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 27 

Summary 28 

In dynamic environments, subjects often integrate multiple samples of a signal and combine them 29 

to reach a categorical judgment. The process of deliberation on the evidence can be described by 30 

a time-varying decision variable (DV), decoded from neural activity, that predicts a subject’s 31 

decision at the end of a trial. However, within trials, large moment-to-moment fluctuations of the 32 

DV are observed. The behavioral significance of these fluctuations and their role in the decision 33 

process remain unclear. Here we show that within-trial DV fluctuations decoded in real time from 34 

motor cortex are tightly linked to choice behavior, and that robust changes in DV sign have the 35 

statistical regularities expected from behavioral studies of changes-of-mind. Furthermore, we find 36 

single-trial evidence for absorbing decision bounds.  As the DV builds up, heavily favoring one or 37 

the other choice, moment-to-moment variability in the DV is reduced, and both neural DV and 38 

behavioral decisions become resistant to additional pulses of sensory evidence as predicted by 39 

diffusion-to-bound and attractor models of the decision process.   40 

 41 

 42 

 43 
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When making a categorical decision about a noisy stimulus, it is common to fluctuate between 44 

levels of commitment to a choice before reporting a decision. In some instances the fluctuations 45 

are sufficiently strong to lead to a “change of mind” (CoM) while deliberating1-6 or even while the 46 

reporting action is being executed7. Because these within-trial fluctuations are different from trial 47 

to trial and not necessarily tied to an external event or stimulus feature, they can only be captured 48 

using a moment-to-moment neural readout of the decision state on single trials.  49 

To obtain this readout, we decoded a decision variable (DV) from neural population activity in 50 

PMd and M1 in real time to continuously estimate the decision state while two monkeys performed 51 

a motion discrimination task8,9 (Fig. 1a, see Methods). The DV was estimated by applying a linear 52 

decoder, trained on data from a previous experimental session, to spiking data (from 96 to 192 53 

electrodes) from the preceding 50 ms, updated every 10 ms throughout each trial (Fig. 1b, see 54 

Methods). The sign of the DV indicated which choice was predicted by the decoder, which allowed 55 

us to calculate the decoder’s prediction accuracy. The DV magnitude reflected the confidence of 56 

the model’s prediction in units of log-odds for one vs. the other decision (see Methods). Note that 57 

the decision variable as defined here encompasses all choice predictive signals that can be decoded 58 

from neural activity10, including but not limited to moment-to-moment value of accumulated 59 

evidence as posited in classical sequential sampling models.   60 

We have previously demonstrated with offline analysis that this decision variable (DV) can predict 61 

choices on single trials up to seconds before initiation of the operant response, and that the 62 

accuracy of these predictions increases on average throughout the course of the trial10. 63 

Here, we employed closed-loop, neurally-contingent control over stimulus timing to directly probe 64 

the relationship of within-trial DV fluctuations to behaviorally meaningful decision states. For the 65 
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first time, we quantified the behavioral effects of previously covert DV variations (i) as a function 66 

of time and for different virtual DV boundaries imposed during the trial, (ii) when large, CoM-like 67 

fluctuations were detected during deliberation on noisy visual evidence, and (iii) when 68 

subthreshold stimulus pulses were added during the trial.  69 

Having a nearly instantaneous real-time estimate of the decision state read-out enabled us to 70 

terminate the visual stimulus based on the current value (or history) of the DV and validate the 71 

behavioral relevance of DV fluctuations using the monkey’s behavioral reports following stimulus 72 

termination.   73 

Decisions on perceived stimulus motion can be reliably decoded in real time based on 50 ms 74 

of PMd/M1 neural activity 75 

  76 

Two monkeys performed a variable duration variant of the classical random dot motion 77 

discrimination task using an arm movement as the operant response10. As expected, the subjects 78 

performed better for higher coherence and longer duration stimuli and reached almost perfect 79 

performance for the easiest stimuli (Extended Data Fig. 1). 80 

We first measured the accuracy of our real-time decoder in predicting the monkeys’ behavioral 81 

choices as a function of time during the trial. As in our previous offline results10, average prediction 82 

accuracy started at chance levels during the targets epoch (Fig. 1c, Extended Data Fig. 2a). During 83 

the dots presentation average prediction accuracy quickly departed from baseline (174.5 ms ± 18.8 84 

and 214.5 ms ± 8.09 ms after dots onset for monkey H and F, respectively), rising monotonically 85 

for the rest of the epoch. The rise in prediction accuracy was steep, reaching 99% (98%) correct 86 

for the longest stimuli presentations for monkey H (F), respectively.  Moreover, for all 4 epochs 87 
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considered (targets, dots, delay and post-go) the average accuracy difference between our real-88 

time readout and the equivalent one calculated offline (trained using data from the same session) 89 

was within a ± 2% range (Extended Data Fig. 3a-d). Thus, our real-time choice decoder reproduces 90 

prediction accuracy as reported in previous off-line analyses of decision-related neural activity in 91 

both the oculomotor and somatomotor systems1,10. 92 

Our real-time decoder also reproduced the temporal dynamics and coherence dependence of the 93 

DV, as reported in previous off-line studies1,10.  The on-line DV: (i) started around 0 at the time of 94 

dots onset, (ii) separated by choice after ∼200 ms, and (iii) rose (or fell) faster for easier trials (Fig. 95 

1d, Extended Data Fig. 2b; regression of DV onto coherence significant for both choices, p<10-5 96 

uncorrected). Prediction accuracy was higher for correct trials compared to error trials (Extended 97 

Data Fig. 4) when holding the stimulus coherence constant, as expected from previous studies11. 98 

Finally, our decoding method yielded stable performance across multiple days, justifying 99 

combination of data across sessions (Extended Data Fig. 5). This is particularly important when 100 

studying rare events such as CoMs, which only happen on a small fraction of the trials and could 101 

not be characterized adequately using a single session’s data.  102 

Real time DV closely predicts choice likelihood across experimental conditions 103 

The previous results are a proof of concept for a highly reliable, real-time readout of decision state 104 

in PMd/M1 using spiking data from ∼100-200 units and aggregate and average metrics (Fig. 1c-105 

d, Extended Data Fig. 2a-b). However, we often observed large fluctuations (over 3 natural log 106 

units) in the decision variable on individual trials, even within single behavioral epochs (Fig. 1e). 107 

If moment-to-moment fluctuations in DV during single trials (as estimated by our decoder) reflect 108 

true fluctuations in the decision state of the animal, we expect larger absolute values of DV to be 109 
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associated with stronger preference for one of the two choices, and hence higher prediction 110 

accuracy were a decision to be required at any time during a single trial.  111 

Because we decoded and tracked the DV in real-time, we were able to terminate the visual stimulus 112 

in a neurally contingent manner and probe both neural activity and the subject’s behavior with 113 

high precision and negligible latency (<34 ms, see Methods).  Inspired by sequential sampling 114 

behavioral models that assume a bound12-14, the first closed-loop test we performed was to impose 115 

virtual decision boundaries that, if reached, would result in stimulus termination (Fig. 2a), 116 

prompting the subject to immediately report its decision (in trials with no delay period).  In this 117 

manner we obtained a direct mapping between the nearly instantaneous readout of decision state 118 

and the likelihood of a given behavioral choice. 119 

Figure 2b shows 22 example DV traces from trials that led to stimulus termination by reaching a 120 

fixed DV boundary of magnitude 3, within a tolerance of ± 0.25 DV units.  121 

To characterize the relationship between the DV at termination and prediction accuracy, we 122 

systematically swept the parameter space for the boundary height using values spanning 0.5-5 DV 123 

units in 0.5 increments (1DV unit corresponds to an increase of 2.718 in the likelihood ratio of 124 

choosing one target over the other). Figure 2c shows that prediction accuracy increases 125 

monotonically with the DV magnitude at termination as expected. Moreover, using only 100 ms 126 

of data to estimate the DV that triggered termination, the difference between the observed 127 

likelihood of a given choice (solid trace) and that predicted by the logistic function (dashed trace) 128 

was only, on average, 1.7% (1.9%) for monkey H (F) (Fig. 2c, Extended Data Fig. 2c). For 129 

example, neural DV values of ±3 predict decisions upon termination with an accuracy of 98%.  130 

Even DV values as low as ±0.5-1 predict decisions with an accuracy of nearly 70%.  DV 131 
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fluctuations below ±0.5 are more susceptible to noise in our estimates of decision state and at most 132 

are associated with very weak choice preferences and were thus not tested.  Overall, these results 133 

show that moment-by-moment fluctuations in PMd/M1 neural population activity captured by our 134 

decoding model are indeed reflective of a fluctuating internal decision state of the animal—135 

fluctuations that have been covert and thus uninterpretable until now.   136 

Figure 2c (Extended Data Fig. 2c) combines trials across a wide range of coherences and stimulus 137 

durations, aggregated across 17 (15) sessions from monkey H (F). To identify experimental factors 138 

that might influence the observed relationship between DV at termination and prediction accuracy, 139 

we first resorted the same trials in Figure 3c by stimulus coherence. The results show that there is 140 

a small separation between the curves for high and low coherence trials (Fig. 2d) with higher 141 

accuracy for high coherence trials. The shift is small but reliable across monkeys (Extended Data 142 

Fig. 2d). We hypothesized that this difference resulted from motion energy signals already en route 143 

from the retina to PMd/M1 (~175 ms latency) when the DV reached stimulus termination. More 144 

motion energy signals would be arriving from this neural ‘pipeline’ on high coherence trials, 145 

leading to a slightly higher DV than we measured at stimulus termination.   146 

To assess this possibility, we measured the derivative of the DV around termination and performed 147 

the following two analyses. First we checked whether DV derivative explained a significant 148 

fraction of choice variance beyond DV value alone (see Methods). For both monkeys the effect of 149 

DV derivative (defined as the DV slope in the last 50 ms of stimulus presentation) was significant 150 

(p=0.02, p = 4.5x10-11 for monkey H and F, respectively) and the effect was congruent with our 151 

hypothesis: stronger positive derivatives predicted higher likelihood of rightward choices and 152 

stronger negative derivatives predicted higher likelihood of leftward choices (Extended Data Table 153 

1, “DV diff”). Second, we tested whether high coherence trials were associated with higher DV 154 
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derivatives at termination by performing linear regression of DV derivatives as a function of signed 155 

coherence.  For both monkeys signed coherence was strongly predictive of DV slopes: p = 2.17 156 

x10-171 and R2 = 0.23 for monkey H and p = 1.57 x10-105 and R2 = 0.16 for monkey F. These results 157 

confirm that DV derivative is predictive of choice beyond DV alone and show that higher 158 

coherence trials are associated with higher DV derivatives. The data are consistent with our 159 

hypothesis above that the DV continues to evolve under the influence of ‘pipeline’ sensory 160 

information for a short interval following stimulus termination, resulting in somewhat better 161 

prediction accuracy than expected from the DV at termination, especially at high coherences. 162 

Sorting trials by duration (Fig. 2e, Extended Data Fig. 2e), reveals a different effect: the centers of 163 

the quantiles are strongly shifted to the right (higher DV magnitudes) for longer stimuli compared 164 

to shorter stimuli. This effect is expected from multiple sequential sampling models8,15-17. In drift 165 

diffusion models, for example, diffusion to high decision bounds requires more time than for low 166 

bounds18. However, we tested whether stimulus duration per se was a significant predictor of 167 

choice independently of DV value by including two additional regressors in our logistic model of 168 

choice: stimulus duration (representing choice bias as a function of time) and an interaction term 169 

between stimulus duration and direction (representing increased sensitivity to stimulus coherence 170 

as function of time). Neither regressor was significant for either monkey (p>0.05, Extended Data 171 

Table 1), implying that the likelihood of making one or the other choice depended on DV value 172 

independently of the time required to reach that value.  173 

Together, these results show that fluctuations in DV magnitude at a 100 ms time scale have a 174 

predictable correlate in choice likelihood that is lawfully influenced by stimulus coherence and 175 

robust across time. We emphasize that our decoded DV is model-based and thus a proxy for the 176 

actual decision state in the brain. We are sampling from a relatively small number of neurons, and 177 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681783doi: bioRxiv preprint 

https://doi.org/10.1101/681783


9 
 

the underlying mechanism is unlikely to be strictly linear (in contrast to the logistic model). In 178 

addition, we do not know with certainty when the deliberation process ends within the brain, which 179 

could occur before or after our stimulus termination on individual trials. Despite these caveats, our 180 

ability to predict choice likelihood using a DV boundary criterion at stimulus termination within a 181 

very small margin of error (<2% on average) confirms that DV is a reliable proxy for decision 182 

state. 183 

Neurally detected CoMs can be validated and match the statistical regularities expected from 184 

previous studies 185 

The mapping between DV and choice likelihood obtained in the first experiment (Fig. 2c), enabled 186 

us to perform a new closed-loop experiment aimed at capturing particularly robust DV fluctuations 187 

in which the sign of the DV (and thus the neurally inferred decision state of the animal) changed 188 

in the middle of a trial, suggestive of a ‘change of mind’ at the behavioral level (CoM, Fig. 3a-b).  189 

When the neural criteria for a CoM were met in real-time (see Methods, examples in Figure 4a, 190 

orange and green arrows), the stimulus was terminated instructing the monkey to make a decision 191 

as described above.  Our aim was to detect neurally-based candidate CoMs, assess the influence 192 

of the decision states before and after the CoM on the final choice, and determine whether 193 

statistical properties of the neurally derived CoMs match the properties expected of CoMs from 194 

prior psychophysical and neurophysiological studies. 195 

We conceptually divide a CoM trial into two segments—the initial preference prior to the DV sign 196 

change, and the final (opposite) preference that leads to the observed choice. The observed choices 197 

allow corroboration of the neural estimate of the final decision state in the second segment 198 

(Extended Data Fig. 6). For monkey F, the relationship between choice prediction accuracy and 199 
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DV at stimulus termination for CoM trials was very similar to that of non-CoM trials (compare 200 

Extended Data Fig. 2c and Extended Data Fig. 6b, mean error between predicted and observed 201 

choice likelihood: 1.9% for non-CoM trials vs 3.8% for CoM trials).  This relationship was lawful 202 

and monotonic for monkey H as well although lower than expected (Extended Data Fig. 6a, 203 

compared to Fig. 2c, mean error between predicted and observed choice likelihood: 1.7% for non-204 

CoM trials vs 9.3% for CoM trials), suggesting that in addition to the measured DV at stimulus 205 

termination, monkey H’s decisions were also influenced by some aspect of the DV trajectory 206 

history specifically related to the CoM. We formally tested this hypothesis by regressing choice as 207 

a function of 3 additional parameters (in addition to DV at termination) that were enforced and 208 

monitored in this experiment (see Methods): maximum DV deflection before sign change and 209 

duration of sign stability before and after DV sign change. For monkey F, no additional factor was 210 

choice predictive, whereas for monkey H both the duration of sign stability before and after the 211 

CoM were also choice predictive (Extended Data Table 2) as suspected from Extended Data Fig. 212 

6.  213 

We combined all 985 (1727) CoM’s detected in monkey H (F) to assess whether our neurally 214 

detected CoMs conformed to three statistical regularities of CoMs established in previous 215 

psychophysical7 and electrophysiological1 studies. 216 

The first observation is that CoMs are more frequent for low and intermediate coherence trials as 217 

opposed to high coherence trials, as high coherences are more likely to lead to straightforward 218 

integration of evidence toward the correct choice. We found the same to be true in our real-time 219 

detection data (Fig. 3c, Extended Data Fig. 2f; linear regression p<0.001).  220 
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The second observation is that CoMs are more likely to be corrective than erroneous. This 221 

prediction results from the corrective role of additional visual evidence on the initial preference of 222 

the subjects. This trend was also verified in the CoMs we detected with CoMs for non-zero 223 

coherences and for both monkeys being more likely corrective than erroneous (Fig. 3d, Extended 224 

Data Fig. 2g; Wilcoxon rank sum test p<0.001, median corrective and erroneous CoM counts: 530 225 

and 242 for monkey H and 1046 and 443 for monkey F, respectively).  226 

 227 

Finally, the third observation made in these previous studies was that CoMs were more frequent 228 

early in the trial than later in the trial, consistent with drift diffusion models in which the DV is 229 

more likely to have hit an absorbing decision bound as the trial progresses. We observed this effect 230 

in our real-time, neurally detected CoMs as well (Fig. 3e, Extended Data Fig. 2h).  231 

We also discovered a new regularity associated with CoMs: the average time of zero crossing was 232 

negatively correlated with stimulus coherence (Fig. 3f, Extended Data Fig. 2i). This observation 233 

likely results from the stronger corrective effect of higher coherence stimuli (Fig. 3d, Extended 234 

Data Fig. 2g).  235 

Together, these results show that robust fluctuations in DV that imply a change in choice 236 

preference (zero crossing) can be captured in real time and validated as changes of mind.  237 

Pulses of additional visual motion evidence have smaller neural and behavioral effects when 238 

presented at larger DV values   239 

In a final set of closed-loop experiments whether the neural and behavioral responses to brief 240 

pulses of additional motion information varied with the state of the DV before the pulse. Inspired 241 

by decision-making models involving buildup of neural activity to a bound15,16,19,20, we expected 242 
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termination of the deliberation process and commitment to a choice to be more likely at high DV 243 

values1,7,8,16,21. We therefore hypothesized that additional pulses of sensory evidence would result 244 

in less change in DV and behavior when pulses were triggered by high DV values. 245 

 246 

To characterize the relationship between DV and responses to a stimulus pulse, we again imposed 247 

virtual DV boundaries (as in Fig. 3a-b) that, if reached, triggered a 200-ms pulse of additive dots 248 

coherence (randomly assigned to be rightward or leftward on each trial) followed by stimulus 249 

termination (Fig. 4a). We swept a subset of the previously used DV values for the boundary 250 

(spanning 1-4 DV units, in 1.0 increments). Pulse strength was calibrated to yield very small but 251 

significant effects on behavior, in an effort to avoid making the pulses so salient as to change the 252 

animals’ integration strategy on pulse trials (∆coherence = 2% for monkey H, 4.5% for monkey 253 

F). Pulse information had no bearing on the reward8,17. Motion pulses slightly but significantly 254 

biased the monkeys’ choices in the direction of the pulse (p = 8.38E-14 for monkey H, Fig. 4b; p 255 

= 1.95E-4 for monkey F, Extended Data Fig. 2j). 256 

 257 

We reasoned that, to detect the presumably small effects of these small motion pulses on the DV, 258 

we would need to account for a processing delay for changing stimulus information to influence 259 

our recorded neural populations. Thus, to quantify the effect of the pulse on the evolving DV, we 260 

first measured the minimum latency for visual stimulus information to influence the DV: we 261 

calculated the time after stimulus onset at which the DV traces diverged for rightward vs. leftward 262 

choices in an independent set of open loop trials at the strongest motion coherence. We refer to 263 

this time point as the evidence representation latency (ERL). For each trial, we measured the 264 

change in DV (∆DV) for each time bin, beginning at the time of pulse onset plus the ERL (or 265 
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PERL—see Methods). We found that, on average, motion pulses slightly but significantly biased 266 

∆DV in the direction of the pulse (Fig. 4c, Extended Data Fig. 2k).  267 

 268 

In the case of simple, unbounded linear integration, we expect the magnitude of DV change in 269 

response to a fixed motion pulse to remain constant regardless of the triggering DV at pulse onset. 270 

In contrast, Fig. 4d (Extended Data Fig. 2l) shows that motion pulses led to larger DV changes 271 

when triggered by low as compared to high DV values. 272 

 273 

Previous studies have shown that behavioral and LIP neural responses to similar motion pulses 274 

tend to be smaller when pulses are delivered later in the stimulus8,17. Large DV values tend to 275 

occur later in the trial, and this was hypothesized to be the underlying reason for the diminishing 276 

pulse effects (assuming some sort of bound on integration of evidence at larger DVs); but these 277 

studies lacked concurrent neural population recording and decoding and thus did not have access 278 

to the momentary decision state. Thus, the time of pulse onset is a possible confound for the 279 

decreasing pulse effects at high DV bound values as depicted in Fig 4d. To control for this 280 

possibility, we first used the slope of the ∆DV vs. time relationship measured on individual trials 281 

(∆DV slope) to summarize the effect of the stimulus pulse on DV on single trials. We then 282 

performed a multiple regression analysis of ∆DV slope that included both the triggering DV value 283 

and the time of the motion pulse as regressors (and other variables as well - see Methods). The 284 

regression data confirm that the effect of stimulus pulses on DV is only significant when triggered 285 

by lower DV values, and that this effect is not explained by pulse timing (Fig. 4e, Extended Data 286 

Fig. 2m, Supplementary Information Table 1). Similarly, the effect of motion pulses on 287 

psychophysical behavior is weaker when triggered by high DV values, and these effects also are 288 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681783doi: bioRxiv preprint 

https://doi.org/10.1101/681783


14 
 

not explained by pulse timing (Fig. 4f, Extended Data Fig. 2n, Supplementary Information Table 289 

2).  290 

 291 

Our finding that larger DVs (and corresponding behavioral readouts) are more resistant to pulses 292 

is consistent with several models of decision formation, including linear integration to a decision 293 

bound (such as a simple stopping criterion12) or a more complex nonlinear integration 294 

process17,22,23. Inspired by these results, we returned to the data from the first two experiments in 295 

an attempt to explore the nature of the apparent bounding mechanism by analyzing the time-296 

variance of the DV over the course of individual trials. In the case of an absorbing decision bound 297 

or attractor network, we would expect DV variability (measured as the DV time derivative) to 298 

decrease after reaching the bound. We indeed found that, on average, DV variability decreases 299 

over time within single trials (Fig. 5a, Extended Data Fig. 7a). This effect holds across all stimulus 300 

strengths, although variability peaks earlier and falls faster on the easiest trials (Fig. 5b, Extended 301 

Data Fig. 7b). 302 

 303 

Discussion 304 

While previous single-electrode recordings have strongly advanced our understanding of the 305 

neural correlates of perceptual decision-making, interesting dynamics in choice signals were lost 306 

to necessity of averaging data across trials. With a few notable exceptions3,24, deploying the 307 

statistical power of simultaneous multi-electrode recordings to track single-trial population 308 

dynamics during choice behavior is a recent advance1,2,6. Even more recent work has leveraged the 309 

power of brain-computer interfaces (BCIs) to study neural correlates of prediction, learning, and 310 

multisensory integration (as reviewed in Golub et al. 201625). In this study, for the first time, we 311 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681783doi: bioRxiv preprint 

https://doi.org/10.1101/681783


15 
 

probed moment-to-moment fluctuations in decision states using BCI-inspired closed loop 312 

experiments that enabled neurally contingent stimulus control and made behavioral validation of 313 

these fluctuations feasible (see Methods). We show that large fluctuations (up to several log units) 314 

in a decoded decision variable in premotor and primary motor cortices are nearly instantaneously 315 

(<100 ms) predictive of choice. We captured neural correlates of changes of mind in the form of 316 

robust changes in DV sign. The statistical regularities of these rare events match previous 317 

psychophysical CoM findings. Finally, we showed that larger DV values are resistant to additional 318 

pulses of sensory evidence, supporting the hypothesis that large DVs are associated with higher 319 

commitment to an upcoming choice. 320 

 321 

Importantly, the impressive choice prediction accuracy achieved in this study using a linear 322 

decoder does not imply that the brain’s decision formation process is also linear. In principle, such 323 

a decoder could predict binary choices quite well even if the true neural process underlying 324 

decision formation were nonlinear, depending on the form of the nonlinearity (see, e.g., Sussillo 325 

et al. 201626 for an example of a linear neural to kinematic decoder which only slightly 326 

underperforms a more powerful nonlinear recurrent neural network). However, our linear DV is 327 

tightly linked to choice behavior (e.g. Fig. 2c), showing that variations in DV magnitude 328 

meaningfully track the ongoing process of decision formation despite the possible presence of 329 

nonlinearities in the underlying neural mechanism. 330 

 331 

Previous studies have described fluctuations in offline decoded decisions associated with changes 332 

of mind1-3,6.  Here we confirm and extend those observations with neurally contingent interrogation 333 

of candidate CoM events, but we also find large, behaviorally relevant fluctuations even when the 334 
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DV remains on one side of the discriminant hyperplane in non-CoM trials (e.g. Figs. 1e and 2b).  335 

We wondered whether these DV fluctuations were related to stochastic variations in motion 336 

strength of the stimulus on single trials. While across coherence levels the average motion energy 337 

explains a large portion of DV variance (Extended Data Fig. 8a-b), our data shows that within 338 

coherence stochastic fluctuations in the stimulus are not the dominant cause of DV fluctuations 339 

(Extended Data Fig. 8c-d). Further experiments will be needed to address the source(s) of these 340 

fluctuations and their relationship with fluctuations in other brain areas27 as well as other cognitive 341 

processes including motor preparation and execution28,29, attention, motivation, and confidence. 342 

 343 

In addition to validating the behavioral relevance of neurally detected DV fluctuations, our ability 344 

to impose real-time task changes contingent upon them allowed us to show that neural and 345 

behavioral responses to pulses of additional sensory evidence diminish when pulses are presented 346 

at larger momentary DV values. These results, combined with the reduction in DV variability 347 

observed over the course of single trials, suggest the presence of an absorbing decision bound in 348 

these motor cortical neural populations, consistent with attractor dynamics in which the neural 349 

population converges on a stable state as a decision is formed22,23. 350 

 351 

The conceptual and technical innovation that enabled these findings is our ability to accurately 352 

decode decision states in real time, which could bring the concept of cognitive prostheses30-33 much 353 

closer to reality by providing another means of decoding subjects’ goals for use as a flexible 354 

prosthetic control signal. More broadly, the real-time closed loop approach demonstrated here may 355 

be applicable not only to decision-making processes, but also to other cognitive phenomena such 356 

as working memory and attention. 357 
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Figure 1. Setup and performance of real-time readout of decision states during a motion 359 

discrimination task. 360 

  361 

a) Motion discrimination task. Trials began with the onset of a fixation point (FP) on the 362 

touchscreen. Once both eye and hand fixation were acquired, two targets appeared on the screen. 363 

The motion stimulus was shown after a short delay (500 ms) and lasted 500-1200 ms for the open-364 

loop trials. On 70% of the trials the dots offset was followed by the go cue (no delay period), while 365 

on the remaining 30% the subject was required to withhold a response for a random delay duration 366 

(400-900 ms). Decision states were continuously decoded during all epochs of the trial. Three 367 

different decoders were used during different trial epochs, shown by the different colored boxes 368 

(blue, yellow and purple; see Methods). 369 

b) Real-time, closed-loop setup. Neural activity from 96-channel Utah Arrays was continuously 370 

recorded and processed while monkeys performed the motion discrimination task. For monkey H, 371 

two Utah arrays implanted in PMd and M1 were used. For monkey F only one Utah array 372 

implanted in PMd was utilized. During data collection, the recorded neural activity was binned, 373 

summed, z-scored and projected onto a single dimension: a linear choice decoder. The result of 374 

this operation was our real time read out of commitment, which could be used to stop the stimulus 375 

presentation in a neurally contingent manner (red arrow), thereby closing the loop in the 376 

experiment. 377 

c) Choice prediction accuracy obtained from real-time, open-loop readout. Average 378 

prediction accuracy (see Methods) over time ± SEM for monkey H is plotted in purple. Prediction 379 

accuracy is calculated for each time point aligned to four different events in the trial (targets onset, 380 

dots onset, dots offset and go cue) using the real-time DV and quantified as the fraction of trials in 381 
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which the classifier correctly predicted the monkey’s upcoming choice. For logistic regression this 382 

operation is equivalent to comparing the DV sign to the choice sign. Accuracy was calculated for 383 

each session and averaged across sessions using a total of 16468 trials for monkey H.   384 

d) Average Decision Variable traces during dots period. Top panel: Average DV during the 385 

dots epoch for right (red) and left (blue) choices for monkey H. Bottom panel: Average DV sorted 386 

by choice and stimulus coherence (correct trials only) for monkey H. Darker shades correspond to 387 

higher stimulus coherence. Red and blue dots indicate timepoints for which coherence was 388 

significant regressor of DV for T1 and T2 choices respectively (correct trials only, p<10-5 389 

uncorrected). For monkey H coherence is a significant regressor of DV for at least one of the 390 

choices for the period between [190, 870] ms aligned to dots onset. 391 

e) Example DV traces captured during open loop trials. DV traces for two trials are plotted as 392 

a function of time aligned to four different events: targets onset, dots onset, dots offset and go cue. 393 

The trial in red led to a right choice whereas the trial in blue led to a left choice. Despite the stability 394 

in DV sign for these two trials from ~250 ms after dots onset until the end of the trial, strong 395 

fluctuations in DV magnitude were observed in both cases, within and across epochs.    396 
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 397 

 398 

Figure 2. Choice likelihood can be accurately decoded in real-time across experimental 399 

conditions using only 50 ms of neural data. 400 

  401 

a) Schematic of the first closed loop experiment implemented in real time. Virtual boundaries 402 

for DV magnitude (green shaded regions) were imposed and if reached, triggered the termination 403 

of the stimulus presentation. The subject was then immediately asked to report its decision. A 250 404 

ms minimum stimulus duration was imposed (grey shaded region) to prevent random fluctuations 405 

in the beginning of the trial from triggering stimulus termination. If the boundary wasn’t reached, 406 

the stimulus was presented for a pre-selected random duration (500-1200 ms). Grey traces show 407 

cartoons of trials for which the boundary was not reached while red (blue) traces show terminated 408 
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trials that the decoder predicted would result in a right (left) choice. 5 different boundary values 409 

were used on each experiment. 410 

b) Example trials captured during the virtual boundary experiment. Real-time DV time 411 

courses for example trials terminated using boundaries set at +3 and −3 DV units. Traces are 412 

colored according to behavioral choice at the end of the trial: right choices in red and left choices 413 

in blue. Data from one session from monkey H. 414 

c) Prediction accuracy as a function of DV magnitude. Choice prediction accuracy for all trials 415 

collected during virtual boundary experiment as a function of DV magnitude for monkey H is 416 

shown in blue. Trials were split in 6 quantiles sorted by DV magnitude at termination. Prediction 417 

accuracy and median DV magnitude were calculated and plotted separately for each quantile (blue 418 

line with black symbols). Blue error bars show standard error of the mean for a binomial 419 

distribution. Dashed black line shows predicted accuracy from log-odds equation and red dashed 420 

line shows chance level. Data from 2973 trials from monkey H.  421 

d) Prediction accuracy as a function of DV and stimulus coherence. Same data shown in c) but 422 

having pre-sorted the trials by coherence (see Methods). Dark green trace shows high coherence 423 

results and light green, low coherence results. Same conventions as in c). 424 

e) Prediction accuracy as a function of DV and stimulus duration. Same data shown in c) but 425 

having pre-sorted the trials by stimulus duration. Brown trace shows results for long trials and 426 

orange trace results for short trials (see Methods). Same conventions as in c). 427 

 428 
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 429 

 430 

Figure 3 Putative changes of mind can be detected and validated in real time. 431 

  432 

a) Schematic of the second closed loop experiment implemented in real time. The value and 433 

history of the DV trace were tracked on each trial. If a 0 crossing (sign change in the DV) was 434 

detected, the conditions required for termination were checked and termination was carried out if 435 

the conditions were met (see Methods). In this example the conditions for temporal stability of DV 436 

sign are depicted by the green horizontal arrows while the conditions for minimum DV deflection 437 

before and after CoM are depicted by the orange arrows. Upon termination, the subject was 438 

immediately asked to report its decision. A 250 ms minimum stimulus duration was imposed (grey 439 

shaded region) such that random fluctuations in the beginning of the trial did not trigger stimulus 440 
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termination. If the conditions were not met or if a 0 crossing was never detected, the stimulus 441 

would be presented for a pre-selected random duration (500-1200 ms). Grey traces show cartoons 442 

of trials for which the 0 crossings would not meet the criteria while the red the trace shows a 443 

terminated trial that was predicted to lead to a rightward choice. One set of criteria for CoM validity 444 

was used in each session (Extended Data. Table 4). 445 

b) Example trials captured during the CoM experiment. Real-time DV time courses for 2 446 

example trials with a putative CoM terminated after conditions were met (minimum DV pre and 447 

post CoM: 2 and minimum period of sign stability pre and post CoM: 150 ms). Traces are colored 448 

according to behavioral choice at the end of the trial: right choices in red and left choices in blue. 449 

Two trials from one session from monkey H. 450 

c) CoM frequency as a function of coherence. Total number of CoMs detected for each 451 

coherence for monkey H. 452 

d) CoM frequency as a function of coherence and direction. Total number of CoMs detected 453 

for each coherence and direction for monkey H. Red bars correspond to erroneous CoMs and green 454 

bars to corrective CoMs. 455 

e) CoM frequency as a function of time in the trial. Frequency of CoMs detected as a function 456 

of time during stimulus presentation for monkey H. Because only CoMs that would have resolved 457 

by 250 msec after stimulus onset were considered, there is an edge effect with CoM frequency 458 

briefly increasing between ∼250-450 msec after which it declines. 459 

f) CoM time as a function of coherence. Average CoM time (defined as the zero crossing for 460 

each CoM trial) is plotted as a function of stimulus coherence. Error bars show s.e.m across trials 461 

for each condition. CoM time was negatively correlated with stimulus coherence (p =1.8 x 10-17)  462 

 463 
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 465 

Figure 4. Neurally triggered pulses of motion evidence nonlinearly bias both choice behavior 466 

and DV. 467 

 468 

a) Motion pulse task. As in the motion discrimination task, trials began with the onset of a fixation 469 

point (FP) on the touchscreen. Once both eye and hand fixation were acquired, two targets 470 

appeared. The motion stimulus was shown after a short delay (500 ms) and a maximum stimulus 471 

duration was randomly assigned from 500-1200 ms. Virtual boundaries for DV magnitude were 472 

imposed (randomly assigned to integer values from 1-4) and if reached, triggered a 200-ms pulse 473 

of additive dots coherence, randomly assigned to be rightward or leftward on each trial (± 2% 474 

coherence for monkey H), followed immediately by termination of the dots stimulus. A 50 ms 475 

minimum stimulus duration was imposed to ensure a minimum total stimulus duration of 250 ms. 476 

If the DV boundary wasn’t reached, the dots stimulus was presented for a pre-selected random 477 

duration (500-1200 ms). Dots offset was followed by the go cue. Decision states were continuously 478 

decoded using the dots period decoder during all epochs of the trial (blue box, see Methods).  479 

b) Psychometric functions for pulse trials. Curves were fit using logistic regression on choice 480 

with signed stimulus coherence and pulse direction as predictors, plus an intercept term. Data 481 

points show mean proportion of rightward choices for each stimulus coherence, ± s.e.m. The pulse 482 

effect is equivalent to changing the overall stimulus coherence by 0.384% (standard error 483 

0.0514%, p = 8.38E-14). Data from 9614 rightward and 9523 leftward pulse trials from monkey 484 

H. 485 

c) Average change in post-pulse DV from estimated Pulse Evidence Representation Latency 486 

(PERL), mean subtracted. ∆DV is the difference in the DV at each time point from the DV at 487 
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the PERL (170 ms for monkey H; see Methods). The mean ∆DV across pulse directions in each 488 

time bin has been subtracted for visualization. Shaded error bars correspond to mean ± s.e.m. Black 489 

dots indicate time bins in which ∆DV is significantly different for trials with pulses in opposite 490 

directions (false discovery rate 0.05). Data from same trials as b). 491 

d) Average change in post-pulse DV for each DV boundary, mean subtracted. Conventions 492 

as in b) but separated by the DV boundary triggering motion pulses in each direction. Darker colors 493 

correspond to smaller DV boundary magnitudes. Data from monkey H, minimum 1507 trials per 494 

condition shown. 495 

e) Pulse coefficients from linear regression on ∆DV slope for each DV boundary. ∆DV slope 496 

is the single-trial slope of the ∆DV from PERL to either the animal’s median go-reaction time or 497 

150 ms prior to movement onset, whichever came first (as shown in b)). Multiple linear regression 498 

was performed separately on ∆DV slope for trials at each DV boundary with the following 499 

predictors: signed dots coherence, pulse onset time, pulse direction, pulse onset time * pulse 500 

direction, plus an intercept term. Data points and error bars represent the coefficient for pulse 501 

direction for trials at each DV boundary, ± s.e.m.; asterisks denote significantly nonzero 502 

coefficients at 95% confidence. Data from same trials as d). 503 

f) Pulse coefficients from logistic regression on choice for each DV boundary. Logistic 504 

regression was performed separately on the probability of a rightward choice for trials at each DV 505 

boundary with the following predictors: signed dots coherence, pulse onset time, pulse direction, 506 

pulse onset time * pulse direction, plus an intercept term. Data points and error bars represent the 507 

coefficient for pulse direction for trials at each DV boundary, ± s.e.m.; asterisks denote 508 

significantly nonzero coefficients at 95% confidence. Data from same trials as d). 509 

 510 
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 511 

 512 

Figure 5. Within trial DV variability decreases over time for long duration stimuli. 513 

 514 

a) Average DV derivative as a function of time and choice - monkey H. DDV was calculated 515 

for each trial as the difference between consecutive DV estimates spaced out by 10 ms. Traces 516 

show average DDV +/- s.e.m for right choices (red trace) and left choices (blue trace) during 517 

stimulus presentation. DDV initially starts increasing around the expected stimulus latency (170 518 

ms) but progressively decreases for long (>600 ms) stimulus presentations. 519 

b) Average DV derivative as a function of time and signed coherence - monkey H. Same data 520 

as in a) but with DV derivative averaged separately for each choice and motion coherence level 521 

(correct trials only). Right choices are plotted in red and left choices in blue as in a). Darker traces 522 

correspond to stronger coherences.   523 

 524 

 525 

 526 
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Extended Data 527 

 528 
Logistic Regression on Choice  

 Monkey H Monkey F 

Predictor 
Beta 
Value 

95% CI p-value Beta 
Value 

95% CI p-value 

Bias 
-0.1613 [-0.2987 , -

0.02381] 
0.02147 -0.1197 [-0.2413 , 

0.001806] 
0.0535  

Coherence 2.747 [ 2.268 
,  3.227] 

2.757e-29 1.885 [  1.55 
,   2.22] 

2.912e-28  

DV Termination 2.073 [ 1.779 
,  2.367] 

1.887e-43 1.708 [  1.52 
,  1.895] 

1.626e-71  

DV Diff 
 

0.2989 [0.0488 , 
0.5491] 

0.01916 0.577 [0.4062 , 
0.7478] 

3.586e-11  

Stimulus duration 0.1199 [-0.01489 , 
0.2548] 

0.08125 0.07474 [-0.04713 , 
0.1966] 

0.2293  

Stimulus 
duration* 
Stimulus direction 

-0.02803 [-0.2053 , 
0.1492] 

0.7566 0.0466 [-0.1132 , 
0.2064] 

0.5677  

 529 
Extended Data Table 1 – Coefficients obtained from logistic regression on choice – virtual 530 

boundary experiment (monkeys H and F) 531 

 532 
Logistic Regression on Choice after CoM 

 Monkey H Monkey F 

Predictor 
Beta 
Value 

95% CI p-value Beta 
Value 

95% CI p-value 

Bias 

-0.2876 
 

[-0.4658 , -
0.1093] 

 

0.001568 
 

-0.192 
 

[-0.3773 , -
0.00662]  

 

0.04235 
 

Coherence 1.304 
 

[ 1.005 
,  1.602]  

 

1.189e-17 
 

1.284 
 

[  0.96 
,  1.608] 

 

8.028e-15 
 

DV Termination 1.67 
 

[ 1.158 
,  2.182] 

 

1.623e-10 
 

2.46 
 

[ 1.872 
,  3.049]  

 

2.51e-16 
 

DV max opposite 
 

0.06967 
 

[-0.4461 , 
0.5854] 

 

0.7912 
 

-0.2387 
 

[-0.8959 , 
0.4185] 

 

0.4766 
 

Time after CoM * 
sign(DV 
Termination) 

0.7065 
 

[0.2317 
,  1.181] 

 

0.003544 
 

0.02265  
 

[-0.3835 , 
0.4288] 

 

0.913 
 

Time before CoM 
* sign(DV max 
opposite) 

0.7471 
 

[0.3083 
,  1.186] 

 

0.0008467 
 

-0.1427 
 

[-0.6394 , 
0.3539] 

 

0.5732 
 

 533 
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Extended Data Table 2– Coefficients obtained from logistic regression on choice - change of 534 

mind experiment (monkeys H and F) 535 

 536 
 537 
	538 
 539 

 540 
 541 
Extended Data Figure 1 - Behavioral performance - Variable duration task. 542 

  543 

a) Psychophysical performance for monkey H in the variable duration task. Percentage 544 

correct is plotted as a function of net motion coherence (calculated for both directions). Trials were 545 

sorted for stimulus duration in 4 quartiles from long (dark green curve) to short (light green curve). 546 

Data from each quartile were fit separately by a Weibull curve. Inset shows fit parameters for each 547 

quartile. Data from 12516 open loop trials. Stimulus duration quartiles: Q1: [0.500 , 0.574] s Q2: 548 

[0.574 , 0.680] s Q3[0.680 , 0.827] s  Q4: [0.827, 1.200] s. 549 

b) Psychophysical performance for monkey F in the variable duration task. Same as a) for 550 

monkey F. Data from 12365 open loop trials. Stimulus duration quartiles: Q1: [0.500 , 0.574] s 551 

Q2: [0.574 , 0.667] s Q3[0.667 , 0.813] s  Q4: [0. 813, 1.200] s.  552 

 553 
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 555 

Extended Data Figure 2 - Results for decoding and perturbation of DV in real time - monkey 556 

F 557 

  558 

a) Choice prediction accuracy obtained from real-time readout. Same as Figure 1c for monkey 559 

F. Accuracy was calculated for each session and averaged across sessions using a total of 15826 560 

trials. 561 

b) Average Decision Variable traces during dots period.  Same as Figure 1d for monkey F. For 562 

monkey F coherence is a significant regressor of DV for at least one of the choices for the period 563 

between [230, 970] ms aligned to dots onset. 564 

c) Prediction accuracy as a function of DV magnitude. Same as Figure 2c for monkey F. Data 565 

from 2518 trials from monkey F. 566 

d) Prediction accuracy as a function of DV and stimulus coherence. Same data shown in c but 567 

having pre-sorted the trials by coherence (see Methods). Dark green trace shows high coherence 568 

results and light green, low coherence results. Same conventions as in c. 569 

e) Prediction accuracy as a function of DV and stimulus duration. Same data shown in c) but 570 

having pre-sorted the trials by stimulus duration. Brown trace shows results for long trials and 571 

orange trace results for short trials (see Methods). Same conventions as in c). 572 

f) CoM frequency as a function of coherence. Same as Figure 3c for monkey F. 573 

g) CoM frequency as a function of coherence and direction. Same as Figure 3d for monkey F. 574 

h) CoM frequency as a function of time in the trial. Same as Figure 3e for monkey F. 575 

i) CoM time as a function of coherence. Same as Figure 3f for monkey F. CoM time was 576 

negatively correlated with stimulus coherence (p =3.0x 10-30) 577 
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j) Psychometric functions for pulse trials. Same as Figure 4b for monkey F. The pulse effect is 578 

equivalent to changing the overall stimulus coherence by 0.545% (standard error 0.146%, p = 579 

1.95E-4). Data from 10370 rightward and 9967 leftward pulse trials. 580 

k) Average change in post-pulse DV from estimated Pulse Evidence Representation Latency 581 

(PERL), mean subtracted.  Same as Figure 4c for monkey F. PERL = 180 ms. Data from same 582 

trials as j). 583 

l) Average change in post-pulse DV for each DV boundary, mean subtracted. Same as Figure 584 

4d for monkey F. Minimum 1731 trials per condition shown. 585 

m) Pulse coefficients from linear regression on ∆DV slope for each DV boundary. Same as 586 

Figure 4e for monkey F. 587 

n) Pulse coefficients from logistic regression on choice for each DV boundary. Same as Figure 588 

4f for monkey F. 589 

 590 
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Extended Data Figure 3 - Prediction accuracy online, offline and as a function of stimulus 592 

coherence. 593 

 594 

a) Online and Offline classifiers result in similar performance for targets, dots delay and 595 

post-go epochs for monkey H. Average prediction accuracy (see Methods) over time ± SEM 596 

(across sessions) for monkey H.  Online / offline classifier results are plotted in black / red. Data 597 

in black is re-plotted from Figure 2a. Prediction accuracy is very similar online and offline across 598 

the trial (see c)).   599 

b) Online and Offline classifiers result in similar performance for targets, dots delay and 600 

post-go epochs for monkey F. Same as a but for monkey F. Same conventions apply. 601 

c) Summary of performance difference between online and offline classifiers within each 602 

epoch for monkey H. Average performance difference between online and offline classifiers 603 

(accuracy difference in percentage correct) for each of the epochs plotted in a). Positive number 604 

numbers correspond to better online classifier performance and negative numbers to better offline 605 

classifier performance. Black asterisks correspond to windows for which the differences were 606 

significantly larger than zero (Wilcoxon signed-rank test, P<0.001). 607 

d) Summary of performance difference between online and offline classifiers within each 608 

epoch for monkey F. Same as c) for monkey F.  For both monkeys c) and d) the difference of 609 

choice prediction accuracies between the online and the offline classifiers was small and negative 610 

for the target, dots and delay epochs (between -0.2% and -1.9%).  In contrast, for the post-go 611 

period, the difference in prediction accuracies was slightly positive (1.5% and 1.7% for monkey 612 

H and F respectively). 613 

 614 
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Extended Data Figure 4 – Choice prediction accuracy for correct and incorrect trials as a 616 

function of coherence. 617 

  618 

Choice prediction accuracy obtained from real-time readout for correct and incorrect trials for each 619 

level of coherence. Prediction accuracy during dots epoch for each coherence level is plotted for 620 

correct (black) and error (magenta) trials. Red dashed line corresponds to chance level. Insets show 621 

total number of Correct (C) and Error (E) trials used in the analysis. Data for monkey H and F are 622 

shown in top and bottom panels, respectively. Mean prediction accuracy for error trials after neural 623 

latency (180 ms after stimulus presentation) is outside (and lower than) the 95% CI for correct 624 

trials for 1.6%, 3.2%, 6.4%, 12.8% and 25.6% coherences for monkey H and for 12.8%, 25.6% 625 

and 51.2% coherences for monkey F - 1000 bootstrap iterations. Results for the highest coherence 626 

for each monkey should be interpreted carefully due to the extremely low number of error trials 627 

for these conditions resulting from excellent behavioral performance. 628 

 629 
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 630 

Extended Data Figure 5 – Real time decoding: performance reliability and decoder weights. 631 

  632 

a) Decoding performance is stable across sessions. Average prediction accuracy during the 633 

second half of the stimulus presentation (600-1200 ms) across all sessions for monkey H (top 634 

panels) and monkey F (bottom panels). D1-D23 denote different decoders (sets of beta weights) 635 

used for the recorded sessions. For monkey H the same decoder (D1) was used for the first 14 636 

sessions. The breaks on the x-axis correspond to sessions that occurred on non-consecutive days.  637 
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b) Real time decoder beta weights. Beta weights during the dots period (left panel) ranked by 638 

absolute magnitude for an example decoder used in real time experiments. Channels with no or 639 

little choice predictive activity during this period had their weights set to zero by using LASSO 640 

regularization to prevent over fitting. Delay period and Post go cue Beta weights are shown in the 641 

middle and right panels respectively. 642 

 643 

 644 

 645 

Extended Data Figure 6 – Prediction accuracy as a function of DV for CoM trials.  646 

 647 

a) Choice prediction accuracy for all trials collected during the CoM detection experiment - 648 

monkey H. Trials were split in 6 quantiles sorted by DV magnitude at termination. Prediction 649 

accuracy and median DV magnitude was calculated and plotted separately for each quantile (blue 650 

line with black markers). Blue error bars show standard error of the mean for a binomial 651 

distribution. Dashed black line shows predicted accuracy from log-odds equation and red dashed 652 

line shows chance level. Data from 985 CoM trials from monkey H.  653 
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b) Choice prediction accuracy for all trials collected during the CoM detection experiment - 654 

monkey F. Same as a) for monkey F using 1727 CoM trials. 655 

 656 

 657 

Extended Data Figure 7 – Within trial variability as a function of time, choice and stimulus 658 

coherence. 659 

 660 

a) Average DV derivative as a function of time and choice - monkey F. DV derivative was 661 

calculated for each trial as the difference between consecutive DV estimates spaced out by 10 ms. 662 

Traces show average DV derivative +/- s.e.m for right choices (red trace) and left choices (blue 663 

trace). 664 

b) Average DV derivative as a function of time and signed coherence - monkey F. Same data 665 

as in a) but with DV derivative averaged separately for each choice and motion coherence level 666 

(correct trials only). Right choices are plotted in red and left choices in blue as in a). Darker traces 667 

correspond to stronger coherences.   668 

 669 
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 670 
Extended Data Figure 8 – Correlation analysis between DV and stimulus motion energy. 671 

 672 

a) Correlation between stimulus motion energy and decision variable - monkey H. Proportion 673 

of variance explained when regressing decision variable as a function of signed stimulus coherence 674 

(grey trace) or motion energy (green traces). Each green trace corresponds to a separate regression 675 

between DV and average motion energy between a timepoint in the past (from -200 ms up to -500 676 

ms) and -180 ms (the estimated neural response delay). Darker traces correspond to regressions in 677 

which the motion energy was averaged for a longer time window. Across all coherence levels 678 

motion energy and signed coherence explain a large fraction of DV variance. 679 

b Correlation between stimulus motion energy and decision variable - monkey F. Same as a) 680 

for monkey F.  681 
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c) Correlation between stimulus motion energy and decision variable within each level of 682 

signed coherence level - monkey H. Proportion of variance explained when regressing DV for 683 

each time point and within each level of signed coherence as a function of the motion energy 684 

preceding it by 180 ms (the estimated neural response delay). Within each level of signed 685 

coherence, the DV fluctuations are not predicted by the motion energy traces  686 

d) Correlation between stimulus motion energy and decision variable within each level of 687 

signed coherence level - monkey F. Same as c) for monkey F.  688 

 689 

Methods  690 

 691 

Subjects 692 

  693 

Our experiments were performed on two adult male macaque monkeys (Macaca mulatta) trained 694 

to perform a direction discrimination task with reaching movements of the arm as operant 695 

responses. These were the same subjects used in our previous study10, but with new experiments.  696 

All training, surgery, and recording procedures conformed to the National Institutes of Health 697 

Guide for the Care and Use of Laboratory Animals and were approved by Stanford University 698 

Animal Care and Use Committee. 699 

  700 

Apparatus 701 

 702 

Monkeys sat in a custom-made primate chair (Stanford Machine Shop) in front of a video 703 

touchscreen, with their heads restrained using a surgical implant. The front plate of the chair could 704 
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be opened, allowing the subjects to reach the touchscreen with the arm contralateral to the 705 

implanted hemisphere. The ispsilateral arm was gently restrained using a delrin tube and a cloth 706 

sling. Stimuli were shown on the video touchscreen (ELO Touchsystems 1939L), which was 707 

positioned approximately 35.5 cm away from the monkeys’ heads and allowed hand position to be 708 

tracked at 75Hz. Eye position was continuously tracked with an infrared eye tracker at 1kHz 709 

(EyeLink 1000, SR Research, Canada).  710 

 711 

Motion Discrimination Task  712 

  713 

The task employed is a variation of the classical random dots motion discrimination task, in which 714 

the subject uses an arm movement as the operant response10 (Fig. 1a). We used a variable duration 715 

version of this task in which the duration of the stimulus presentation varied from trial to trial. 716 

There were two types of trials in our experiments: open loop, in which the stimulus duration was 717 

determined by the experimenter at the beginning of the trial and closed loop, in which the duration 718 

was contingent on a specific pattern of neural activity detected in real time (see Experiments 1-3). 719 

The subject was never cued on what type of trial it was on. For open-loop trials stimulus duration 720 

ranged from 500-1200 ms (median 670 ms) and was randomly chosen on each trial by sampling 721 

an exponential distribution. For closed-loop trials the possible values for duration ranged between 722 

250-1200 ms and were determined on each trial either by the timepoint at which the termination 723 

conditions were met or a predetermined random duration sampled from the open loop distribution, 724 

whichever came first. All trials started with the onset of a fixation point (FP; 1.5 degree diameter) 725 

on the video touchscreen (Fig. 1a). To initiate the task, the monkey was required to maintain both 726 

eye and hand fixation within +/- 3 degrees of the FP as long as it remained on the screen. 727 
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Importantly, throughout the entire trial, the monkey was required to always maintain direct hand 728 

contact with the screen, otherwise the trial would be aborted. 729 

      730 

After 300 ms of fixation, two targets (1.5 degree diameter) appeared on opposite sides of the FP 731 

(eccentricities between 10 and 17 degrees). After a 500 ms delay the random dot stimulus was 732 

presented for the durations mentioned above, after which it was removed from the screen. The 733 

monkey was asked to report the net direction of motion (0 or 180 degrees) by reaching to the target 734 

in the corresponding direction. The difficulty of the task was adjusted by changing the fraction of 735 

dots moving coherently in one direction (motion strength). After stimulus offset the monkey either 736 

entered a delay period during which it was required to withhold his response for 400-900 ms (on 737 

30% of the open-loop trials) or was immediately presented the go cue (on 70% of the open-loop 738 

trials and all closed-loop trials). The go cue was then signaled by the offset of the FP at which 739 

point the monkey was free to gaze anywhere and report his decision with his arm by reaching one 740 

of the two targets. Although gaze was monitored, reward acquisition depended solely on reaching 741 

to the correct target. Finally, for a response to be considered valid, the monkey was required to 742 

hold its hand position within +/- 4 degrees of the center of the target for 200 ms. The monkey was 743 

then rewarded with a drop of juice for correct choices and given a timeout (2-4 seconds) for 744 

incorrect ones. Zero coherence trials were rewarded randomly with a probability of 0.5 since there 745 

was no correct response on these trials. The motion discrimination task was run on an Apple Mac 746 

Pro running Mac OS.  747 

               748 

Random dots stimuli   749 

 750 
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The stimuli used in our psychophysical experiment were random dot kinematograms (RDK) 751 

generated using MATLAB and Psychophysics Toolbox. The details for generating the random 752 

dots stimuli have been described previously10. However, to allow for closed loop experiments 1 753 

and 2 (see below) we introduced a modification to be able to terminate the dot presentations early 754 

if needed. The stimulus code was designed to precompute a sequence of kinematograms that 755 

contain both random and moving dots. The sequence was then presented ballistically with no need 756 

to continuously compute the content of each frame. Our modification allowed for DV values to be 757 

received asynchronously from the real-time decoder and evaluated during the dots presentation. If 758 

the DV criteria defined by the particular experiment were met, the dot presentation could then be 759 

terminated without the remaining frames being shown. For the experiment in which an additional 760 

pulse of motion energy was injected (closed loop experiment 3, see below), we arranged for two 761 

sequences of kinematograms to be precomputed before presentation: one without the pulse, the 762 

other for the 200 ms pulse itself. Contingent on the evolution of DV values, the stimulus could 763 

then be rapidly switched from the standard sequence to the pulse sequence. 764 

 765 

For both monkeys, the motion strength could take one of 6 possible values within a set, but the 766 

sets were slightly different between subjects: [0%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%] for monkey 767 

H and [0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%] for monkey F. The top coherence (51.2%) was 768 

dropped and a very low coherence (1.6%) was introduced for monkey H, due to its superior 769 

discrimination ability. The direction and coherence of the motion were randomly assigned on each 770 

trial by sampling from a uniform distribution with replacement. For zero-coherence stimuli all dots 771 

were displaced randomly but, due to the stochasticity of that process, one obtains non-zero net 772 

motion toward the targets over a small number of frames.  773 
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  774 

Behavioral Training 775 

      776 

Both monkeys had been extensively trained on fixed and variable duration versions of the motion 777 

discrimination task using an arm reach movement as the operant response prior to the current 778 

study10. A few training sessions (all open-loop trials) were used to get the subject accustomed to 779 

the new task timing (0.5-1.2 s stimuli and no delay on 70% of the trials).  Real time decoding 780 

sessions only started when psychophysical performance was stable.  781 

      782 

Behavioral Analysis 783 

 784 

Psychophysical performance was assessed in two ways: by describing the percentage of correct 785 

choices as a function of (unsigned) stimulus coherence and by describing the percentage of 786 

rightward choices as a function of signed stimulus coherence.  787 

 788 

The percentage of correct choices as a function of motion strength (stimulus coherence) was fit by 789 

a cumulative Weibull distribution function:  790 

 791 

𝑃#$%%&#'	(𝑐) = 	1 − 0.5 ×	𝑒(4
#
5)

6
	 792 

 793 

where Pcorrect is probability correct, c is motion strength, α is the psychophysical threshold (the 794 

value of c that corresponds to ~82% correct responses), and β is a parameter that controls the shape 795 

of the function, especially its steepness. 796 
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 797 

The proportion of rightward choices, Pright, as a function of motion strength and direction was fit 798 

by a logistic regression:  799 

 800 

𝑃%789'	(𝑐) = 	
1

1 +	𝑒4;<	×	(	;=>#) 801 

 802 

where c is motion strength, β1 is the slope parameter and −β0 is the motion strength corresponding 803 

to the indifference point. This value was used to assess the monkey’s behavioral bias on each 804 

session.  805 

 806 

Electrophysiological recordings 807 

 808 

Two multielectrode arrays (Blackrock Microsystems, Utah) with 96 electrodes each (1mm long 809 

platinum-iridium electrodes, 0.4 mm spacing, impedance average of approximately 400 KOhm) 810 

were implanted in primary motor and dorsal premotor cortex of each monkey (Figure 1c). The 811 

methods for determining the array placement were described in our previous study10. For monkey 812 

F, the M1 array became unusable between the end of the previous study and the start of the current 813 

study. Due to lack of neural signal from the M1 array, only the PMd array was used for this animal. 814 

Continuous neural data were acquired and saved to disk from each channel (sampling rate 30 kHz) 815 

and thresholded at -4.5 RMS using the Cerebus recording system (Blackrock Microsystems, Utah) 816 

and two separate PCs (one for each array) running Windows 8. Waveforms corresponding to 817 

threshold crossings were not sorted and each channel could contain one or more unit(s). Sorting 818 

waveforms would require a significant lead-up time before the beginning of the experiment and 819 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/681783doi: bioRxiv preprint 

https://doi.org/10.1101/681783


47 
 

could negatively affect the ability to combine data and use decoders across days (see below, 820 

Decoder training). Since units were not isolated within each channel our resulting units were most 821 

likely multi-unit clusters. Any extremely noisy channels were deactivated at the beginning of a 822 

session, and all other channels were used in this study. Using only multi-units yielded comparable 823 

prediction accuracy (Extended Data Figure 3) to our previous study10 in which both single and 824 

multi-unit data was used.  825 

 826 

Datasets     827 

 828 

Data were collected in two sets of experiments. In the first set of experiments we performed Closed 829 

Loop Experiments 1 and 2 (see below). For this set, for each monkey we analyzed all datasets that 830 

met two behavioral inclusion criteria: 1) over 500 trials and 2) a behavioral bias (|β0|) under 4%, 831 

as determined by a logistic regression fit (see above). These criteria were imposed to ensure that 832 

we have a sizeable number of trials per condition (6 coherence x 2 directions = 12 conditions) and 833 

that the behavior of the monkey is virtually unbiased, such that both neural and behavioral results 834 

are more easily interpretable. These criteria resulted in a selection of 17/15 sessions for a total of 835 

16468/15826 trials for monkey H/F, respectively.  836 

 837 

In the second set of experiments we performed Closed Loop Experiment 3. This set of experiments 838 

was performed later, on separate sessions, but using the same two subjects, arrays and decoding 839 

techniques as the first set. In this set of experiments, we analyzed all datasets with over 550 trials. 840 

For all experiments in monkey H, PMD and M1 were recorded simultaneously. 841 

  842 
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Decoder training  843 

 844 

We chose to use a logistic regression classifier based on our previous results showing excellent 845 

offline prediction accuracy in variable duration tasks10 and because of the direct probabilistic 846 

interpretation of its output. Our decision variable (DV) was defined as the log odds ratio of 847 

observing a particular behavioral choice (T1 or T2) given the population response 𝑟: 848 

𝐷𝑉 = 𝑙𝑜𝑔	
𝑃(𝑇G|𝑟	)
𝑃(𝑇I|𝑟	)

	= 	𝛽K	(𝑡) +M𝛽7(𝑡) × 𝑟7(𝑡)
N

7OG

	 849 

 850 

Where 𝑟7(𝑡) are the z-scored summed spike counts for each neuron and time window, β0 is an 851 

intercept term and βi(t) are the classifier weights (one for each unit and epoch). Data from all 852 

electrodes with valid waveforms were combined.  853 

 854 

For simplicity, we decided to use only 3 different decoders for an entire trial (Fig. 1a), instead of 855 

a different one for each 50 ms time window in the trial10. We applied the first decoder from fixation 856 

up to and including the dots period, the second for the delay period and the third for the post go 857 

cue period. After extensive offline tests on a few sessions the precise epochs for classifier training 858 

were defined as the following: 859 

 860 

 • Dots epoch: [150, 1000] ms aligned to dots onset; 861 

 • Delay epoch: [250, 350] ms aligned to dots offset; 862 

 • Post-go cue epoch: [200,400] ms aligned to go cue; 863 

 864 

LASSO regularization was applied to prevent over-fitting when calculating each set of beta 865 
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weights. A Lambda parameter constraining the L1 norm of the Beta vectors was calculated 866 

separately for each of the 3 decoders using 10-fold cross validation on the corresponding time 867 

epochs listed above. For each decoder the Lambda value with minimum cross-validation error was 868 

chosen.  Extended Data Figure 5b shows beta weights for an example set of 3 decoders for monkey 869 

H sorted by epoch and ranked by magnitude. Positive weights correspond to rightward preferring 870 

channels while negative weights correspond to leftward preferring channels. LASSO 871 

regularization sets weights of channels with little or no predictive activity to zero.  872 

 873 

The linear classifier was determined offline using recently collected data (from real-time 874 

experiments). All 50 ms samples of neural data during the selected period (above) for each epoch 875 

were used to train the classifier. The classifier was trained on 90% of the trials and tested on 10% 876 

of the trials using 10-fold cross-validation. The weights from one of the cross-validation folds were 877 

then used in the upcoming real-time experiments. Decisions to train new decoders were based on 878 

experimenter judgment in attempts to optimize performance: if a substantial decrease in real-time 879 

decoding performance and/or an increase in the DV offset at baseline was observed, a new 880 

classifier was trained and used in the following session. New classifiers were typically used every 881 

5 sessions, but some proved to be stable over up to 14 sessions (Extended Data Figure 5a). 882 

 883 

Real time decoding 884 

 885 

An essential requirement to compute a real-time read-out of neural activity is the ability to 886 

continuously and (nearly) instantaneously access and perform computations on the neural activity 887 

being recorded. To accomplish this, the spikes for each channel were temporally smoothed using 888 
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a causal half-Gaussian kernel with 50 ms standard deviation (to mitigate spurious Poisson 889 

fluctuations) and summed for the most recent 50 ms. These smooth spike counts were then stored 890 

in a 192x1 (96x1 for monkey F) vector of neural activity and z-scored individually for each 891 

channel, using previously calculated µ (mean) and σ (standard deviation) vectors. Z-scoring neural 892 

activity was crucial to ensure a reliable and stable real-time readout by preventing the highest firing 893 

channels from dominating it. Finally, the z-scored neural activity was projected onto a previously 894 

calculated linear decoder (a set of β weights, one for each channel) to obtain our linear readout of 895 

internal decision state: a real time decision variable (DV)1.	 896 

 897 

The value of the DV was updated every 10 ms, reflecting the neural activity of the preceding 50 898 

ms. Because we used a half-gaussian kernel, data preceding the 50 ms window also influenced our 899 

DV estimate (with more recent spikes carrying more weight). 95% of the data contributing to the 900 

spike counts was limited to the last 100 ms (i.e an additional 50 ms in the past to each 50 ms 901 

window). The DV value and its history on a single trial could then be used (if desired) to impose 902 

conditions for termination of the random dots stimulus (experiments 1 and 2) or presentation of a 903 

motion pulse (experiment 3), effectively closing the loop on the experiment. 904 

 905 

While the β weights were not updated online (during the course of one experiment), the µ and σ 906 

vectors for each epoch were learned continuously during the course of the experiment, due to 907 

changing recording conditions and signals from day to day. The µ and σ vectors were initialized 908 

at the beginning of the session using the values calculated offline when training the most recent 909 

decoder. Once the session started, the initial µ and σ vectors were blended with online calculated 910 

values for the first 25 trials, using a blending factor α: 911 
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 912 

𝛼Q = 	𝑚𝑎𝑥	((25 − 𝑗)/25,0)) , where j is the trial number. 913 

 914 

For trial j, sample number t and for a given epoch in trial, the µ and σ vectors were defined as a 915 

weighted mixture between the initial values µinitial(epoch) and σinitial(epoch) and the estimate of the 916 

current session’s values µcurrent(t,epoch) and σcurrent(t, epoch): 917 

	𝜇Z[&N\&\(𝑡, 𝑒𝑝𝑜𝑐ℎ) = 	𝛼Q ∗ 	𝜇7N7'7`[(𝑒𝑝𝑜𝑐ℎ) + (1 −	𝛼Q) ∗ 	𝜇#a%%&N'(𝑡, 𝑒𝑝𝑜𝑐ℎ) 918 

𝜎Z[&N\&\(𝑡, 𝑒𝑝𝑜𝑐ℎ) = 	𝛼Q ∗ 	𝜎7N7'7`[(𝑒𝑝𝑜𝑐ℎ) + (1 −	𝛼Q) ∗	𝜎#a%%&N'(𝑡, 𝑒𝑝𝑜𝑐ℎ) 919 

 920 

After the first 25 trials α was set to zero which implies the µ and σ vectors kept being continuously 921 

updated throughout the session but were no longer blended with values from the previous days. 922 

The update rule for µcurrent(t, epoch) was: 923 

𝜇#a%%&N'(𝑡, 𝑒𝑝𝑜𝑐ℎ) =
[𝜇#a%%&N'(𝑡 − 1, 𝑒𝑝𝑜𝑐ℎ)] ∗ 𝐾 + 𝑟

𝐾 + 1  924 

𝐾 = 	𝑁g`hi[&g(𝑡, 𝑒𝑝𝑜𝑐ℎ) 925 

where r is the most recently sampled vector of spike counts and K is the current number of samples 926 

of spike count vectors obtained so far for this particular epoch. 927 

The update rule for σcurrent(t, epoch) was: 928 

𝜎#a%%&N'(𝑡, 𝑒𝑝𝑜𝑐ℎ) =	= 	j
𝐾 − 1
𝐾 ∗	𝜎I#a%%&N'(𝑡 − 1, 𝑒𝑝𝑜𝑐ℎ) +	

1
𝐾 ∗ (𝑟 − 𝜇#a%%&N'

(𝑡, 𝑒𝑝𝑜𝑐ℎ))I	 929 

 After updating the µcurrent(t, epoch) and σcurrent(t, epoch) vectors, the number of 930 

samples for the corresponding epoch was also updated:  931 

 932 
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	𝑁g`hi[&g(𝑡, 𝑒𝑝𝑜𝑐ℎ) = 	𝑁g`hi[&g(𝑡 − 1, 𝑒𝑝𝑜𝑐ℎ) + 1 933 

 934 

Importantly, even though we had only 3 different decoders (Fig. 1b) we effectively used 5 different 935 

epochs: Fixation, Targets, Dots, Delay and Post Go-Cue. The Dots decoder was also used in the 936 

Fixation and Targets epochs but because average firing rates are different between these, different 937 

µ and σ vectors had to be used. Every 50 ms sample of neural data for a given epoch was used to 938 

update the corresponding µ and σ vectors as described above. We let the µ and σ vectors converge 939 

for ∼200-300 trials, in the beginning of each experimental session, before starting any closed loop 940 

experiments. One way to check for this convergence was to monitor the DV offset: the average 941 

DV value for the first 150 ms of the Dots epoch. Since we verified through offline analyses that 942 

no systematic pre-planning activity towards one of the two targets was present in PMd or M1  943 

during this time window, we expected the DV offset to be on average ∼0. 944 

 945 

Using a single decoder for an entire epoch was far more efficient to implement than using a 946 

different decoder for each time point (as it reduced the number of µ and σ vectors that had to be 947 

learned online) and as demonstrated in our previous study10 a single classifier for an entire epoch 948 

was almost as predictive as multiple classifiers trained on different timepoints of the same epoch10. 949 

Because choice modulation in PMd/M1 changes dramatically around the peri-movement period a 950 

single decoder for an entire trial was not feasible. 951 

 952 

In the end, our method yielded a reliable real-time decision state read out and required only ~18% 953 

(15%) of trials in a session for calculating the values of µ and σ for monkey H (F), leaving the 954 

remainder available for imposing neurally contingent conditions in closed loop. The real time 955 
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decoder was run on two separate PCs (server and client) using the Simulink Real-Time/xPC 956 

platform (Mathworks, Massachussetts). 957 

 958 

Closed Loop Experiments 959 

 960 

Experiment 1: Virtual Boundaries 961 

 962 

On each trial we set a virtual threshold, or boundary (B), for the magnitude of the DV during the 963 

dots epoch. If the DV on the current trial reached B or −B ± tolerance, the dots presentation was 964 

terminated and the monkey asked to report its decision.  If the bound was not reached on a given 965 

trial, stimulus presentation continued to a preset duration for that trial which was randomly 966 

sampled from an exponential distribution ranging from 500-1200 ms.  Closed loop trials for which 967 

the boundary was not reached were effectively indistinguishable from open loop trials. 968 

 969 

Typically, 5 values for boundaries spanning 0.5 to 5 (DV units) were used every session and one 970 

of them was randomly assigned on each trial (uniform distribution).  The tolerance used was ± 971 

0.25 DV units. We imposed a minimum duration for all trials to avoid spurious bound crossings, 972 

which could be problematic for low bound values in particular.  In all sessions the minimum 973 

duration was 250 ms, a conservative estimate of the latency for choice related signals driven by 974 

the visual stimulus to appear in PMd and M1.  975 

 976 

After the minimum stimulus duration was reached, the DV was assessed every 10 ms to determine 977 

whether it fell within ± 0.25 DV units of the bound chosen for the current trial (B or −B). If so, the 978 
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stimulus was terminated within 34 ms of the boundary being met (see Estimated latency for real 979 

time closed loop setup). If the bound for the particular trial was not reached, the presentation 980 

continued up to the maximum stimulus duration selected for that trial which had been obtained by 981 

randomly sampling from an exponential distribution: 500-1200 ms (median 670 ms). 982 

 983 

Finally, closed loop trials were randomly interleaved with open loop trials in which no DV-984 

dependent termination condition was imposed. The motivation for interleaving closed loop and 985 

open loop trials was to make it extremely hard for the monkey to learn that accelerating the 986 

dynamics of choice related signals10 (potentially by recruiting more choice related neurons or 987 

increasing their modulation)  and thus hitting bounds sooner could potentially increase its reward 988 

rate. Not accounting for this possibility could lead to an undesirable change in the monkey’s 989 

strategy during the course of the closed loop experiments, which could become problematic when 990 

combining data across days.  991 

 992 

Experiment 2: CoM detection 993 

 994 

Under our logistic regression framework, the signature of a putative CoM is a sign change of the 995 

decision variable. Since these sign changes could happen at any time during the trial, capturing 996 

them required not only monitoring the most recent state of the DV, but its history throughout the 997 

trial. Because there was noise in our DV estimation and DVs usually started close to 0 at the 998 

beginning of the trial we imposed selection criteria to detect likely CoMs based on the neural data. 999 

A necessary feature for all potential CoMs was a zero crossing in the sign of the DV: change of 1000 

DV sign from negative to positive reflected a change in the likelihood of a rightward decision from 1001 
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less than 50% to greater than 50%, and vice versa for the opposite change in sign. To eliminate 1002 

zero crossings resulting solely from measurement noise, we imposed four additional criteria: 1003 

 1004 

• Minimum DV value after zero crossing; 1005 

• Minimum DV value with opposite sign before zero crossing;  1006 

• Minimum duration of DV sign stability after zero crossing; 1007 

• Minimum duration of DV sign stability before zero crossing; 1008 

 1009 

The minimum DV values before and after zero crossing were symmetrical for most sessions, as 1010 

were the periods of minimum duration of DV sign stability (negative or positive values for all time 1011 

points). If a zero crossing was detected and all four criteria were met, the stimulus presentation 1012 

was interrupted and the animal was virtually immediately (within 34 ms or less, see Estimated 1013 

latency for real time closed loop setup) prompted to report a decision. The exact parameters used 1014 

for each session can be found in Supplementary Information Table 3.  1015 

 1016 

By sweeping the parameter space we could test zero crossings that differed in magnitude and 1017 

stability. Analogously to the virtual boundary experiment, if the minimums were not met and a 1018 

CoM thus not detected, the stimulus presentation continued uninterrupted for a random duration 1019 

ranging from 500-1200 ms, selected prior to the start of the trial. A minimum stimulus duration of 1020 

250 ms was also in place. 1021 

 1022 

Because putative CoMs are quite rare1, in the first set of experiments we devoted 70% of the closed 1023 

loop trials to detect them leaving the remaining 30% as virtual boundary trials. The exact fraction 1024 
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of trials with CoM depends dramatically on how we parameterize them. The longer the minimum 1025 

periods of consistent sign and the higher the minimum DV value in the initial commitment stage, 1026 

the rarer they become. Running both experiments on the same sessions ensured that the mapping 1027 

from DV to choice likelihood was held during the CoM experiments and provided the most faithful 1028 

indirect validation of initial commitment we could obtain. 1029 

 1030 

Experiment 3: Motion pulse perturbation 1031 

 1032 

In this experiment, motion pulses were introduced on some trials with motion coherences near or 1033 

below psychophysical threshold. No motion pulses were presented for suprathreshold coherences 1034 

based on the results of a pilot experiment (not shown) in which pulses presented at suprathreshold 1035 

coherences were more perceptually salient and led to changes in the animals’ strategy. As in 1036 

Experiment 1, on each trial we set a virtual boundary (B) for the magnitude of the DV during the 1037 

dots epoch. In this experiment, 100% of trials with dots coherence at or near psychophysical 1038 

threshold were treated as closed loop trials (this corresponds to trials with maximum unsigned 1039 

coherence of 6.4% for monkey H and 12.8% for monkey F; psychophysical thresholds were 1040 

measured using the Weibull function described above in “Behavioral Analysis”). Low-coherence 1041 

trials in which the boundary was not reached (per the criteria below) and trials with suprathreshold 1042 

dots coherences were all effectively open loop.  1043 

 1044 

If the DV on a closed loop trial reached B or −B ± tolerance (±0.25 DV units), after a minimum 1045 

stimulus duration of 50 ms, a 200-ms motion pulse was presented, followed immediately by 1046 

termination of the visual stimulus and presentation of the cue for the monkey to report its decision. 1047 
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If not, dots presentation continued for a pre-assigned duration drawn randomly from an 1048 

exponential distribution of 500-1200 ms. Four integer values for boundaries (spanning 1 to 4 DV 1049 

units) were used every session, and one of them was randomly assigned on each trial (uniform 1050 

distribution). 1051 

 1052 

Motion pulses were 200-ms periods of additional dots stimulus presentation with small additive 1053 

average coherence (±2% or 4.5% from the initial dots coherence on the same trial for monkey H 1054 

and F, respectively, where positive coherence values indicate rightward motion); thus pulses 1055 

effectively randomly added either a small amount of rightward or leftward motion evidence to the 1056 

stimulus. Pulse strength was calibrated in pilot experiments, in which we converged upon 1057 

coherence shifts that slightly but significantly biased each animal’s behavior, without being overtly 1058 

perceptually salient (biases were measured using the logistic regression on rightward choice 1059 

described above in “Behavioral Analysis”). Animals were rewarded for correct reaches in the 1060 

direction of the coherence of the initial dots stimulus (randomly assigned on 0% coherence trials), 1061 

regardless of the pulse direction.  1062 

 1063 

Estimated latency for real time closed loop setup 1064 

 1065 

To validate our setup, we measured the latency between a neural condition being met and the 1066 

corresponding task change being implemented. We tested this latency by generating simulated DV 1067 

steps in the same model used to detect when DV triggering conditions were met in the real 1068 

experiments. We used these simulated steps to trigger the onset of a bright light on the touchscreen 1069 

in front of a photodetector, again within the same code used to run the task and generate the stimuli 1070 
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in the real experiments. We then passed both the simulated DV and the photodetector output 1071 

signals into an oscilloscope, triggered the display on the “DV” steps, and manually measured the 1072 

delay to onset of the bright dot. Almost all measured delays were within 2 frames, or 26 ms. 1073 

 1074 

Estimated trial count savings for real time closed loop setup  1075 

 1076 

The real time setup allowed for extremely precise experimental control over which DV values or 1077 

DV history to use to trigger a modification in the task (stimulus termination or pulse). However, it 1078 

could be argued that given enough data, similar trials would have been captured simply by either 1079 

terminating the stimulus (as in experiments 1 and 2) or presenting the pulse (as in experiment 3) 1080 

at a random point in the trial and then back sorting them offline (by DV value or history by  after 1081 

the data is collected). 1082 

 1083 

To estimate how much more trial-count efficient it was to use our real time setup compared to 1084 

offline back-sorting trials where the stimulus was presented for a random duration, we used the 1085 

CoM experiment as a case study given how rare change of mind events are. 1086 

 1087 

For simplicity, we focused on sessions 1, 2 and 3 from Monkey F, which all have the same (and 1088 

intermediate) CoM requirements (Supplementary Information Table 3). We started by calculating 1089 

the yield from the real time experiment in closed loop as the ratio between detected CoM trials and 1090 

trials in which CoMs were checked (i.e. all closed loop trials in which the stimulus could be 1091 

terminated if the conditions dictated by the CoM parameters were met, Supplementary Information 1092 

Table 3):  1093 
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𝑌𝑖𝑒𝑙𝑑no = 	#𝐶𝑜𝑀𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 #𝑡𝑟𝑖𝑎𝑙𝑠	𝐶𝑜𝑀𝑠	𝑐ℎ𝑒𝑐𝑘𝑒𝑑 = 11.91%⁄  1094 

 1095 

To calculate the yield for offline back-sorting trials we used the open loop trials in the same 1096 

sessions, which were terminated after a random stimulus duration. Importantly, the stimulus 1097 

duration on these open loop trials was sampled from the same distribution as for the closed loop 1098 

trials in which CoMs were checked, which allows for a fair yield comparison. We calculated the 1099 

yield from offline back-sorting as the ratio between the number of trials that would have met all 1100 

the criteria for CoMs for the same session and the total number of open loop trials: 1101 

 1102 

𝑌𝑖𝑒𝑙𝑑xo = 	#𝑉𝑎𝑙𝑖𝑑	𝑝𝑢𝑡𝑎𝑡𝑖𝑣𝑒	𝐶𝑜𝑀𝑠	 #𝑂𝑝𝑒𝑛	𝑙𝑜𝑜𝑝	𝑡𝑟𝑖𝑎𝑙𝑠 = 1.85%⁄  1103 

 1104 

Since the goal would be to probe the new choice preference shortly after the zero crossing (putative 1105 

change of mind), not many hundreds of ms later, we only considered CoM trials that were (closed 1106 

loop) or that would have been (open loop) terminated within 150 ms of the zero crossing. This 1107 

cutoff value corresponded to the 82nd percentile of post zero crossing durations for the closed loop 1108 

trials analysed in these sessions.  1109 

 1110 

In this analysis Yield�� was 6.43 times higher than Yield��.This result implies that had we not 1111 

used a real time setup in closed loop we would have had to collect 6.43 times the number of trials 1112 

(and thus sessions) to obtain the same number of events.  This would in turn mean collecting 1113 

around 100 sessions/monkey just for experiments 1 and 2 (assuming the same 30%/70% trial split 1114 

used in the real time experiments), rendering this experiment practically unfeasible. 1115 

 1116 
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Neural Data Analysis 1117 

 1118 

DV variability 1119 

 1120 

Within trial variability was computed by first calculating the difference between consecutive DV 1121 

values (estimated every 10 ms) for every trial in the datasets collected for experiments 1 and 2 1122 

(open and closed loop). This step yielded a DDV trace for each trial aligned to dots onset. For each 1123 

trial these traces were computed only up to the offset of the stimulus and did not include any delay 1124 

or post go-cue DV data. The DDV traces were then sorted and averaged for each choice (Fig. 5a, 1125 

Extended Data Fig.7a) or each signed coherence level (Fig. 5b, Extended Data Fig.7b). Longer 1126 

trials are increasingly rare due to the shape of our stimulus duration distribution but this asymmetry 1127 

does not influence the interpretation of the time course of average DDV as this metric only captures 1128 

within trial variability and not across trial variance. 1129 

 1130 

DV and motion energy correlation 1131 

 1132 

Motion energy (ME) was calculated for each trial in the datasets collected for experiments 1 and 1133 

2 (open and closed loop) by convolving the positions of the dots in the stimulus with spatio-1134 

temporal filters as previously described8. The ME trace obtained for each trial captures the strength 1135 

of the stimulus at every timepoint during the stimulus presentation. To evaluate the effect of motion 1136 

energy on DV we performed a linear regression of single trial DV traces on single trial ME traces. 1137 

From experiments 1 and 3 we determined that due to neural latencies a stimulus fluctuation can 1138 

only have effect on the decoded DV ~180 ms later. For this reason, the regression was always 1139 
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performed between DV(t) and ME(t-180ms) or earlier. For Extended Data Fig. 8a-b each green 1140 

trace corresponds to a different way to estimate the motion energy that might affect DV at time t. 1141 

For the lightest trace and for every timepoint t ME was averaged between (t-180ms) and (t-200ms) 1142 

for every trial and used to regress against DV(t). A separate regression was performed for each 1143 

timepoint and the resulting variance explained was plotted. The same process then was repeated 1144 

for every other green trace by progressively increasing the averaging window for ME in 20 ms 1145 

increments from (t-180, t- 200) ms to (t-180, t- 500) ms. As a control the DV was also regressed 1146 

against signed coherence for each trial (Extended Data Fig. 8a-b grey traces). This analysis was 1147 

used to assess how much of the DV variance across coherences is explained by motion energy or 1148 

signed coherence as a function of time. To assess how much DV variance within each coherence 1149 

level could be explained by the motion energy of the stimulus we first sorted the DV traces for 1150 

each signed coherence level. For each signed coherence level and each timepoint we regressed 1151 

DV(t) against ME(t-180ms) for the corresponding trials and calculated the variance explained 1152 

(Extended Data Fig. 8c-d).    1153 

 1154 

CoM regularities 1155 

 1156 

To test whether the effects of coherence on the number of CoMs were statistically significant we 1157 

used a bootstrap method to generate 1000 distributions of CoM events with the corresponding 1158 

coherences by sampling with replacement from the distribution of captured events for each subject 1159 

separately. For each subject each distribution had the same number of observations as those 1160 

captured in experiment 2: 985 for monkey H and 1727 for monkey F. For each randomly sampled 1161 

distribution the number of CoMs for each coherence level was counted. The resulting counts were 1162 
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then regressed against the coherence level they belonged to. CoM count was highly and negatively 1163 

correlated with coherence for both subjects (p<0.001). 1164 

To test whether the effect of directionality of CoMs (corrective vs erroneous) was statistically 1165 

significant we followed a similar bootstrapping procedure and generated 1000 distributions of 1166 

CoM events (excluding 0% trials) with the corresponding directionality.  For each randomly 1167 

sampled distribution the number of CoMs for each direction was counted. The difference between 1168 

the medians counts of corrective and erroneous CoMs was tested by performing a one-sided 1169 

Wilcoxon rank sum test (p<0.001) testing the hypothesis than corrective counts were higher than 1170 

erroneous counts. 1171 

 1172 

Pulse Effects 1173 

 1174 

To quantify the overall behavioral effect of the pulses, we performed the following logistic 1175 

regression on the probability of a rightward choice:  1176 

 1177 

𝑃%789'(𝑐) = 	
G

G>	&�ß<	×	�	ß=�	ß���������
	, 1178 

 1179 

where c is motion strength, β1 is the slope parameter, D is the pulse direction, and −β0 is the motion 1180 

strength corresponding to the indifference point.  1181 

 1182 

To determine the effect of the pulse on the evolving DV, we first estimated the minimum latency 1183 

for the visual stimulus information to influence the DV by calculating the first time of significant 1184 

divergence of rightward vs. leftward DV traces during dots presentation on open-loop trials with 1185 
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stimuli of maximal motion strength (±25.6%, 51.2% coherence for monkey H, F), assessed using 1186 

a two-sample t-test with correction for a false discovery rate of 0.0534. We refer to this estimate as 1187 

the “evidence representation latency” (ERL; 170 ms, 180 ms for monkey H, F). We then measured 1188 

the evolution of the DV after pulse presentation by calculating the difference between the 1189 

empirically observed DV at each time point t and the DV at the “pulse evidence representation 1190 

latency” (PERL, or time of pulse onset plus the ERL): 1191 

 1192 

∆𝐷𝑉(𝑡) = 𝐷𝑉(𝑡) − 𝐷𝑉���o. 1193 

 1194 

To quantify the pulse effect on DV on single trials, we calculated the slope (using linear regression) 1195 

of ∆DV over the time period beginning with the PERL and ending at either the median go-RT for 1196 

the animal or 150 ms prior to movement initiation on that trial, whichever came first, to minimize 1197 

the contribution of directly movement-related activity to our analysis of the evolving choice10. We 1198 

checked to ensure the results did not depend critically on these specific endpoint criteria by 1199 

sweeping a range of endpoints for the ∆DV calculation: every 10 ms from go cue onset to 150 ms 1200 

after the go cue. The exact endpoint used did not affect the results of the following analyses 1201 

(quantitative results held for all endpoints from the time of the go cue through 150 ms post-go-cue 1202 

for monkey H, and for endpoints beginning 120 ms post-go-cue for monkey F). 1203 

 1204 

To quantify the neural pulse effect at each DV boundary (as in Fig. 5e), we fit the following linear 1205 

regression on the ∆DV slope (calculated as described in the previous paragraph) separately for 1206 

each DV boundary: 1207 

 1208 
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∆𝐷𝑉	𝑠𝑙𝑜𝑝𝑒� = 	ßK� 	+ ß#$9� × 𝑐 +	ß'7h&� × 𝑡𝑖𝑚𝑒ia[g&	$Ng&' +	ßia[g&� × 𝐷1209 

+	ßia[g&×'7h&� × �𝑡𝑖𝑚𝑒ia[g&	$Ng&' × 𝐷�, 1210 

 1211 

where B is the pulse-triggering DV boundary (unsigned), and compared ßia[g&�  values. (The full 1212 

resulting sets of regression coefficients fit to ∆DV slope can be found in Supplementary 1213 

Information Table 1.)  1214 

 1215 

Similarly, to quantify the behavioral pulse effect at each DV boundary (as in Fig. 5f), we fit the 1216 

following logistic regression on the probability of a rightward choice separately for each DV 1217 

boundary: 1218 

𝑃%789'� (𝑐) = 	
1

1 +	𝑒4(��)
,	 1219 

where	𝑧� = 	ßK� 	+ ß#$9� × 𝑐 +	ß'7h&� × 𝑡𝑖𝑚𝑒ia[g&	$Ng&' +	ßia[g&� × 𝐷1220 

+	ßia[g&×'7h&� × �𝑡𝑖𝑚𝑒ia[g&	$Ng&' ∗ 𝐷�, 1221 

 1222 

where B is again the pulse-triggering DV boundary (unsigned), and compared ßia[g&�  values. (The 1223 

full resulting sets of regression coefficients fit to choice can be found in Supplementary 1224 

Information Table 2.)  1225 

 1226 

Data availability  1227 

 1228 

All data and analyses generated during the current study are available from the corresponding 1229 

authors upon reasonable request. 1230 
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                     1231 

Code availability 1232 

 1233 

The analysis code was developed in Matlab (Mathworks) and is available from the corresponding 1234 

authors upon reasonable request. 1235 

 1236 

 1237 

 1238 

 1239 
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