays below the 129 
purple line, we can conclude that mu_2 is always less than the leak-rate of the neurons after some finite time.  130 

To consider how anti-Hebbian plasticity works to produce contraction across a whole 131 

network, we needed to deal with the network in a holistic fashion, not by analyzing the 132 

dynamics of single neurons. To do so, we conceptualized RNNs with dynamic synapses 133 

as a single system formed by combining two subsystems—a neural subsystem and a 134 

synaptic subsystem. Contraction analysis of the overall system then boiled down to 135 

examining the interactions between these subsystems (Slotine 2003).   136 

We found that anti-Hebbian plasticity works like an interface between these systems, 137 

producing several distinct effects that push networks toward contraction. First, it makes 138 

the synaptic weight matrix symmetric (Figure 3A, red trace). This means that the weight 139 

between neuron 𝑖 to 𝑗 is the same as 𝑗 to 𝑖. We show this by using the fact that every 140 

matrix can be written as the sum of a purely symmetric matrix and a purely anti-141 

symmetric matrix. An anti-symmetric matrix is one where the 𝑖𝑗 element is the negative 142 

of the 𝑗𝑖 element (i.e. 𝑊𝑖𝑗 =  −𝑊𝑗𝑖) and all the diagonal elements are zero. We then 143 

show that anti-Hebbian plasticity shrinks the anti-symmetric part of the weight matrix to 144 

zero—implying that the weight matrix becomes symmetric. Furthermore, anti-Hebbian 145 

plasticity makes the weight matrix negative semi-definite, meaning all its eigenvalues 146 

are less than or equal to zero (Figure 3A). Mathematically, we show that the symmetry 147 

of the weight matrix ‘cancels out’ off-diagonals in the Jacobian matrix (see S.I section 3) 148 

of the overall neural-synaptic system. Loosely, off-diagonal terms in the Jacobian 149 

represent potentially destabilizing cross-talk between the two subsystems. Combined 150 

with the fact that the weight matrix becomes negative semi-definite, the cancelling out of 151 

the Jacobian off-diagonals tends to funnel network dynamics towards a common path, 152 

thus producing contraction.  153 

 154 
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  155 

Figure 4: Combination properties of contracting systems. A) Two isolated, autonomous networks. The 156 

Jacobian of the overall system is block diagonal B) If one of the systems is connected to the other in a 157 

feedforward manner, the fixed point of the ‘bottom’ system will change, will the fixed point of the top 158 

system remains the same. The Jacobian of the overall system is block-triangular. C) If the systems are 159 

reciprocally connected, both systems fixed-points will change. The Jacobian is a 2 x 2 block matrix.  160 

3.2 Sparse Connectivity Pushes Networks toward Contraction 161 

  162 

Cortical synaptic connectivity is extraordinarily sparse. In the human neocortex there 163 

are about 10,000 synapses per neuron. Given that there are about 20 billion neurons in 164 

the human neocortex, this is roughly 17 orders of magnitude fewer synaptic connections 165 

than if neocortical neurons were all-to-all connected (
104

(2∗1010)(2∗1010)
≈ 10−17). Even in 166 

local patches of cortex, such as we model here, connectivity is far from all-to-all. Our 167 

analyses revealed that sparse connectivity helps produce network contraction.  168 

To account for the possibility that some synapses may have much slower dynamics 169 

than others, and can thus be treated as constants, we make a distinction between the 170 

total number of synapses and the total number of dynamic synapses. By dynamic 171 

synapse we mean a synapse whose dynamics unfold on a timescale comparable to 172 

neural dynamics. By neural dynamics we mean the change in neural activity as a 173 

function of time. A very small change in activity over a given time window would indicate 174 

a very long timescale; conversely, a very large change in activity would indicate a very 175 

short timescale. We analyzed RNNs with the structure: 176 
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𝑥̇𝑖 = ℎ𝑖(𝑥𝑖) + ∑ 𝑊𝑖𝑗(𝑡) 𝑟(𝑥𝑗)

𝑁

𝑗=1

+ 𝑢𝑖(𝑡) 177 

Where ℎ𝑖(𝑥𝑖) is a nonlinear leak term (see S.I section 2 for definition), and 𝑟(𝑥𝑗) is a 178 

nonlinear activation function. The RNNs analyzed in this section are identical to those 179 

analyzed in the previous section, with the exception of the activation term. Here we 180 

allow for a more general class of activations, whereas in the previous section we 181 

constrained 𝑟(𝑥𝑗) to be linear, for analytical tractability. We denote the total number of 182 

afferent synapses into neuron 𝑖 by 𝑝𝑖 and the number of afferent dynamic synapses by 183 

𝑑𝑖. Since the number of dynamic synapses cannot be greater than the total number of 184 

synapses, 𝑑𝑖 has to be a fraction of 𝑝𝑖, This means we can write it as 𝑑𝑖  =  𝛼𝑖𝑝𝑖 , where 185 

𝛼𝑖 is a number between 0 and 1. We refer to the maximum possible absolute strength of 186 

a synapse as 𝑤𝑚𝑎𝑥, the maximum possible firing rate of a neuron as 𝑟𝑚𝑎𝑥 and finally the 187 

contraction rate of the 𝑖𝑡ℎ isolated neuron as 𝛽𝑖. Recall from the introduction that the 188 

contraction rate measures how quickly the trajectories of a contracting system 189 

reconvene after perturbation. Under the assumption that the synapses are contracting, 190 

we show in the supplementary materials (Section 4) that if the following equation is 191 

satisfied for every neuron, then the overall network is contracting: 192 

𝑝𝑖(𝑔𝑚𝑎𝑥𝑤𝑚𝑎𝑥 + 𝛼𝑖𝑟𝑚𝑎𝑥) <  𝛽𝑖  193 

Where 𝑔𝑚𝑎𝑥 is the maximum gain of any neuron in the network (see S.I section 4). 194 

Because 𝛽𝑖 is a positive number, it is always possible to decrease 𝑝𝑖 to the point where 195 

this equation is satisfied.  Since increasing the sparsity of a network has the effect of 196 

decreasing 𝑝𝑖, we may conclude that increasing the sparsity of connections pushes the 197 

system in the direction of contraction. This equation also implies that the faster the 198 

individual neurons are contracting (i.e. the larger 𝛽 is), the denser you can connect them 199 

with other neurons while still preserving overall contraction. 200 

3.3 E-I Balance Leads to Contraction in Static RNNs  201 

Apart from making connections sparse, one way to ensure contraction is to make 202 

synaptic weights small. This can be seen for the case with static synapses by setting 203 

𝛼𝑖  =  0 in the section above. Intuitively, this is because very small weights mean that 204 
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neurons cannot exert much influence on one another. If the neurons are stable before 205 

interconnection, they will remain so. Since strong synaptic weights are commonly 206 

observed in the brain, we were more interested in studying when contraction can arise 207 

irrespective of weight amplitude. Negative and positive synaptic currents are 208 

approximately balanced in biology (Mariño et al. 2005; Wehr and Zador 2003; Shu, 209 

Hasenstaub, and McCormick 2003). We reasoned that such balance might allow much 210 

larger weight amplitudes while still preserving contraction. This was indeed the case.  211 

To show this, we studied the same RNN as in the section above, while assuming 212 

additionally that the weights are static. In particular, we show in the supplementary 213 

(section 5) that contraction can be assessed by studying the eigenvalues of the 214 

symmetric part of W (i.e. 
𝐖+𝐖𝐓

𝟐
W). This implies the following: if excitatory to inhibitory 215 

connections are of equal amplitude (and opposite sign) as inhibitory to excitatory 216 

connections, they will not interfere with stability—regardless of amplitude (see S.I 217 

Section 5). This is because connections between inhibitory and excitatory units will be in 218 

the off-diagonal of the overall weight matrix and get cancelled out when computing the 219 

symmetric part. As an intuitive example, consider a two-neuron circuit made of one 220 

excitatory neuron and one inhibitory neuron connected recurrently (as in (Murphy and 221 

Miller 2009), Fig 1A). Assume that the overall weight matrix has the following structure:  222 

𝐖 =  (
𝑤 −𝑤
𝑤 −𝑤

) 223 

When taking that symmetric part of this matrix, the off-diagonal elements cancel out—224 

leaving only the diagonal elements to consider. Since the eigenvalues of a diagonal 225 

matrix are simply its diagonal elements, we can conclude that if the excitatory and 226 

inhibitory subpopulations are independently contracting (𝑤 is less than the contraction 227 

rate of an isolated neuron), then overall contraction is guaranteed. It is straightforward 228 

to generalize this simple two-neuron example to circuits achieving E-I balance through 229 

interacting populations (see Supp Section 5).  It is also straightforward to generalize to 230 

the case where E-I and I-E connections do not cancel out exactly neuron by neuron, but 231 

rather they cancel out in a statistical sense where the mean amplitudes are matched 232 

(Supp Section 5).  233 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/668152doi: bioRxiv preprint 

https://doi.org/10.1101/668152
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Thus far, we have described several sufficient conditions that ensure contracting 234 

dynamics in networks made of dynamic neurons and synapses. A key question is: Can 235 

contracting dynamics be used to perform useful neural computations? In the following 236 

sections we investigate the computational aspects of contracting networks.   237 

3.4 Echo-State Networks Are Special Cases of Contracting RNNs  238 

As can be seen in Figure 2.b, contracting systems have ‘fading memories’. This means 239 

that past events will affect the current state, but that the impact of a transient 240 

perturbation gradually decays over time. Consider the transient input in Figure 2.b 241 

(black lightning bolt) presented on only one of the two trials to the network. Because the 242 

input is only present on one trial and not the other, we call it a disturbance. Once this 243 

disturbance is presented, the distance between the trajectory corresponding to one trial 244 

and the trajectory corresponding to the other trial grows, meaning that they start to 245 

behave differently. However, after the disturbance is removed, the distance between the 246 

network’s trajectories starts shrinking back to zero again, meaning that the trajectories 247 

behave similarly.  248 

Thus, the network does not hold onto the memory of the disturbance indefinitely—the 249 

memory fades away. A similar property has been used in Echo State Networks (ESNs) 250 

to perform useful brain-inspired computations (Jaeger 2001; Pascanu and Jaeger). 251 

These networks are an alternative to classical attractor models in which neural 252 

computations are performed by entering stable states rather than by ‘fading memories’ 253 

of external perturbations (Buonomano and Maass 2009) . Because of the ‘fading 254 

memory’ property displayed by our contracting systems, we suspected that they might 255 

be related to ESNs. We investigated this next.   256 

There are several distinctions between the networks described here and ESNs: 1) 257 

ESNs are discrete-time dynamical systems. This means that their states do not evolve 258 

continuously with time, but rather in ‘steps’.  We consider continuous time networks 259 

here. While attempts have been made to find ‘Echo-State Properties’ for leaky-260 

integrator RNNs, these have all relied on discretization of the continuous dynamics. 2) 261 

ESNs don’t have dynamic synapses and 3) The ESN ‘metric’ (which measures 262 

distances in state space) is not allowed to be time-varying. This means that the 263 
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“yardstick” by which distances are measured in an ESNs state space never change, 264 

thus limiting the scope of networks classifiable as ESNs.  However, by removing 265 

dynamic synapses, setting the metric we use to prove contraction equal to the identity 266 

metric, and switching to a discrete time RNN, we could derive the so-called ‘Echo state 267 

condition’ as a special case of the contracting networks considered here (see S.I 268 

section 5). It therefore follows that all the useful neural computations that have been 269 

performed by ESNs can automatically be performed by special instances of the 270 

networks considered in our work. However, by working within the framework of 271 

contraction analysis we were able to study networks both with dynamic synapses and 272 

non-stationary metrics.  This allowed for greater complexity in the network dynamics 273 

while preserving the “fading memory” property.  Next, we demonstrate how this 274 

additional freedom and complexity of dynamic RNNs can be applied to known problems 275 

in neuroscience.    276 

3.5 Inter-areal Coupling Controls Operating Point 277 

Neural responses to distinct stimuli or contexts should be separable from one another to 278 

enable downstream readout (Rigotti, et al., 2013). This is often determined by first 279 

averaging activity across time and trials for each experimental condition and then 280 

attempting to separate the averages linearly with hyperplanes. However, increasing 281 

evidence suggests that neural activity is highly dynamic variable from moment-to-282 

moment and trial-to-trial (Lundqvist, et al., 2016; Wei, Inagaki, Li, Svoboda, & 283 

Druckmann, 2019; Denfield, Ecker, Shinn, Bethge, & Tolias, 2018). Therefore, it is 284 

neural dynamics that should be separable, not just averaged activity.  The brain, after 285 

all, works in real time—not by averaging.  One way to achieve context-dependent 286 

separation is by constraining the neural dynamics corresponding to a particular 287 

experimental condition to exist inside a ball of some radius around a point in state 288 

space. By moving these points—which we will call neural operating points—sufficiently 289 

far apart, one can potentially ensure that the neural dynamics do not overlap and thus 290 

ensure they are linearly separable. We therefore tested if networks consider here can 291 

guarantee linear downstream readout via contextual control of neural operating points. 292 

There are at least two ways to control neural operating points in a contracting system: 293 

1) By injecting tonic input; 2) By changing the network structure. Tonic input has been 294 
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used in models of neural dynamics (Remington, Narain, Hosseini, & Jazayeri, 2018; 295 

Mante, Sussillo, Shenoy, & Newsome, 2013). A persistent, contextual cue 296 

(corresponding to a rule or task demand) can provide this tonic input. We observed that 297 

it shifts the neural operating point of a contracting system to a new location by shifting 298 

the “bottom” of the basin of attraction to a new location in state space (Supp Section 6). 299 

We also found that if a time-varying stimulus is then presented on top of a tonic input, 300 

the resulting neural dynamics will be contained in a sphere around the new operating 301 

point (see S.I section 6 for derivation of the radius of this sphere). This is a 302 

manifestation of the fact that a contracting system remains contracting for any (non-303 

infinite) input.  304 

Another way to control the neural operating point is by varying the connection strength 305 

between coupled contracting networks (Figure 4). We leverage the fact that it is 306 

possible for a single contracting system to connect to an arbitrary number of other 307 

contracting systems while automatically preserving contraction of the overall system 308 

(Figure 5) (Slotine 2003). Contraction is preserved but the dynamics and activity of the 309 

networks change to a degree determined by the strength of the connections between 310 

the networks. Thus, changing the changing the degree of coupling between the 311 

networks can systemically control the neural operating point of both networks (Figure 5).   312 

 313 

Figure 5: Operating point control by modulation of inter-areal connectivity. A) Left: three isolated, 314 
autonomous contracting systems. Since they are isolated, their fixed points do not depend on one 315 
another.  Right: by connecting these systems, their fixed points move. B) Left: by modulating the 316 
strength of connections (k1, k2) from the two networks at the top, the fixed point of the bottom 317 
network was systematically changed. Right: the fixed points of the bottom network were plotted in 318 
space spanned by the first three principal components colored according to the value of (k1 , k2).  319 
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3.6 Combining Contracting Networks Produces a Hierarchy of Time Constants 320 

Elevated spiking to external stimuli is gradually prolonged as one traverses the cortical 321 

hierarchy from early sensory cortex to frontal cortex (Wasmuht, Spaak, Buschman, 322 

Miller, & Stokes, 2018; Murray J. , et al., 2014). It has been suggested that shorter 323 

timescales in sensory cortex enable rapid detection of changing stimuli, while longer 324 

timescales in frontal cortex promote integration of information over time. It is not known 325 

how this hierarchical gradient is achieved. Simulations of a large-scale cortical model 326 

suggested that this is due to a gradient of increasing synaptic excitation as well as 327 

recurrent connections (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015). Here, 328 

we show instead that hierarchically combining contracting networks naturally gives rise 329 

to gradually longer time-constants of neural activity (Figure 6A). In other words, it is not 330 

strictly necessary to change the properties of the neurons to get longer time constants—331 

it may arise from the global connectivity scheme. We therefore investigated if controlling 332 

connectivity could flexibly control the time-scale neural integration.  333 

First, suppose that a number of contracting subsystems are connected hierarchically. 334 

By hierarchically, we mean that while the connections within a subsystem can be 335 

recurrent, the connections between subsystems remain strictly feedforward. Our only 336 

restriction on the feedforward connectivity is that it is upper bounded in magnitude.  337 

Denote the number of subsystems as 𝐷. We found that the integration time of this 338 

network can scale with 𝑚𝐷, where 𝑚 > 1, which in general grows with the strength of 339 

feedforward connectivity (see S.I section 7). Thus, even with mild feedfoward 340 

connectivity strength and a few connected networks, one can get considerable 341 

increases in integration times in the higher areas. It is important to note that our results 342 

are based on upper bounds.  While the integration time of this hierarchical network can 343 

scale exponentially with the number of subsystems, it does not have to. In practice, we 344 

did observe considerably increased information retention (almost two orders of 345 

magnitude greater than the neural time constant) in simulations as you go higher up in 346 

the hierarchy  (Figure 6A), which is in agreement with experimental observations 347 

(Murray J. , et al., 2014).  348 
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The cortex, of course, also has long-range feedback projections. Thus, we also 349 

explored the relation of feedback connectivity to integration times. In particular, we 350 

considered a model of interactions between sensory and frontal cortex. Both cortical 351 

areas were modelled by a contracting network, each with the same contraction rate, that 352 

we connected reciprocally (see S.I section 7). The strength of the feedback was 353 

determined by the positive parameter 𝑘, and gradually varied. We measured the 354 

timescales of the two networks by briefly presenting input into the sensory network and 355 

tracking how much information (Olejnik and Algina 2003) about the stimulus was 356 

retained in the network dynamics. A similar analysis as in the strictly feedforward case 357 

(above) showed that that decreasing 𝑘 (weakening top-down feedback) leads to longer 358 

integration (Supp section 7). This was confirmed with simulations (Figure 6B). In other 359 

words, the level of time-integration was controlled by the level of top-down feedback. 360 

Consistent with the above results, the frontal network retained stimulus information for 361 

longer than the sensory cortex network despite the two networks having the same 362 

contraction rate. Both these results together show that longer integration times emerge 363 

naturally out of connecting contracting systems.  Further, the time constant of the 364 

integration can be controlled by controlling feedback. 365 

 366 

 367 

Figure 6. Control of time-integration by combinations of contracting systems. A) Control of integration time-constant by position 368 
in hierarchy. Hierarchical combinations of contracting systems show prolonged integration times, increasing with their position 369 
in the hierarchy. B) Modulation of top-down gain. Two networks with identical contraction rates (but different weight matrices) 370 
were reciprocally connected. The ‘sensory’ network could receive external inputs. Feedforward connections from the ‘sensory’ to 371 
the frontal network were held fixed. The top-down connections from frontal  to sensory were gradually decreased in strength 372 
from k=1 towards 0, leading to a gradual increase in asymmetry in the inter-areal connectivity. For each k, external stimulus (3 373 
different stimuli, each repeated over 100 trials) were provided to the ‘sensory’ network at t=0 (lightning bolt/grey box). Using 374 
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percentage explained variance (PEV), the average time-course of stimulus information in the units’ activity was measured in 375 
both networks as a function of the asymmetry (color coded). With reduced k, the time-scale of sensory integration was 376 
prolonged, in particular in the frontal network (the dotted yellow/red lines in the sensory plot shows the two most extreme 377 
values of the above frontal plot for comparison). 378 

3.7 Stable Working Memory via Hybrid Contracting Systems 379 

As discussed in section 3.4, contracting networks may be thought of as having a 380 

memory that fades with a characteristic time constant 𝜆 (a “decay constant”).  There are 381 

many cases, however, where information has to be retained over gaps in time longer 382 

than 𝜆 (e.g., working memory tasks where memories much be held for seconds). This 383 

can be accomplished via hybrid contracting systems. 384 

A hybrid dynamical system is one that is governed by the continuous evolution of 385 

variables (i.e., the type of model discussed so far) but also includes discrete transitions 386 

in synaptic weight changes (El Rifai & Slotine, 2006).  These discrete transitions of 387 

synaptic weights have to be coordinated.  This could be accomplished by a threshold or 388 

an “update” signal that, for example, changes synaptic weights only at given periods of 389 

time, mimicking the effect of dopamine (Lansner et al. 2013). Here, we report that the 390 

resulting hybrid contracting system can have both stable dynamics and retain memories 391 

that outlast shorter decay constants. 392 

 393 

Figure 7: Synaptic working memory in hybrid contracting systems. The network has anti-Hebbian synaptic plasticity. (A) Left: In 394 
the absence of inputs the system has a stable fixed-point as seen in the cartoon (middle row) and neural activity (last row) 395 

sorted from most (red) to least (yellow) active unit. Middle: An input is presented to the network (grey background, lightning 396 
bolt), causing its activity to jump to a different fixed point, partly determined by the structure of the input. The synaptic weights 397 

are frozen and the input is removed. This causes the network to contract towards a new fixed-point that is informative of the 398 
now removed input. 399 
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Consider a contracting neural network with dynamic synapses, as outlined in section 400 

3.1. Recall that there can be separate decay constants for synapses vs neurons.  Now 401 

present an input to the system. After transients, the system settles down to a new 402 

equilibrium state different from that before the input. Imagine that the weights are frozen 403 

at this new equilibrium (or the synaptic decay is much slower than the neural decay). In 404 

other words, synaptic weights are only updated when there are inputs to the network 405 

much like the stimulus-driven dopamine-mediated “print now” signal used in prior work 406 

(Lansner, Marklund, Sikström, & Nilsson, 2013). The network with frozen weights is still 407 

contracting but the equilibrium point it contracts to is different from that of the pre-408 

stimulus network (Figure 7). In line with experimental findings (Spaak, Watanabe, 409 

Funahashi, & Stokes, 2017; Murray J. , et al., 2017), the resulting activity of neurons are 410 

highly dynamic during stimulus presentation and the beginning of the delay, but 411 

gradually slows down towards a new stable equilibrium point later in the delay.  412 

This shows how memories in networks can outlast the neural decay constant. We show 413 

in the next section how combining this memory storage with hierarchically organized 414 

networks with increasing time constants can solve a fundamental problem of cognition: 415 

context-dependent behavior.   416 

3.8 Context Dependent Behavior 417 

Here, we construct a contracting network combining features discussed in the previous 418 

sections. We show that it can exhibit context-dependent behavior, a hallmark of 419 

cognition. Context-dependent means that behavior can change depending on the 420 

situation.  We behave differently at a jazz show vs a punk show. 421 

We combined two contracting networks: A “dynamic” network with changing synaptic 422 

weights (as discussed in section 3.7) and a “static” sensory network (Figure 8). The 423 

dynamic network was identical to the one used in Figure 7. The sensory network was 424 

set up in order to be contracting but entailed no further tweaking beyond that. We 425 

simulated the following task.  At the beginning of the trial, the dynamic network was 426 

presented with one of two transient cues that instruct whether to attend to color or 427 

motion. Following a brief memory delay, the sensory network was then presented with a 428 

combined noisy color and motion stimulus and has to make a decision about the cued 429 
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modality (i.e. report either the color or motion of the dots). The output of the network 430 

was a linear readout taken from the sensory network, trained to minimize the error 431 

between desired output and network output. 432 

The combined networks solved the task by holding the cued modality in the network 433 

with dynamic synapses, which changed the neural operating point of the sensory 434 

network (Figure 8). This demonstrates that the properties of multiple distinct contracting 435 

systems can be combined without any fine-tuning. It also illustrates that because 436 

contracting systems have one trajectory towards which they converge, any readout 437 

(linear or nonlinear, provided that the derivative of the readout is bounded) will also 438 

converge (Slotine 2003).  In other words, the readout is easy to read because it is 439 

linearly separable and consistent regardless of initial network conditions or noise. For 440 

this reason, we could add substantial noise to the sensory network without loss of 441 

function (Figure 8).   442 

 443 

Figure 8: Context dependent sensory integration. A) Task design: in the task there is either a motion or color cue presented, 444 
indicating which sensory feature to pay attention to. Following a delay, sensory information is presented, and only the cued 445 
feature should dictate the response (left or right) of the network. B) Network setup: the network at the top has plastic synapses, 446 
such that it can retain the cued information, same as in Figure 6. Due to the top down connections to the sensory area the cue 447 
held in working memory provided contextual modulation. The operating point of the network thus changed with the cued 448 
context. As a result, linear read out C) could be used to make the correct response for the 8 possible trial conditions (2 cues, 449 
motion indicating left/right, color indicating left/right).   450 

4 Discussion 451 

 452 
We studied a fundamental question in neuroscience: how distributed neural circuits 453 

maintain stable computations in the presence of disturbance, noisy inputs and plastic 454 

change. Neurological systems have high levels of dynamical variability even between 455 
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trials with identical conditions, yet produce stable behavior. We approached this 456 

problem from the perspective of dynamical systems theory, in light of the recent 457 

successes of understand neural circuits as dynamical systems (Sussillo 2014). We 458 

focused on contracting dynamical systems, which are yet largely unexplored in 459 

neuroscience. We did so for three reasons:  460 

1) Contracting networks can be input-driven. This is important because neural circuits 461 

are typically bombarded with time-varying inputs either from the environment or from 462 

other brain areas. Previous stability analyses have focused primarily on the stability of 463 

RNNs without time-varying input. These analyses are most insightful in situations where 464 

the input into a circuit can be approximated as either absent or constant. However, 465 

naturalistic stimuli tend to be highly time-varying and complex (Steveninck et al. 1997). 466 

This allowed us to build input-driven networks that performed stable computations on 467 

time-varying inputs.   468 

2) Contracting networks are robust to noise and disturbances. Perturbations to a 469 

contracting system are forgotten at the rate of the contraction and noise therefore does 470 

not stack up over time. Thus dynamic stability can co-exist with high trial-to-trial 471 

variability in contracting neural networks, as observed in biology. 472 

3) Contracting networks can be combined with one another in ways that preserve 473 

contraction. This is not true of most dynamical systems which can easily ‘blow up’ when 474 

connected in feedback with one another (Ashby 2013). This combination property is 475 

important as it is increasingly clear that cognitive functions such as working memory or 476 

attention are distributed in multiple cortical and sub-cortical regions (Chatham and 477 

Badre 2015; Halassa and Kastner 2017). In particular, prefrontal cortex has been 478 
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suggested as a hub that can reconfigure the cortical effective network based on task 479 

demands (Miller and Cohen 2001). Brain networks must therefore be able to effectively 480 

reconfigure themselves on a fast time-scale without loss of stability. We show how to 481 

achieve this automatically with contracting networks. Most attempts in modelling 482 

cognition, for instance working memory, tend to utilize single and often autonomous 483 

networks. Contracting networks display a combination of input-driven and autonomous 484 

dynamics, and thus have key features necessary for combining modules into flexible 485 

and distributed networks.   486 

To understand what mechanisms lead to contraction in neural circuits, we applied 487 

contraction analysis to RNNs. For RNNs with static weights, we found that the well- 488 

known Echo State Networks are a special case of a contracting network. Since realistic 489 

synapses are complex dynamical systems in their own right, we went one step further 490 

and asked when neural circuits with dynamic synapses would be contracting. We found 491 

that anti-Hebbian plasticity and synaptic sparsity both lead to contraction in a broad 492 

class of RNNs. Anti-Hebbian plasticity exists across many brain areas and species, 493 

such as salamander and rabbit retina (Hosoya, Baccus, and Meister 2005), rat 494 

hippocampus (Lisman 1989; Kullmann and Lamsa 2007), electric fish electrosensory 495 

lobe (Enikolopov, Abbott, and Sawtell 2018) and mouse prefrontal cortex (Ruan, Saur, 496 

and Yao 2014). These dynamics can give rise to sparse neural codes which decrease 497 

correlations between neural activity and increase overall stimulus representation in the 498 

network (Földiák 1990). Because of this on-line decorrelation property, anti-Hebbian 499 

plasticity has also been implicated in predictive coding (Hosoya, Baccus, and Meister 500 

2005; Enikolopov, Abbott, and Sawtell 2018). 501 
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For synaptic plasticity that is not necessarily anti-Hebbian, we showed (in section 3.2) 502 

that in general, synaptic sparsity pushes RNNs towards being contracting. This aligns 503 

well with the experimental observation that synaptic connectivity is typically extremely 504 

sparse in the brain. Our results suggest that sparsity may be one factor pushing the 505 

brain towards contractive behavior. It is therefore interesting that synapses are 506 

regulated by homeostatic processes where synapses neighboring an upregulated 507 

synapse are immediately downregulated (El-Boustani et al. 2018). On the same note, 508 

we also observed that balancing the connections between excitatory and inhibitory 509 

populations leads to contraction. Balance between excitatory and inhibitory inputs are 510 

often observed in biology (Mariño et al. 2005; Wehr and Zador 2003; Shu, Hasenstaub, 511 

and McCormick 2003), and could thus serve contractive stability purposes. Related 512 

computational work on spiking networks has suggested that balanced synaptic currents 513 

leads to fast response properties, efficient coding, increased robustness of function and 514 

can support complex dynamics related to movements (Denève and Machens 2016; 515 

Hennequin, Vogels, and Gerstner 2014; Lundqvist, Compte, and Lansner 2010; Brunel 516 

2000).  517 

We used the anti-Hebbian plasticity to build a working memory network where inputs 518 

were retained at a time-scale much longer than the contraction rate. The outcome of the 519 

plastic changes induced by a stimulus were frozen into the network and forced the 520 

network to converge towards a new trajectory unique to that input. As a result, activity 521 

was highly dynamic during input but stabilized exponentially and reached a stable 522 

plateau a few hundred millisecond later. Similar dynamics have been observed in 523 

spiking activity of recorded populations during working memory tasks in non-human 524 
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primates. In addition, individual units displayed rich dynamics with time-varying 525 

selectively, as also observed experimentally (Barak, Tsodyks, and Romo 2010; Warden 526 

and Miller 2010). Earlier computational studies have also suggested a role for synaptic 527 

plasticity in working memory (Sandberg, Tegnér, and Lansner 2003; Mongillo, Barak, 528 

and Tsodyks 2008; Lundqvist, Herman, and Lansner 2011, 2012; Fiebig and Lansner 529 

2017), but not within the framework of dynamic stability.  530 

The combination properties of these systems allowed us to combine the functionalities 531 

of local neural circuits in simple ways to solve various simulated cognitive tasks with 532 

essentially no fine-tuning.  In particular, we combined all the above properties to 533 

construct a modular network that solved a context-dependent sensory integration task. 534 

The network was noise tolerant and required no tuning, illustrating the ease with which 535 

one can build up complex functionalities from simpler ones using contracting networks.  536 

Further, we defined the neural operating point of a contracting RNN as the point around 537 

which all its trajectories are bounded. We found that by modulating the strength of 538 

connection between combined contracting systems or by the injection of tonic input into 539 

a contracting network one could shift this operating point. This enables separation of 540 

neural trajectories. Linear separation has been discussed as an important feature of 541 

higher cognition (Rigotti et al. 2013). There is recent experimental evidence suggesting 542 

that weight matrix modulation and tonic input modulation indeed exists and may be 543 

thalamic in origin (Rikhye, Gilra, & Halassa, 2018).  544 

We found that combining identical contracting RNNs hierarchically automatically 545 

produced a gradient of time-constants. Such gradient has been observed in cortex 546 

(Murray et al. 2014). Current models account for this phenomenon through a cortical 547 
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gradient in synaptic time-constants, in other words, by imposing the gradient. We found 548 

that increasing time constants automatically occurs when connecting contracting 549 

networks into a hierarchy.  This makes it broadly applicable and flexible with respect to 550 

biological detail. Furthermore, our analysis revealed that the timescales of neural 551 

computation to be regulated in a robust and stable way simply by changing the amount 552 

of inter-area top-down feedback. This opens the possibility that the integration to be 553 

controlled by cognitive processes such as attention. 554 

Experimental neuroscience is moving in the direction of studying many interacting 555 

neural circuits simultaneously. We therefore anticipate that the presented work can 556 

provide a useful foundation for how cognition in noisy and distributed computational 557 

networks can be understood.  558 
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