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Abstract  
Understanding   the   role   of   neuronal   activity   in   cognition   and   behavior   is   a   key   question  

in   neuroscience.   Previously,    in   vivo    studies   have   typically   inferred   behavior   from  
electrophysiological   data   using   probabilistic   approaches   including   bayesian   decoding.   While  
providing   useful   information   on   the   role   of   neuronal   subcircuits,   electrophysiological  
approaches   are   often   limited   in   the   maximum   number   of   recorded   neurons   as   well   as   their  
ability   to   reliably   identify   neurons   over   time.   This   can   be   particularly   problematic   when   trying  
to   decode   behaviors   that   rely   on   large   neuronal   assemblies   or   rely   on   temporal   mechanisms,  
such   as   a   learning   task   over   the   course   of   several   days.   Calcium   imaging   of   genetically  
encoded   calcium   indicators   has   overcome   these   two   issues.   Unfortunately,   because   calcium  
transients   only   indirectly   reflect   spiking   activity   and   calcium   imaging   is   often   performed   at  
lower   sampling   frequencies,   this   approach   suffers   from   uncertainty   in   exact   spike   timing   and  
thus   activity   frequency,   making   rate-based   decoding   approaches   used   in   electrophysiological  
recordings   difficult   to   apply   to   calcium   imaging   data.   Here   we   describe   a   simple   probabilistic  
framework   that   can   be   used   to   robustly   infer   behavior   from   calcium   imaging   recordings.   Our  
method   discriminates   periods   of   activity   and   periods   of   inactivity   to   compute   conditional   and  
unconditional   probabilities.   Neuronal   activity   can   then   be   described   in   terms   of   joint  
probability,   specificity,   and   confidence.   We   next   devise   a   simple   method   to   decode   behavior  
from   calcium   activity   and   propose   different   metric   to   quantify   decoding   accuracy.   Finally,   we  
show   that   neuronal   activity   can   be   predicted   from   behavior,   and   that   the   accuracy   of   such  
reconstructions   can   guide   the   understanding   of   relationships   that   may   exist   between  
behavioral   states   and   neuronal   activity.  
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Introduction  
Early    in   vivo    studies   have   established   relationships   between   external   variables   and  

neuronal   activity,   including   (but   not   restricted   to)   auditory   information   in   the   auditory   cortex  
(Katsuki   et   al.,   1956),   visual   stimuli   in   the   visual   cortex   (Hubel   and   Wiesel,   1962),   and   spatial  
information   in   the   hippocampus   (O’Keefe   and   Dostrovsky,   1971).   Based   on   the   widely  
influential   information   theory   (Shannon,   1948),   it   has   previously   been   proposed   that   neurons  
can   act   as   'communication   channels'   between   physiological   variables   (input)   and   spike   trains  
(output)   (Richmond   and   Optican,   1990;   Richmond   et   al.,   1990;   Skaggs   et   al.,   1993).   In  
addition   to   providing   metrics   to   quantify   the   extent   to   which   external   variables   can   be  
encoded   in   neurons,   these   studies   laid   the   first   foundations   in   establishing   computational   tools  
to   predict   animal   behavior   merely   using   neuronal   activity.   This   process,   termed   decoding,   is  
essential   in   understanding   the   role   of   neuronal   activity   in   behavior,   and   the   success   rate   of  
predictions   can   be   used   as   a   metric   of   knowledge   of   a   given   system.    Among   techniques   that  
have   been   described   in   this   context,   Bayesian   decoding   in   particular   has   been    relatively  
popular   and   widely   used   (Zhang   et   al.;   Brown   et   al.,   1998;   Gerwinn,   2009;   Quian   Quiroga   and  
Panzeri,   2009;   Koyama   et   al.,   2010).  

While   the   literature   on    in   vivo    neuronal   physiology   has   been   largely   dominated   by  
electrophysiological   studies,   calcium   imaging   methods   have   recently   gained   popularity.  
Originally   performed   at   the   single   cell   level   with   the   aid   of   calcium   sensors   (Grynkiewicz   et  
al.,   1985;   Persechini   et   al.,   1997),   calcium   imaging   can   now   be   performed    in   vivo,    in   large  
neuronal   assemblies,   and   over   very   long   periods   of   time   (Ziv   et   al.,   2013;   Sheintuch   et   al.,  
2017;   Gonzalez   et   al.,   2019).   These   major   improvements   coincided   with   the   development   of  
genetically   encoded   calcium   indicators   (GECI),   including   the   popular   GCaMP    (Nakai   et   al.,  
2001;   Tian   et   al.,   2009;   Ohkura   et   al.,   2012;   Chen   et   al.,   2013) .   In   the   recent   years,   calcium  
imaging   methods   have   seen   the   development   of   various   computational   tools   that   solve   the  
problem   of   signal   extraction   from   raw   calcium   imaging   video   recordings.   In   particular,  
several   groups   have   proposed   open-source   software   codes   to   perform   fast,   recursive   motion  
correction   (Pnevmatikakis   and   Giovannucci,   2017),   offline    (Pnevmatikakis   et   al.,   2016;   Zhou  
et   al.,   2018)    and   online   (Giovannucci   et   al.,   2017)   extraction   of   neuronal   spatial   footprints   and  
their   associated   calcium   activity,   temporal   registration   of   neurons   across   days   (Sheintuch   et  
al.,   2017),   and   complete   pipelines   have   been   made   available   (Giovannucci   et   al.,   2018).   The  
aforementioned   open   source   codes   have   significantly   facilitated   the   analysis   of   calcium  
imaging   datasets.   Most   often,   one   of   the   objectives   when   using   such   tool   is   to   understand   the  
neural   basis   of   behaviors.   Unfortunately,   there   are   only   few   open   source   analysis   toolbox   that  
can   relate   calcium   imaging   data   to   behavior   to   this   day   (Tegtmeier   et   al.,   2018 ;  
www.miniscope.org).   While   these   useful   analytical   tools   allow   the   exploration   of  
relationships   between   calcium   signals   and   behavior,   they   are   mostly   restricted   to   visualization  
and   correlation.   Ultimately,   a   thorough   understanding   of   a   given   system   would   translate   into  
perfect   predictions   of   neuronal   activity   given   the   behavioral   state,   and   vice   versa.  

While   calcium   imaging   does   not   allow   the   determination   of   exact   spike   timing,   some  
methods   have   been   proposed   to   better   approximate   spiking   activity   from   calcium   imaging  
data   by   deconvolving   calcium   transients   (Deneux   et   al.,   2016;   Pachitariu   et   al.,   2018;   Rahmati  
et   al.,   2018).   Consequently,   one   strategy   that   can   be   employed   is   to   first   estimate  
deconvolution   parameters   from   ground   truth   data   (e.g.    in   vitro    unit   recording   in   brain   slices  
combined   with   calcium   imaging)   to   then   apply   them   to   recordings   performed    in   vivo .  
However,   one   major   caveat   with   this   approach   is   that   physiological   responses   can   differ  
greatly   between    in   vivo    and    in   vitro    conditions   (Belle   et   al.,   2018)   leading   to   erroneous  
parameter   estimation.   Another   obstacle   to   using   deconvolved   signals   and   estimated   spikes   to  
decode   calcium   activity   is   that   the   very   nature   of   calcium   imaging   does   not   allow   to   estimate  
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exact   spike   timing.   While   unit   recordings   are   typically   done   at   sampling   rates   exceeding   10  
KHz,   1-photon   microendoscopes   used   in   freely   moving   animals   usually   sample   images   at   30  
Hz   (30   frames   per   second)   or   less,   and   spike   trains   will   generally   be   associated   with   large  
calcium   transients   of   varying   size   and   duration.   Consequently,   one   could   for   example  
successfully   estimate   that   a   neuron   fires   10   action   potentials   based   on   the   observation   of   a  
single   calcium   transient,   however   the   exact   timing   of   each   spike   would   remain   unknown,   and  
could   happen   anywhere   within   a   ~33   ms   window   (for   calcium   imaging   performed   at   30   Hz).  

Importantly,   another   issue   encountered   when   performing   calcium   imaging   with  
GCaMP   is   photobleaching,   which   leads   to   a   progressive   loss   of   signal   due   to   the   destruction  
of   fluorescent   proteins   that   report   calcium   influx.   Unlike   electrophysiological   unit   recordings  
that   can   be   performed   for   several   hours,   calcium   imaging   is   thus   typically   done   during   shorter  
windows   of   time.   While   it   is   possible   to   follow   GCaMP-positive   cell   assemblies   over   months  
(Ziv   et   al.,   2013;   Sheintuch   et   al.,   2017),   each   recording   session   has   to   be   limited   in   duration  
to   avoid   photobleaching.   This   results   in   low   sampling   that   can   be   problematic   when   trying   to  
associate   neuronal   activity   with   a   certain   behavior:   some   behavioral   states   can   be   over-   or  
underrepresented   and   concurrently,   calcium   activity   can   be   too   sparse   to   establish   tuning  
curves   of   neuronal   activity   and   make   conclusions.  

Here   we   propose   simple   analytical   methods   to   relate   calcium   activity   to   behavior   by  
(1)   extracting   periods   of   activity   in   calcium   imaging   data   without   approximating   spike   timing  
and   subjecting   actual   data   to   null   hypothesis   testing   in   order   to   solve   the   problem   of   low  
sampling,   (2)   performing   Bayesian   decoding,   and   (3)   reconstructing   neuronal   activity   from  
behavior   to   assess   the   quality   of   neuronal   coding.  
 

Results  

 

1.   Establishment   of   probabilistic   neural   tuning   curves  

To   demonstrate   the   usefulness   of   our   method,   we   performed   calcium   imaging   in   a   well  
characterized   system:   CA1   pyramidal   cells   of   the   dorsal   hippocampus   (fig.   1a).   These   neurons  
are   known   to   display   spatial   tuning   and   are   often   referred   to   as   place   cells   (O’Keefe   and  
Dostrovsky,   1971).   We   trained   a   mouse   to   run   back   and   forth   on   a   100   cm   long   linear   track   by  
providing   sucrose   water   rewards   at   each   end   of   the   track   and   scheduling   homecage   access   to  
water   every   day   (fig.   1b).   We   recorded   ~400   neurons   in   these   conditions   (fig.   1c).   After  
extracting   neuronal   spatial   footprints   (fig.   1d),   we   visualized   corresponding   calcium   activity  
along   with   the   position   and   locomotor   speed   of   the   animal   (fig.   1e).   Previous   studies   have  
shown   that   immobility   periods   are   associated   with   replay   of   experience   (Foster   and   Wilson,  
2006;   Diba   and   Buzsáki,   2007;   Davidson   et   al.,   2009).   In   order   to   focus   on   the   spatial   tuning  
curves   of   CA1   neurons,   we   therefore   excluded   periods   of   immobility   (<   5cm.s -1 )   that   could  
potentially   contain   periods   of   neuronal   activity   that   reflect   internal,   rather   than   external  
variables.  

 
1.1.   Conditional   probabilities  

In   order   to   compute   probabilities   that   will   be   used   in   latter   analyzes   of   tuning   curves,  
we   sought   to   discriminate   periods   of   activity   versus   inactivity   (fig.   1f).   To   this   end,   we  
devised   a   simple   binarizing   method   where   raw   calcium   signals   are   first   filtered   (to   remove  
high   frequency   fluctuations   that   could   erroneously   be   detected   as   transient   rise   periods),   and  
we   considered   periods   of   activity   as   following   the   two   criteria:   (1)   the   signal   amplitude   of   a  
normalized   trace   has   to   be   above   2   standard-deviations,   and   (2)   the   first   order   derivative   has  
to   be   positive   (thus   corresponding   to   a   transient   rise   period).  
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Following   the   binarization   of   raw   calcium   traces,   we   propose   a   probabilistic  
framework   to   describe   how   the   activity   of   a   neuron   encodes   a   certain   behavior   or   state   (fig.  
1g).   To   this   end,   we   can   first   compute   the   probability   of   a   neuron   to   be   active   P(A)   using   the  
following   formula:  

 
(1) (A) P =  

total time
time active  

 

P(A)    only   informs   on   the   activity   rate   of   a   neuron   over   the   course   of   a   recording   session.   We  
can   also   compute   the   probability   of   spending   time   in   a   given   behavioral   state:  
 

 
(2) P (S)  =  

total time
time in state    

 
P(S)    can   be   informative   on   whether   the   distribution   of   behavioral   states   is   homogeneous   or  
inhomogeneous,   which   can   potentially   lead   to   biases   in   further   analyzes.   Both   P(A)   and   P(S)  
are   unconditional   probabilities   that   will   be   used   later   when   performing   Bayesian   inference.   
 

1.2.   Joint   probabilities  

We   can   then   compute   the   joint   probability   that   a   given   cell   is   active   while   the   animal   is  
in   a   given   state:  
 

(3) (A )   P S =  
time in state

time active while in state  
 

,   or   tuning   curve,   is   more   informative   as   it   allows   a   direct   quantification   of (A )  P S  
firing   probabilities   under   specific   states,   and   is   easy   to   interpret.   For   instance,   a   joint  
probability   value   of   0.8   means   that   a   cell   is   active   80%   of   the   time   when   the   animal   is   in   a  
given   behavioral   state.   It   is   noteworthy   that   the   complement   of   can   easily   be (A )  P S  
derived:  

(4) (A )  1 (A )  P
c

S =   P S  
 

  can   be   particularly   helpful   to   describe   cells   that   are   active   in   most   states,   but (A )  P
c

S  
inactive   in   very   specific   states.  

In   our   example,   we   isolated   running   periods   when   the   mouse   was   running   towards   the  
right   hand   side   of   the   linear   track   (fig.   1h),   and   divided   the   track   in   3   cm   bins.   Each   bin   thus  
represents   a   given   state,   and   while   visualizing   the   activity   of   neuron   #4   for   each   run,   it   is  
apparent   that   this   cell   displays   some   spatial   tuning   (fig.   1i).   We   thus   computed     for (A )  P S  
that   cell   and   found   a   peak   joint   probability   value   of   0.78   at   ~64.5   cm   from   the   left   hand   side  
of   the   track   (fig.   1j).  

 
1.3.   Probability   density   function   (PDF)  

It   is   noteworthy   that   while     and     are   very   informative   on   the (A )  P S (A )  P
c

S  
relationship   between   cell   activity   and   behavior,   they   do   not   necessarily   give   much   information  
about   state   specificity.   In   our   example,   a   cell   could   very   well   be   active   78%   in   every  
behavioral   state   While   this   is   quite   a   high   value,   it   would   be   rather   hard   to   make   conclusion  
on   whether   it   would   encode   specific   external   variables   or   not.   Therefore,   another   step   can   be  
taken   to   normalize   these   values   by   simply   dividing   each   joint   probability   by   the   sum   of   joint  
probabilities   for   every   state   (for    N    number   of   states).   Because   the   sum   of   all   values   of   a  
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normalized   distribution   is   1,   this   type   of   representation   is   also   termed   probability   density  
function   or   PDF:  

 
(5)  DF (i)P =   P (A S )x

(A S )∑
N

i=1
P

i

 

 
Where    i    is   a   given   state   (e.g.   a   particular   location   on   the   linear   track),   PDF   informs   on   the  
specificity   of   neuronal   activity   against   behavioral   states,   regardless   of   the   activity   rate   of   the  
neuron.   It   is   also   possible   to   further   summarize   the   state-specificity   of   neuronal   coding   with   a  
single   value.   The   Kullback-Leibler   divergence   (KLD)   can   be   used   to   compare   our   PDF   to   a  
uniform   distribution    U :  

 

(6) DF (i) logD
KL  =   ∑

N

i=1
P 2 U (i)

PDF (i)  

 
Because   a   uniform   distribution   is   equivalent   to   a   PDF   with   the   same   value   ,   equation   (5) 1

N
 

can   be   simplified   to:  
 

(7) DF (i) log (PDF (i) )D
KL  =   ∑

N

i=1
P 2 N  

 
Since   we   use   a   log   base   2,   equation   (6)   and   (7)   can   be   expressed   in   bits   of   information.  

A   helpful   analogy   would   be   to   consider   the   number   of   coin   flips   required   to   accurately   predict  
the   position   of   the   mouse   on   the   linear   track   given   that   the   cell   is   active.   In   the   event   where   a  
neuron   is   equally   active   during   every   state,   the   PDF   would   be   flat   (i.e.   it   would   take   the   same  
value   at   every   behavioral   state)   and   the   KLD   would   be   equal   to   zero.   In   our   example,   cell   #4  
displays   2.21   bits   of   information   (fig.   1k).  
 

1.4.   Confidence   testing  

One   current   issue   with   calcium   imaging   is   photobleaching,   which   prevents   long  
recordings   and   thus   restricts   the   sampling   of   both   neuronal   activity   and   behavioral   data.  
Experimenters   can   thus   be   frequently   faced   with   one   of   four   cases:   first,   sampling   of   both  
behavior   and   neuronal   activity   are   sufficient,   and   there   is   no   apparent   relationship   between  
these   two   variables   (fig.   1l,   case   1).   Secondly,   sampling   is   sufficient   and   there   is   a   very   clear  
relationship   between   behavior   and   neuronal   activity   (fig.   1l,   case   2).   Thirdly,   sampling   is   too  
low   to   observe   a   clear   phenomenon   (not   enough   coverage   of   behavioral   states,   sparse  
neuronal   activity;   fig.   1l,   case   3).   Lastly,   behavioral   sampling   is   sufficient,   but   neuronal  
activity   is   sparse   and   while   there   is   an   apparent   relationship   between   behavior   and   neuronal  
activity,   there   is   no   absolute   confidence   that   this   could   indeed   be   the   case   (fig.   1l,   case   4).   One  
solution   we   propose   to   this   problem   is   to   confront   the   actual   data   to   a   null   hypothesis   that  
there   is   no   relationship   between   behavior   and   neuronal   activity.   To   this   end,   we   generated   a  
distribution   of   tuning   curves   that   are   computed   from   the   actual   calcium   trace,   but   that   has  
been   shifted   in   time   so   that   any   potential   relationship   to   behavior   is   lost.   The   shuffling   method  
we   propose   is   to   take   a   random   time   point   in   the   data,   and   swap   the   two   segments   (AB  
becomes   BA;   fig.   1m).   We   recommend   this   shuffling   method   because   it   preserves   the  
temporal   nature   of   calcium   transients   and   leads   to   more   conservative   results,   as   opposed   to   a  
complete   randomization   of   every   data   point   which   often   gives   rise   to   very   non-physiological  
data.   The   choice   of   a   null   hypothesis   should   however   be   determined   carefully   depending   on  
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the   nature   of   the   question   asked.   In   our   example,   shuffling   the   calcium   trace   temporally   gave  
rise   to   much   lower   joint   probabilities,   with   lower   spatial   specificity   (fig.   1n).   We   performed   n  
=   1000   random   permutations   and   computed   the   mean   and   SEM,   and   compared   it   to   our   actual  
tuning   curve   (fig.   1o).   To   convert   these   values   to   a   normalized   score   that   could   be   used   to  
describe   the   confidence   level   of   our   results,   we   can   z   score   our   actual   data   using   parameters   of  
the   shuffled   distribution:  
 

(8)  z  = (σ )
s

a s
   

 
where    a    is   the   actual   tuning   curve,      the   average   tuning   curve   of   the   surrogate   data,   and   s σ

s
 

the   standard-deviation   of   the   surrogate   data.   This   z-scored   tuning   curve   (fig.   1p)   then  
expresses   the   degree   of   divergence   from   the   surrogate   data.   Typically,   values   above   2   (or  
bellow   -2)   are   considered   significantly   different   from   a   random   distribution,   which   represents  
our   null   hypothesis.   We   can   also   visualize   the   distance   between   our   peak   joint   probability   and  
the   shuffled   distribution   to   assess   the   difference   between   our   data   and   the   probability  
distribution   of   values   under   the   null   hypothesis   (fig.   1q).   We   compared   these   three   different  
metrics   (joint   probability,   PDF,   and   z-score   values)   for   a   variety    of   cells   (supplementary   fig.  
1a-d)   and   confirmed   that   cell   that   did   not   classify   as   place   cells   displayed   peak   z-scores   under  
2.   Importantly,   peak   joint   probability   and   z-scores   were   positively   correlated   (Pearson  
correlation,   R 2    =   0.81,   P   <   0.000,   n   =   417   neurons;   supplementary   fig.   1e).  
 

2.   Bayesian   decoding   of   behavior   from   calcium   imaging   data  

2.1.   Computing   posterior   probabilities  

Extracting   tuning   curves   for   each   individual   neuron   can   shed   light   about   their   activity  
pattern   but   does   not   fully   explain   a   particular   behavior.   Importantly,   the   temporal   coordination  
of   large   neuronal   assemblies   is   likely   to   provide   more   information   about   the   specificity   of  
generated   behaviors.   In   our   example,   we   would   like   to   understand   the   relationship   between  
location   (without   discriminating   left/right   trajectories   at   first)   and   the   activity   patterns   of   a  
large   (~400)   cell   assembly.   To   this   end,   we   develop   a   simple   algorithm   based   on   classical  
Bayesian   inference,   that   typically   takes   the   general   form:  
 

(9) (H |E) P =  
P (E)

P (E|H)   P (H)  
 

where    P(H|E)    represents   the   posterior   probability   of    H    given    E ,    P(E|H)    is   the   probability   of    E  
given    H ,    P(H)    is   the   prior   probability   and   is   an   estimate   of   the   probability   of   the   hypothesis,  
and    P(E)    is   the   probability   of   the   evidence.   In   our   case,   we   would   like   to   estimate   the  
probability   that   a   mouse   is   in   a   given   behavioral   state   (here,   a   particular   location   on   the   linear  
track),   given   the   state   of   each   cell   (active   or   inactive).   Our   equation   then   takes   the   form:  
 

(10) (S|A) P =  
P (A)

P (A|S)  P (S)  
 

where    P(S|A)    is   the   probability   of   the   mouse   to   be   in   a   given   state    S    (in   our   example,   a  
specific   location)   given   that   a   cell   is   active,    P(A|S)    is   the   probability   that   the   cell   is   active  
while   in   a   given   state    S ,    P(S)    is   the   prior   probability   that   the   mouse   is   in   a   given   state,   and  
P(A)    the   probability   that   a   cell   is   active   (this   term   will   also   be   referenced   as   the   'bias'   later   on).  
Both   P( A )   and   P( S )   are   unconditional   probabilities.   In   our   linear   track   example,    P(A|S)  

corresponds   to   the   joint   probability     that   a   cell   fires   in   a   given   location   (fig.   2a). (A )  P S  
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P(S)    can   be   measured   directly   (in   our   case,   it   is   the   general   likelihood   of   finding   the   mouse   in  
any   given   location;   fig.   2a,   teal   line   in   the   bottom   panel)   or   kept   uniform.   In   the   latter   case,   we  
make   no   prior   assumption   about   the   potential   location   of   the   mouse   on   the   linear   track   and  
attribute   equal   probability   for   each   location   (fig.   2a,   orange   line   in   the   bottom   panel).   Note  
that   the   inactivity   of   a   cell   can   also   be   used   to   determine   the   state   of   the   mouse.   Because   of  
the   dichotomy   of   cell   states   (active   or   inactive),   the   corresponding   equation   can   be   derived:  
 

(11) (S|A ) P
c  =   1 P (A)

[1 P (A|S)]  P (S)  
 

where    P(S|A 
c 
)    represents   the   probability   of   the   mouse   being   in   a   given   state    S    given   that   a   cell  

is   inactive.   To   predict   the   mouse   state   using   multiple   neurons,   it   is   more   efficient   to   take   the  
product   (rather   than   the   sum)   of    a   posteriori    probabilities,   because   null   values   translate   into  
an   absolute   certainty   that   the   mouse   cannot   be   in   a   given   state   considering   the   activity   of   a  
given   neuron.   It   is   therefore   crucial   that   tuning   curves   are   properly   established,   otherwise  
decoding   could   become   impossible   due   to   null   factorization.   We   can   then   rewrite   our   equation  
to   include   tuning   curves   from   multiple   neurons:  
 

(12)  y = ∏
N

i=1
 

P (A)
P (A|S)  P (S)  

 
where    y    is   a   vector   of    a   posteriori    behavioral   states   and    N    corresponds   to   the   number   of  
neurons   used.   In   our   example,   we   can   measure   the   activity   of   every   cell   at   a   given   time   point  
(fig.   2b),   derive   the   associated   tuning   curves   (fig.   2c,   top   panel),   and   corresponding   posterior  
location   probability   (fig.   2c,   bottom   panel).   Importantly,   while   equation   (12)   is   fundamentally  
correct,   the   repeated   product   of   small   values   (such   as   probability   values   that   are   comprised  
between   0   and   1)   will   lead   to   numerical   underflow   when   computed   on   most   softwares  
available   currently.   Although,   this   is   not   a   problem   when   decoding   activity   from   a   small  
number   of   cells,   numerical   underflow   will   prevent   decoding   activity   from   large   sets   of   cell  
assemblies.   One   solution   to   this   problem   is   to   perform   computations   on   a   log   scale.  
Additionally,   using    exp(x)-1    and    log(1+x)    allows   very   small   values   to   converge   toward    x  
instead   of   0.   Our   equation   can   then   take   the   form:  
 

(13)   xp [ og(1 ) ]y = e ∑
N

i=1
l +  

P (A)
P (A|S)  P (S) 1  

 
Finally,   while    y    is   a   vector   of   states   (corresponding   to   specific   locations   on   the   linear   track   in  
our   example),   the   mouse   can   only   be   in   one   location   at   a   given   time   point.   We   can   thus  
convert   y   to   a   probability   density   function   for   each   time   point,   and   take   the   maximum    a  

posteriori    (MAP)   as   the   decoded   state:  
 

(14)   rg max exp [ og(1 ) ]y
︿ = a ∑

N

i=1
l +  

P (A)
P (A|S)  P (S) 1  

 
where     is   the   decoded   (i.e.   most   likely)   state. y

︿   
 

2.2.   Assessing   decoding   accuracy  
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In   our   example,   we   can   compute   the   posterior   probabilities   for   each   timestep   based   on  
neuronal   activity,   and   compare   the   actual   versus   decoded   location   on   the   linear   track   (fig.   2d).  
To   visualize   which   states   are   associated   with   better/worse   decoding   error,   we   can   compute   a  
confusion   matrix,   which   expresses   the   portion   of   time   points   where   the   actual   state   was  
successfully   decoded   (fig.   2e).   This   representation   is   also   useful   to   identify   which   states   are  
more   difficult   to   decode.   While   confusion   matrices   are   useful,   they   are   not   practical   when   it  
comes   to   summarizing   decoding   accuracy   for   large   datasets   and   perform   statistical   analyzes.  
We   thus   propose   two   metrics:   (1)   decoding   agreement,   and   (2)   decoding   error.   We   define  
decoding   agreement   as   the   portion   of   time   where   the   exact   state   of   the   mouse   was  
successfully   decoded:  
 

(15) ecoding agreement   d =  
Total time

time points successfully decoded  
 

Therefore,   decoding   agreement   is   a   value   between   0   and   1.   For   instance,   a   value   of   0.5   means  
that   50   %   of   time   points   have   been   successfully   decoded.   This   approach   is   quite   conservative:  
when   the   decoded   state   is   only   one   bin   away   from   the   actual   behavioral   state,   it   would   lead   to  
a   null   decoding   agreement   while   still   being   close   to   reality.   Therefore,   another   metric  
commonly   used   in   decoding   analyzes   is   decoding   error,   which   is   the   distance   between   the  
decoded   behavior   and   the   actual   behavior.   Note   that   in   our   case,   the   distance   is   explicitly  
euclidean   and   can   be   expressed   in   cm.   For   one-dimensional   data,   equation   (16)   can   be   used   to  
compute   decoding   error:   
 

(16) ecoding error  |decoded state  actual state|  d =      
 

Decoding   error   may   or   may   not   be   useful   depending   on   the   variables   under   study.   For  
instance,   in   the   case   of   auditory   stimuli,   the   distance   between   tone   frequencies   might   not  
necessarily   be   as   meaningful   as   an   actual   spatial   distance,   as   it   is   the   case   in   our   example.  
Moreover,   its   computation   will   be   different   for   two-dimensional   space,   or   head   orientation,   to  
list   a   few   of   the   variables   commonly   studied.   Importantly,   to   assess   decoding   accuracy,   it   is  
recommended   not   to   test   the   decoder   on   epochs   that   were   used   to   train   the   Bayesian   decoder.  
Some   epochs,   such   as   periods   of   immobility   in   our   case,   can   be   excluded   for   both   training   and  
testing   altogether.   We   propose   here   to   train   and   test   Bayesian   decoders   on   non-overlapping  
sets   of   random   epochs,   repeat   the   process   several   times,   and   compute   the   average   decoding  
agreement   and   decoding   error   (fig.   2g).   Using   this   approach,   we   found   in   our   conditions   that  
using   a   uniform   prior   led   to   higher   decoding   agreement   (0.37   ±   0.002,   n   =   30   trials;   data  
expressed   as   mean   ±   SEM)   compared   to   using   observed   prior   probabilities   (0.07   ±   0.004,   n   =  
30   independent   trials),   or   replacing   the   biasing   term   P(A)   by   1   (condition   which   we   term  
'unbiased'   here;   0.07   ±   0.001,   n   =   30   independent   trials;   1ANOVA,   F (2,   87)    =   4521,   P   <   0.0001;  
fig.   2h).   Similarly,   decoding   error   was   lower   using   a   uniform   prior   (8.12   ±   0.08   cm,   n   =   30  
independent   trials)   compared   to   using   an   observed   prior   (13.18   ±   0.15   cm,   n   =   30   independent  
trials)   or   in   unbiased   conditions   (49.34   ±   0.08   cm,   n   =   30   trials;   F (2,   87)    =   44710,   P   <   0.0001;  
fig.   2i).  
 

2.3.   Adding   temporal   constraints  

Although   decoding   can   be   performed   for   each   individual   time   point,   this   temporal  
independence   can   lead   to   spurious   results   (see   decoded   trajectory   in   fig.   2d,   pink   line   in   the  
bottom   panel).   Rationaly,   if   the   mouse   is   at   one   end   of   the   linear   track,   it   is   extremely   unlikely  
to   be   found   at   the   opposite   end   on   the   next   frame.   There   are   several   ways   to   solve   this  
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problem   and   improve   state   estimation.   A   first   method   could   to   build   a   transition   matrix   (such  
as   one   that   would   be   used   in   a   HMM),   and   attribute   null   values   to   impossible   transitions   (such  
as   going   from   one   end   of   the   linear   track   to   the   other),   as   well   as   uniform   probabilities   to  
adjacent   states.   One   could   then   replace   the   observed   or   uniform   prior   P(S)   by   the   appropriate  
realistic   transition   values   at   each   individual   timestep.   Another   method   is   temporal   smoothing.  
In   that   case,   we   would   decode   the   mouse   state   using   the   following   equation:  
 

(17)   rg max exp [ og(1 ) ]y
︿ = a ∑

t

i=0
l + x

t
1  

 
where    t    is   a   given   timestep,   and    x 

t     the   a   posteriori   distribution   of   states   at   timestep    t .   Note   that  
fundamentally,   the   exp-sum-log   is   again   only   used   to   avoid   numerical   underflow.   The  
advantage   of   this   method   is   that   it   does   not   require   to   determine   transition   probabilities  
experimentally.   For   instance,   if   the   state   under   study   is   location,   the   mouse   cannot   travel   from  
one   end   to   the   other   over   the   course   of   one   timestep.   On   the   other   hand,   if   the   state   represents  
head   direction   (or   any   circular   variable),   the   two   ends   of   the   state   vector   (0   and   360º)  
represent   similar   states,   so   such   transition   would   be   very   likely.   Because   this   adjacence   would  
be   represented   in   the   individual   neurons   tuning   curves,   applying   temporal   filtering   using   the  
equation   (17)   would   lead   to   a   better   reconstruction   regardless   of   the   behavior   under   study.   On  
the   other   hand,   if   transition   matrices   are   established    a   priori ,   such   property   would   have   to   be  
assumed   or   determined   experimentally.     In   our   conditions,   temporal   filtering   can   greatly  
improve   reconstruction   and   remove   erratic   'jumps'   that   can   sometimes   occur   during   decoding  
(fig.   3a).  
 

2.4.   Parameter   optimization  

It   is   possible   to   optimise   every   parameter   to   find   the   best   conditions   to   decode  
neuronal   activity.   For   instance,   we   performed   decoding   on   30   sets   of   random   and  
non-overlapping   epochs   using   several   temporal   filtering   values   ranging   from   0   (no   filtering)  
to   2   s,   and   found   that   better   reconstructions   could   be   achieved   using   a   0.5   s   filtering   window,  
leading   to   smaller   decoding   errors   (4.73   ±   0.04   cm,   n   =   30   independent   trials   per   filtering  
window;   1ANOVA,   F (8,   261)    =   1002,   P   <   0.0001;   fig.   3b).   Interestingly,   the   bigger   the   temporal  
filtering   window,   the   lower   the   decoding   agreement   (Pearson   correlation,   R 2    =   0.96,   P   <  
0.0001,   n   =   30   independent   trials   per   filtering   window;   fig.   3c).   As   expected,   the   more   cells  
used   during   the   reconstruction,   the   lower   the   decoding   error   (Pearson   correlation,   R 2    =   0.75,   P  
<   0.0012,   n   =   30   independent   trials   per   cell   number;   fig.   3d).   Likewise,   a   higher   number   of  
cells   was   associated   with   higher   decoding   agreement   (Pearson   correlation,   R 2    =   0.87,   P   <  
0.0001,   n   =   30   independent   trials   per   cell   number;   fig.   3e).   We   also   tested   the   influence   of   the  
training/testing   length   ratio   on   reconstruction   accuracy   and   found   that   good   reconstruction   can  
be   achieved   by   using   testing   epochs   that   represent   beyond   30   %   of   the   total   experiment  
length.   Mean   decoding   error   decreased   as   the   training   set   portion   increased   (Pearson  
correlation,   R 2    =   0.64,   P   =   0.01,   n   =   30   independent   trials   per   training   set   portion   tested;   fig.  
3f),   while   mean   decoding   agreement   increased   (Pearson   correlation,   R 2    =   0.79,   P   =   0.0013,   n  
=   30   independent   trials   per   training   set   portion   tested;   fig.   3g).   We   next   assessed   the  
robustness   of   tuning   curves   to   random   noise.   To   this   end,   we   computed   tuning   curves   as  
described   previously,   then   replaced   a   portion   (between   0   and   1,   with   0.1   incremental   steps)   of  
the   tuning   curves   data   with   random   probability   values   (fig.   3h).   Addition   of   noise   was  
correlated   with   decreased   decoding   agreement   (Pearson   correlation,   R 2    =   0.80,   P   =   0.0014,   n  
=   30   independent   trials   per   noise   amount;   fig.   3i),   and   increased   decoding   error   (Pearson  
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correlation,   R 2    =   0.77,   P   =   0.0004,   n   =   30   independent   trials   per   noise   amount;   fig.   3j).  
Finally,   we   tested   the   impact   of   smoothing   tuning   curves   on   decoding   accuracy.   Gaussian  
smoothing   is   often   performed   in   the   context   of   place   cell   studies,   presumably   to   improve   the  
visualization   of   assumed   place   fields   (O’Keefe   and   Burgess,   1996;   Hetherington   and   Shapiro,  
1997).   In   our   conditions,   we   found   that   gaussian   smoothing   of   tuning   curves   was  
systematically   associated   with   decreased   decoding   agreement   (Pearson   correlation,   R 2    =   0.92,  
P   =   0.0025;   n   =   30   independent   trials   per   gaussian   sigma   value;   fig.   3l),   together   with  
increasing   decoding   error   (Pearson   correlation,   R 2    =   0.97,   P   =   0.0003,   n   =   30   independent  
trials   per   gaussian   sigma   value;   fig.   3m).  
 

2.5.   Optimal   method   to   binarize   neuronal   activity  

In   our   conditions,   we   used   a   simple   binarizing   algorithm   that   transformed   rising  
periods   of   calcium   transients   into   periods   of   activity.   We   compared   this   method   to   a   simple  
z-score   threshold   where   all   activity   above   2   standard-deviations   is   considered   active,   and  
deconvolved   signal,   where   all   values   above   zero   are   considered   as   periods   of   activity.   To  
quantify   the   accuracy   of   these   methods,   we   performed    in   vitro    electrophysiological   recordings  
in   the   cell   attached   configuration,   in   conjunction   with   1-photon   calcium   imaging  
(supplementary   fig.   2a).   We   extracted   calcium   transients   from   the   recorded   cell  
(supplementary   fig.   2b)   so   as   to   contrast   these   signals   with   ground   truth   spiking   activity  
(supplementary   fig.   2c).   Interestingly,   calcium   transients   appeared   much   longer   in   these  
conditions,   and   our   binarizing   method   only   matched   the   later   portion   of   transients   rising  
periods   (supplementary   fig.   2d).   On   the   other   hand,   using   a   deconvolved   trace   to   estimate  
neuronal   activity   resulted   in   a   higher   number   of   action   potentials   successfully   detected   as  
active   periods   (0.94   ±   0.032)   compared   to   our   binarizing   algorithm   (0.49   ±   0.067)   or   a   simple  
z-score   threshold   (0.65   ±   0.075;   1ANOVA,   F (2,   108)    =   13.71,   P   <   0.0001,   n   =   37   detection  
windows;   supplementary   fig.   2e).   Furthermore,   both   the   portion   of   true   negatives   (epochs  
binarized   as   inactive,   that   indeed   contained   no   action   potential)   and   the   portion   of   true  
positives   (epochs   binarized   as   active,   that   indeed   contained   at   least   one   action   potential)   were  
comparable   between   methods   (supplementary   fig.   2f   &   g   respectively).  

Interestingly,   these    in   vitro    results   did   not   compare   to   our    in   vivo    conditions.   When  
computing   tuning   curves   for   the   neuron   presented   in   fig.   1,   using   a   simple   threshold   resulted  
in   a   larger   place   field,   while   binarizing   data   from   a   deconvolved   trace   resulted   in   two   peaks  
(supplementary   fig.   3a).   While   there   are   no   ground   truth   data   to   conclude   which   method   is  
best   to   compute   tuning   curves,   decoding   analyzes   can   shed   a   light   on   this   question,   because  
animal   behavior   can   be   used   a   ground   truth   data   (the   higher   the   decoding   accuracy,   the   closer  
to   ground   truth).   We   thus   trained   a   Bayesian   decoder   using   tuning   curves   computed   from  
binarized   activity   derived   using   a   simple   z-score   threshold,   a   deconvolved   trace,   or   using   our  
binarizing   method.   We   found   that   using   both   our   binarizing   method   (4.74   ±   0.0039   cm)   or   a  
deconvolved   trace   (4.81   ±   0.048   cm)   led   to   lower   decoding   errors   compared   to   using   a   simple  
threshold   (5.18   ±   0.051   cm,   F (2,   87)    =   26.22,   P   <   0.0001,   n   =   30   independent   trials   for   each  
binarizing   method.)  
 

2.5.   Decoding   two-dimensional   behavioral   variables  

The   decoding   method   presented   above   is   scalable   to   a   large   variety   of   behaviors.  
However,   sometimes   it   can   be   useful   to   represent   behaviors   in   more   than   one   dimension.   This  
is   for   instance   the   case   with   spatial   location   in   larger   environments.   We   will   now   show   that  
the   principles   presented   above   can   easily   be   translated   to   more   dimensions.   To   this   end,   we  
recorded   neuronal   activity   using   calcium   imaging   in   a   mouse   exploring   an   open-field   for   the  
first   time.   Calcium   transients   are   then   extracted   and   binarized,   along   with   the   x   and   y   mouse  
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position   (fig.   4a).   It   is   possible   to   plot   periods   of   activity   of   one   cell   in   2D   space,   and   color  
code   this   activity   to   visualize   the   stability   of   such   activity   in   time/space   (fig.   4b).   Relative  
occupancy   (fig.   4c)   and   joint   probabilities   can   be   computed   for   each   state   (3   x   3   cm   spatial  
bin)   the   same   way   as   presented   above   (fig.   4d).   To   assess   the   confidence   of   such   result,   it   is  
also   possible   to   shuffle   actual   data   and   compute   joint   probability   maps   (fig.   4e).   From   these  
shuffled   joint   probability   maps,   we   can   derive   the   standard   deviation   (fig.   4f),   average   joint  
probability   (fig.   4g),   and   compute   a   z-scored   map   (fig.   4h)   using   equation   (8).   A   significant  
place   field   can   be   considered   as   the   area   exceeding   2   standard-deviations.   The   specificity   of  
such   activity   can   also   be   assessed   by   normalizing   the   joint   probability   map   into   a   PDF   using  
equation   (5),   and   KLD   can   inform   on   the   information   carried   by   the   neuron   under   study   (fig.  
4i).   Importantly,   it   is   noteworthy   that   the   standard-deviation   of   the   shuffled   distribution   is  
negatively   correlated   to   the   relative   occupancy   (Pearson   correlation,   R 2    =   0.47,   P   <   0.0001;  
fig.   4j).   This   suggests   that   for   states   with   high   joint   probabilities,   the   z-score   will   be   higher   if  
the   state   displays   high   occupancy,   and   lower   if   the   state   displays   low   occupancy.   We   also  
assessed   the   effect   of   temporal   filtering   on   the   quality   of   the   reconstructions   and   found   that   in  
our   conditions,   a   1.6   s   filtering   window   yielded   best   results   (1ANOVA,   F (39,   1160)    =   72.31,   P   <  
0.0001,   n   =   30   independent   trials   per   temporal   filter   window   size;   fig.   4k).   As   for  
one-dimensional   data,   gaussian   filtering   of   tuning   maps   (2D   tuning   curves)   consistently  
increased   the   decoding   error   (Pearson   correlation,   R 2    =   0.99,   P   <   0.0001,   n   =   30   independent  
trials   per   gaussian   sigma   value;   fig.   4l).  
 

3.   Reconstruction   of   neuronal   activity   from   behavior   and   model   refinement  

The   ultimate   goal   of   decoding   neuronal   activity   is   to   improve   our   understanding   of   the  
relationship   that   may   exist   between   neurons   and   behavior.   In   other   terms,   in   addition   to  
predicting   behavior   from   neuronal   activity,   one   should   be   able   to   predict   neuronal   activity  
from   behavior.   

 
3.1   Bayesian   inference   of   neuronal   activity   given   behavioral   state  
This   can   easily   be   achieved   after   determining   tuning   curves   and   using   an   equation  

analogous   to   equation   (10):  
 

(18) (A|S) P =  
P (S)

P (S|A)  P (A)  
 

This   time   we   want   to   determine   ,   the   probability   that   a   neuron   is   active   given   that   the (A|S)P  
animal   is   in   state   S.   Because   the   date   used   to   generate   tuning   curves   is   binary   activity   (active  
or   inactive),   we   can   reconstruct   binary   neuronal   activity   by   considering   >   0.5   as (A|S)P  
representing   activity   for   a   given   neuron.   0.5   is   of   course   a   subjective   threshold   that   will   lead  
to   some   errors   and   depends   on   the   way   tuning   curves   are   determined.   If   there   is   too   much  
uncertainty   in   the   activity   rate   of   a   neuron   in   a   given   behavioral   state,   subsequent  
reconstructions   will   suffer   from   that   uncertainty.  

 
3.2   Model   refinement   by   inclusion   of   both   location   and   orientation   variables  

In   our   linear   track   example,   it   has   been   known   for   a   long   time   that   place   cell   activity  
on   a   linear   track   tend   to   be   unidirectional:   some   cell   will   fire   in   one   given   location,   but   only  
when   being   traversed   in   one   direction   (McNaughton   et   al.,   1983;   Markus   et   al.,   1995).   If   the  
peak   joint   probability   of   a   neuron   that   displays   a   prominent   place   field   is   only   0.5,   it   could   be  
due   to   the   fact   that   this   cell   fires   only   50   %   of   the   time,   when   the   animal   is   running   in   one  
direction,   but   not   in   the   other.   We   will   now   demonstrate   that   it   is   possible   to   predict   neuronal  
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activity   from   estimated   tuning   curves,   and   that   refining   our   behavioral   states   by   including  
directional   information   can   increase   our   success   rate.   To   this   end,   we   extracted   tuning   curves  
from   neurons   being   active   on   the   linear   track   using   either   location   only   (fig.   5a),   or   by  
considering   both   location   and   direction   (fig.   5b).   Note   that   using   the   later   method,   the   peak  
joint   probabilities   greatly   increase.   When   comparing   the   peak   joint   probabilities   obtained  
from   the   same   cells   but   using   either   technique,   it   seems   that   most   cells   joint   probability  
increase   when   including   direction   information   (Pearson   correlation,   r   =   0.8781,   R 2    =   0.77,   P   <  
0.0001;   fig.   5c)   although,   this   is   not   the   case   for   a   minority   of   cells,   indicating   that   some   cells  
still   display   preferential   activity   for   absolute   location,   regardless   of   direction.   We   then  
reconstructed   neuronal   activity   using   the   same   protocol   used   in   behavior   reconstruction  
(non-overlapping   training/testing   sets   of   data   representing   50   %   of   the   total   experiment   time).  
To   compare   the   quality   of   reconstructions,   we   quantified   the   portion   of   activity   that   was  
correctly   reconstructed   (fig.   5e).   Because   inactivity   represents   most   of   the   neuronal   activity  
on   a   frame-by-frame   basis,   focusing   only   on   neuronal   activity   using   this   method   is   more  
conservative.   Importantly,   we   found   that   including   the   mouse   direction   in   addition   to   its  
location   improved   reconstruction   drastically:   reconstruction   success   rate   went   from   0.1494   ±  
0.0009   (n   =   30   independent   trials)   when   only   using   the   mouse   location   when   establishing  
tuning   curves,   to   0.4476   ±   0.0012   (n   =   30   independent   trials)   when   using   both   location   and  
direction   (two-tailed   unpaired   t-test,   t 58    =   189.8,   P   <   0.0001).  
 

Discussion  

We   show   here   that   representing   neuronal   activity   extracted   from   calcium   imaging   data  
by   a   binary   state   (active   vs   inactive)   is   sufficient   to   approximate   the   state   of   a   neuronal  
assembly.   While   such   binarization   was   previously   proposed   as   an   intermediate   step   to   perform  
decoding   (Ziv   et   al.,   2013),   here   we   generalize   this   principle   and   propose   several   additional  
metrics   to   describe   the   strength   of   neuronal   tuning   to   behavioral   variables.   In   particular,  
several   methods   can   be   used   to   binarize   calcium   activity,   but   because   the   rise   time   of   calcium  
transients   contains   the   vast   majority   of   action   potentials,   binarizing   methods   should   aim   at  
labeling   specifically   these   epochs   as   periods   of   activity.   Importantly,   optimizing   methods   and  
parameters   using   in   vitro   conditions   cannot   necessarily   be   translated   to   data   acquired   in   vivo  
because   calcium   transients   differ   fundamentally   across   conditions,   even   if   most   variables   are  
the   same   (mouse   strain/age,   viral   construct   and   dilution).  

Information   on   neuronal   coding   can   be   extracted   using   simple   methods   and   minimal  
data   processing.   Importantly,   three   metrics   can   be   used   to   describe   neurons:   the   joint  
probability   of   being   active   in   a   given   behavioral   state,   the   specificity   of   such   activity   (that   can  
be   further   summarized   by   a   single   value   using   the   Kullback-Leibler   divergence),   and   z-scored  
tuning   curve   (derived   from   shuffled   surrogates).   Using   such   probabilistic   approach   allows   to  
perform   Bayesian   decoding   using   joint   probability   values   along   with   unconditional  
probabilities   computed   from   neuronal   activity   and   animal   behavior.   We   found   that   z-scored  
tuning   curves   are   significantly   correlated   with   joint   probabilities,   while   in   parallel,   behavioral  
states   with   low   occupancy   display   more   variability   in   the   surrogate   data,   which   indicates   that  
higher   z-scores   can   be   achieved   when   the   sampling   of   behavioral   states   is   higher.   On   the   other  
hand,   the   associated   PDF   and   KLD   only   inform   on   specificity,   not   on   the   neuronal   coding  
reliability.   Thus,   these   two   latter   metrics   alone   cannot   accurately   predict   the   strength   of  
neuronal   coding.   Nevertheless,   these   methods   are   useful   to   describe   neuronal   activity   in  
function   of   behavior,   and   models   can   be   derived   to   predict   behavior   from   neuronal   activity  
and   vice   versa.   The   method   we   describe   here   can   be   applied   to   any   type   of   behavior,   and  
while   we   present   examples   of   one-   and   two-dimensional   data,   the   number   of   dimensions  
being   studied   is   not   a   limiting   factor.  
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In   our   conditions,   we   found   that   minimal   a   priori   (uniform   distribution   of   states  
likelihood)   yielded   better   results.   Adding   temporal   constraints   could   decrease   decoding   error  
but   not   decoding   agreement.   Consequently,   these   filters   have   to   be   optimized   on   a   case   by  
case   basis   depending   on   the   goal   of   the   study.   Interestingly,   smoothing   probability  
distributions   had   negative   effects   in   our   conditions,   most   likely   due   to   the   asymmetric   nature  
of   place   fields   when   unfiltered.   Such   post-processing   methods   thus   have   to   be   used   with  
caution,   and   while   they   can   improve   the   visualization   of   particular   phenomena   such   as   place  
fields,   they   can   result   in   spurious   interpretations.  

Finally,   we   propose   here   a   new   method   to   predict   and   reconstruct   neuronal   activity  
from   previous   beliefs   of   behavior-neuronal   activity   relationships.   This   method   is   useful   in  
refining   the   behavioral   components   that   can   predict   neuronal   activity.   As   such,   the   quality   of  
models   that   can   be   drawn   from   observations   largely   depends   on   the   very   nature   and   accuracy  
of   these   observations.   In   particular,   increasing   the   amount   of   information   concerning   a   certain  
behavior   can   result   in   a   refinement   of   the   underlying   model   of   neuronal   activity.   Perfect  
predictions   of   neuronal   activity   on   the   simple   basis   of   behavior   is   a   difficult   endeavor  
however,   because   such   activity   is   not   only   determined   by   external   variables   (behavior)   but  
also   internal   variables   (animal   state,   and   pre-synaptic   activity   that   is   mostly   unobserved).  
Along   those   lines,   whether   one   assumes   dependence   or   independence   of   neuronal   activity  
(may   it   be   on   the   basis   of   neuroanatomical   or   physiological   data)   could   also   improve   the  
quality   of   predictions.   Rather   than   proposing   a   linear   process,   the   methods   presented   here  
should   be   taken   as   a   continuous   process   that   will   help   neuroscientist   to   progressively   refine  
their   theories   based   on   increasingly   complex   sampled   behavior,   to   ultimately   improve  
predictions   of   both   behavior   and   neuronal   activity,   as   well   as   producing   and   communicating  
metrics   that   could   be   scaled   across   different   systems.  
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Materials   and   methods  

Surgical   procedures  

All   procedures   were   approved   by   the   McGill   University   Animal   Care   Committee   and  
the   Canadian   Council   on   Animal   Care.   For   the   linear   track   and   open   field   data,   one   adult  
mouse   (~   2   months)   was   anesthetized   with   isoflurane   (5%   induction,   0.5-2%   maintenance)  
and   placed   in   a   stereotaxic   frame   (Stoelting).   The   skull   was   completely   cleared   of   all  
connective   tissue,   and   a   ~500   μm   hole   was   drilled.   We   then   injected   the  
AAV5.CamKII.GCaMP6f.WPRE.SV40   virus   (Addgene   #   100834;   200   nL   at   1   nl.s -1 )   in  
hippocampal   CA1   using   the   following   coordinates:   anteroposterior   (AP)   -1.86   mm   from  
bregma,   mediolateral   (ML)   1.5   mm,   dorsoventral   (DV)   1.5   mm.   2   weeks   following   the  
injection,   the   mouse   was   anesthetized   with   isoflurane   and   the   skull   was   cleared.   A   ~2   mm  
diameter   hole   was   perforated   in   the   skull   above   the   injection   site.   An   anchor   screw   was   placed  
on   the   posterior   plate   above   the   cerebellum.   The   dura   was   removed,   and   the   portion   of   the  
cortex   above   the   injection   site   was   aspirated   using   a   vacuum   pump,   until   the   corpus   callosum  
was   visible.   These   fiber   bundles   were   then   gently   aspirated   without   applying   pressure   on   the  
underlying   hippocampus,   and   a   1.8   mm   diameter   gradient   index   (GRIN;   Edmund   Optics)   lens  
was   lower   at   the   following   coordinates:   AP   -1.86   mm   from   bregma,   ML   1.5   mm,   DV   1.2   mm.  
The   GRIN   lens   was   permanently   attached   to   the   skull   using   C&B-Metabond   (Patterson  
dental),   and   Kwik-Sil   ( World   Precision   Instruments )   silicone   adhesive   was   placed   on   the  
GRIN   to   protect   it.   4   weeks   later,   the   silicone   cap   was   removed   and   CA1   was   imaged   using   a  
miniscope   mounted   with   an   aluminium   base   plate   while   the   mouse   was   under   light   anesthesia  
(~0.5   %   isoflurane)   to   allow   the   visualization   of   cell   activity.   When   a   satisfying   field   of   view  
was   found   (large   neuronal   assembly,   visible   landmarks),   the   base   plate   was   cemented   above  
the   GRIN   lens,   the   miniscope   was   removed,   and   a   plastic   cap   was   pace   on   the   base   plate   to  
protect   the   GRIN   lens.  

 
Behavior   and   miniscope   recordings  

After   baseplating,   the   mouse   was   gently   handled   for   ~5   min   per   day   for   7   days.   The  
mouse   was   then   water-scheduled   (2   h   access   per   day),   and   place   on   a   1   m   long   linear   track   for  
15   min.   10%   sucrose   in   water   rewards   were   placed   at   each   end   of   the   linear   track,   and   the  
mouse   had   to   consume   one   reward   before   getting   the   next   one   delivered.   Miniscope  
recordings   were   performed   at   30   Hz   for   15   min   every   day,   and   decoding   was   performed   on  
the   last   training   day   (day   7).   The   following   week,   the   mouse   was   allowed   to   freely   explore   for  
15   min   a   45   x   45   cm   dark   gray   open-field   that   contained   visual   cues,   and   miniscope  
recordings   were   performed   at   30   Hz   for   the   entire   duration   of   the   exploration   (15   min).  

 

Miniscope   and   behavior   video   acquisition  

Miniscopes   were   manufactured   using   open   source   plans   available   on   www.miniscope  
.org   and   as   described   previously   (Ghosh   et   al.,   2011;   Cai   et   al.,   2016;   Aharoni   and   Hoogland,  
2019).   Imaging   data   was   acquired   using   a   CMOS   imaging   sensor   (Aptina,   MT9V032)   and  
multiplexed   through   a   lightweight   coaxial   cable.   Data   was   acquired   using   a   data   acquisition  
(DAQ)   box   connected   via   a   USB   host   controller   (Cypress,   CYUSB3013).   Data   was   recorded  
using   a   custom   written   acquisition   software   relying   on   Open   Computer   Vision   (OpenCV)  
librairies.   Video   streams   were   recorded   at   ~30   frames   per   second   (30   Hz)   and   saved   as  
uncompressed   .avi   files.   Animal   behavior   was   recorded   using   a   webcam,   and   the   DAQ  
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software   simultaneously   recorded   timestamps   for   both   the   miniscope   and   behavior   camera   in  
order   to   perform   subsequent   alignment.  

 

Calcium   imaging   analysis  

Calcium   imaging   video   were   analyzed   using   the   MiniscopeAnalysis   pipeline  
(https://github.com/etterguillaume/MiniscopeAnalysis).   In   particular,   we   first   applied   rigid  
motion   correction   using   NoRMCorre   (Pnevmatikakis   and   Giovannucci,   2017).   1000   frame  
videos   were   then   concatenated   into   a   large   video   file   after   a   2   fold   spatial   downsampling.  
Spatial   components   as   well   as   calcium   traces   were   then   extracted   using   CNMFe   (Zhou   et   al.,  
2018)   using   the   following   parameters:   gSig   =   3   pixels   (width   of   gaussian   kernel),   gSiz   =   15  
pixels   (approximate   neuron   diameter),   background_model   =    'ring',   spatial_algorithm   =   'hals',  
min_corr   =   0.8   (minimum   pixel   correlation   threshold),   min_PNR   =   8   (minimum  
peak-to-noise   ratio   threshold).     When   applicable,   calcium   traces   were   deconvolved   with  
OASIS   (Friedrich   et   al.,   2017),   using   an   autoregressive   model   with   order   p   =   1   and   using   the  
'constrained'   method.  

 

In   vitro    patch-clamp   electrophysiology  

One   adult   mouse   (~   2   months)   was   stereotaxically   injected   with   a   GCaMP6f   construct  
(AAV5.CamKII.GCaMP6f.WPRE.SV40   virus,   Addgene   #   100834;   0.4   µL   at   0.06   µl/min)   in  
hippocampal   CA1.   2   weeks   later,   it   was   deeply   anesthetized   using  
ketamine/xylazine/acepromazine   mix   (100,   16,   3   mg/kg,   respectively,   intraperitoneal  
injection),   and   intracardially   perfused   with   cold   N-   methyl-d-glutamine   (NMDG)   recovery  
solution   (4°   C),   oxygenated   with   carbogen   (5%   CO2   /   95%   O2).   The   NMDG   solution  
contained   the   following   (in   mM):   93   NMDG,   93   HCl,   2.5   KCl,   1.2   NaH2PO4,   30   NaHCO3,  
20   HEPES,   25   glucose,   5   sodium   ascorbate,   2   thiourea,   3   sodium   pyruvate,   pH   adjusted   to   7.4  
with   HCl   before   adding   10   MgSO 4    and   0.5   CaCl 2 .   Following   NMDG   perfusion,   brains   were  
quickly   removed   and   immersed   for   an   additional   1   minute   in   cold   NMDG   recovery   solution.  
Coronal   slices   (300   µm)   were   cut   using   a   vibratome   (Leica-VT1000S),   then   collected   in   a  
32°C   NMDG   recovery   solution   for   12   minutes.   Slices   were   transferred   to   room   temperature  
and   oxygenated   artificial   cerebrospinal   fluid   (aCSF)   containing   the   following   (in   mM):   124  
NaCl,   24   NaHCO3,   2.5   KCl,   1.2   NaH2PO4,   2   MgSO4,   5   HEPES,   2   CaCl 2    and   12.5   glucose  
(pH   7.4).   Patch   pipettes   (3–5   MΩ)   were   filled   with   internal   solution,   containing   the   following  
(in   mM):   140   K   gluconate,   2   MgCl2,   10   HEPES,   0.2   EGTA,   2   NaCl,   2   mM   Na2-ATP   and   0.3  
mM   Na2-GTP,   pH   adjusted   to   7.3   with   KOH,   290   mOsm.   Slices   were   transferred   to   a  
submerged   recording   chamber   filled   with   aCSF   (2-3   ml   /min   flow   rate,   30   °C),   continuously  
oxygenated   with   carbogen.   All   reagents   were   purchased   from   Sigma-Aldrich,   unless   stated  
otherwise.   Extracellular   cell-attached   patch-clamp   recordings   were   used   for   monitoring  
spontaneous   cell   firing   activity   from   hippocampal   pyramidal   neurons   expressing   GcAMP6f  
(identified   under   EGFP-fluorescence).   The   recording   pipette   was   held   at   a   potential   of   -70  
mV.   Imaging   of   GcAMP6f-expressing   pyramidal   cells   was   performed   with   a   60x   Olympus  
water   immersion   objective   (LUMPLFLN60X/W,   NA   1.0)   and   acquired   at   10   Hz   using  
Olympus   cellSens   software.   Electrophysiological   signals   were   amplified,   using   a   Multiclamp  
700B   patch-clamp   amplifier   (Axon   Instruments),   sampled   at   20   kHz,   and   filtered   at   10   kHz.  
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Statistics  

GraphPad   Prism   version   6.00   (GraphPad   Software,   La   Jolla,   California   USA).    All   data  
are   presented   as   mean   ±   standard   error   of   the   mean   (SEM)   and   statistic   test   details   are  
described   in   the   corresponding   results.   All   t-tests   are   two-tailed.   Normality   distribution   of  
each   group   was   assessed   using   Shapiro-Wilk   normality   test   and   parametric   tests   were   used  
only   when   distributions   were   found   normal   (non-parametric   tests   are   described   where  
applicable).   1ANOVA:   one-way   ANOVA;   2ANOVA:   two-way   ANOVA;   RMANOVA:  
repeated   measure   ANOVA.    p    <   0.05   was   considered   statistically   significant.    *,    p    <   0.05;   **,    p  
<   0.01;   ***,    p    <   0.001,   ****,    p    <   0.0001.  

 

Code   and   data   availability  

All   the   code   and   data   presented   here   can   be   downloaded   at   the   following   address:  
https://github.com/etterguillaume/CaImDecoding  
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Figure   legends  

Figure   1.   Rationale   for   extracting   spatial   coding   characteristics   of   CA1  

pyramidale   cells.    a,   diagram   of   GRIN   lens   implanted   over   CA1   pyramidal   cells   of   the   dorsal  
hippocampus.   b,   calcium   imaging   was   performed   as   a   mouse   was   running   in   alternating  
directions   on   a   linear   track.   c,   maximum   projection   of   the   corresponding   field   of   view.   d,  
corresponding   extracted   spatial   footprints   using   CNMFe.   e,   example   traces   from   a   subset   of  
extracted   cells   aligned   with   position   on   a   linear   track   and   locomotor   speed.   Running   epochs  
are   indicated   with   green   stripes.   f,   example   raw   transient   (top)   from   one   cell   and  
corresponding   filtered,   z-scored,   first-derivative,   and   binarized   signals.   g,   rationale   used   to  
extract   unconditional   and   joint   probabilities   from   binarized   data.   h,   mouse   location   on   the  
linear   track   with   corresponding   raw   calcium   activity   and   derived   binary   trace   (blue).   Only  
runs   to   the   right   are   considered   here.   i,   (top)   mouse   trajectory   on   the   linear   track   (gray)   with  
corresponding   locations   where   one   cell’s   binarized   activity   was   detected   (blue   dots),   and  
(bottom)   location   of   binarized   activity   on   the   linear   track   for   each   run   (n   =   16   runs).   j,   joint  
probability   of   cell   #4   to   be   active   in   each   given   linear   track   location.   k,   derived   probability  
density   function   (ocher)   compared   to   uniformity   (dotted   line),   and   (top)   corresponding  
Kullback-Leibler   divergence.   l,   example   cases   of   poor   variable   coding   (case   1),   superior  
variable   coding   (case   2),   poor   variable   coding   with   sparse   information   (case   3),   and   superior  
variable   coding   with   sparse   information   (case   4).   m,   actual   (a)   calcium   trace,   corresponding  
permutations   (s n ),   and   corresponding   location   (green).   n,   joint   probability   computed   from   one  
example   permuted   trace.   o,   actual   joint   probability   distribution   (blue)   and   corresponding  
average   shuffled   distribution   from   n   =   1000   surrogates   (the   thickness   of   the   line   represents   the  
SEM).   p,   z-scored   distribution   of   cell   activity   on   the   linear   track,   computed   from   actual   and  
shuffled   data.   q,   histogram   distribution   of   peak   joint   probability   corresponding   to   each  
permutation   (magenta)   compared   to   actual   peak   probability   (blue).  

 
Figure   2.   Bayesian   decoding   of   behavior   from   calcium   imaging   recording.    a,  

spatial   tuning   curves   for   each   individual   CA1   neuron   (data   sorted   from   location   of   peak   joint  
probability),   and   corresponding   probability   of   being   active   (right-hand   side),   and   probability  
of   being   in   a   given   state   (=   location;   bottom).   b,   raster   plot   of   binarized   cell   activity   and  
corresponding   position   on   the   linear   track   (bottom).   c,   tuning   curves   of   cells   corresponding   to  
their   state   at   frame   11392   (in   b)   and   subsequent   posterior   probability   of   being   in   a   given  
location   on   the   linear   track   (bottom).   Location   was   estimated   using   maximum   a   posteriori  
(MAP).   d,   posterior   probabilities   for   each   frame   estimated   from   ongoing   binarized   calcium  
activity,   and   corresponding   actual   (green)   and   decoded   (pink)   location   estimated   with   MAP.   e,  
confusion   matrix   of   actual   vs   decoded   position.   f,   method   used   to   compute   euclidean  
decoding   error   (top)   and   decoding   agreement   (bottom).   g,   paradigm   used   to   train   and   test   the  
decoder   on   different   epochs   of   the   dataset.   h,   effect   of   prior   and   bias   (cell   probability   of   being  
active)   on   decoding   agreement.   i,   same   for   decoding   error.   Color   codes   in   a,c,d,e:   dark   blue   =  
low   probability,   yellow   =   high   probability.  

 
Figure   3.   Decoding   parameter   estimation.    a,   example   posterior   probabilities   when  

using   a   0.5   s   temporal   filtering   window   (top),   and   corresponding   decoded   location   estimated  
from   MAP   (bottom).   b   &   c,   effect   of   temporal   filtering   window   size   on   decoding   error   and  
agreement,   respectively.   d   &   e,   effect   of   the   number   of   cell   used   on   decoding   error   and  
agreement,   respectively.   f   &   g,   effect   of   training   set   portion   on   decoding   error   and   agreement,  
respectively.   h,   effect   of   random   noise   on   spatial   tuning   curves.   i   &   j,   corresponding   decoding  
agreement   and   error,   respectively.   k,   effect   of   gaussian   smoothing   on   spatial   tuning   curves.   l  
&   m,   corresponding   decoding   agreement   and   error,   respectively.   Color   codes   in   a   &   h,:   dark  
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blue   =   low   probability,   yellow   =   high   probability.  
 
Figure   4.   Decoding   two-dimensional   behaviors.    a,    x,y    coordinates   of   mouse   location  

in   an   open   field   (bottom)   and   corresponding   raw   calcium   trace   of   one   example   cell   and  
binarized   activity   (top).   b,   top   view   of   mouse   trajectory   (beige   trace)   with   overlaid   location  
corresponding   to   neuronal   activity   (green,   early   activity;   magenta,   late   activity).   c,   relative  
occupancy   in   the   open   field.   d,   joint   probability   tuning   map   of   one   neuron.   e,   example   tuning  
maps   computed   from   shuffled   calciu   traces.   f,   standard-deviation   of   the   shuffled   distribution.  
g,   average   joint   probability   tuning   map   of   the   shuffled   distribution.   h,   corresponding   z-scored  
tuning   map,   computed   from   the   actual   tuning   map,   and   standard-deviation   as   well   as   mean  
from   the   shuffled   distribution.   d,   probability   density   function   derived   from   the   joint  
probability   tuning   map.   The   number   on   top   indicates   the   corresponding   spatial   information.   j,  
scatter   plot   comparing   the   standard-deviation   of   the   shuffled   distribution,   and   the   mouse   open  
field   occupancy.   k,   effect   of   temporal   filtering   on   decoding   error   in   the   open   field.   The   red  
arrow   indicates   the   the   temporal   filtering   window   size   yielding   the   lower   decoding   error.   l,  
effect   of   gaussian   smoothing   of   tuning   maps   on   decoding   error   in   the   open   field.  

 
Figure   5.   Reconstructing   neuronal   activity   and   refining   tuning   curves  
a,   tuning   curves   of   every   neuron   sorted   by   peak   activity   in   the   linear   track.   b,   same,  

but   after   discriminating   left   and   right   trajectories.   c,   relationship   between   peak   joint  
probabilities   of   tuning   curves   computed   either   method   (location   only   versus   location   and  
direction).   d,   actual   location   of   the   mouse   in   the   linear   track   (top),   and   corresponding   actual  
and   reconstructed   neuronal   activity   using   location   only   (middle),   as   well   as   actual   and  
reconstructed   neuronal   activity   using   both   location   and   direction   (bottom).   e,   method   used   to  
assess   reconstruction   success   rate.   f,   mean   reconstruction   success   using   either   location   data  
(purple)   or   location   and   direction   concurrently   (green).   Color   codes   in   a   &   b:   dark   blue   =   low  
probability,   yellow   =   high   probability.  
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