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Summary (150 words) 10 

Calcium imaging with fluorescent protein sensors is widely used to record activity in neuronal populations. 11 
The transform between neural activity and calcium-related fluorescence involves nonlinearities and a low-12 
pass filter, but the effects of the transformation on analyses of neural populations are not well understood. 13 
We compared neuronal spikes and fluorescence in matched neural populations in behaving mice. We report 14 
multiple discrepancies between analyses performed on the two types of data, which were only partially 15 
resolved by spike inference algorithms applied to fluorescence. To model the relation between spiking and 16 
fluorescence we simultaneously recorded spikes and fluorescence from individual neurons. Using these 17 
recordings we developed a model transforming spike trains to synthetic-imaging data. The model 18 
recapitulated the differences in analyses. Our analysis highlights challenges in relating electrophysiology 19 
and imaging data, and suggests forward modeling as an effective way to understand differences between 20 
these data.   21 
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Introduction 22 

Electrophysiological recordings (‘ephys’) and calcium imaging offer distinct tradeoffs for interrogating 23 
activity in neural populations. Ephys directly reports spiking of neurons with high signal-to-noise ratio, 24 
temporal fidelity, and dynamic range, but typically offers access only to a sparse subset of relatively active 25 
neurons (Buzsaki, 2004). In addition, the ability to track the same population of neurons across time, 26 
important for understanding the neural basis of learning, remains challenging (Dhawale et al., 2017; 27 
Ganguly and Carmena, 2009; Tolias et al., 2007). 28 

Calcium imaging provides access to large numbers of neurons simultaneously (Huber et al., 2012; Peron 29 
et al., 2015b; Sofroniew et al., 2016; Stringer et al., 2019), potentially with cell type specificity (Fu et al., 30 
2014; Peron et al., 2015a). Moreover, calcium imaging can track the activity of the same neuronal 31 
populations over time (Huber et al., 2012; Peters et al., 2014). Indeed, with the development of sensitive 32 
fluorescent protein-based indicators (Akerboom et al., 2012; Chen et al., 2013; Dana et al., 2016; Dana et 33 
al., 2018; Inoue et al., 2015; Ohkura et al., 2012; Tian et al., 2009) and powerful new imaging methods 34 
(Hamel et al., 2015; Sofroniew et al., 2016) calcium imaging has been rapidly adopted for measurements 35 
of neural population activity. 36 

However, calcium imaging reports spikes only indirectly (Grienberger and Konnerth, 2012; Peron et al., 37 
2015a). The transformation from spikes to calcium is inherently non-linear due to the dynamics of 38 
intracellular calcium concentrations (Scheuss et al., 2006). Additional nonlinearities are imposed by the 39 
protein-based indicators of calcium (Akerboom et al., 2012; Chen et al., 2013; Pologruto et al., 2004; Tian 40 
et al., 2009). Together these produce a low-pass filtered, delayed, and transformed version of neural activity, 41 
which complicates relating neural activity to behavior. Calcium imaging also has lower signal-to-noise ratio 42 
for detecting spikes and limited dynamic range (Peron et al., 2015a). In addition, during animal behavior, 43 
spike rates can vary by orders of magnitude across behavioral epochs and across neurons, even neurons 44 
of the same type (Hromadka et al., 2008; Li et al., 2015; O'Connor et al., 2010) and spike rates change 45 
over times of milliseconds to seconds (Brody et al., 2003; Li et al., 2015; Li et al., 2016). Finally, the coupling 46 
between spikes and calcium-dependent fluorescence likely differs across different neuron types and even 47 
individual neurons within a type (Chen et al., 2013; Maravall et al., 2000). 48 

The complexities in the relation between spiking activity and calcium imaging at the level of single neurons 49 
have been long appreciated (Akerboom et al., 2012; Chen et al., 2013; Greenberg et al., 2018; Pologruto 50 
et al., 2004; Scheuss et al., 2006; Tian et al., 2009). However, the effect of these factors on analyses of 51 
population activity are not yet fully known (Cunningham and Yu, 2014). Ideally a detailed understanding of 52 
the transformation from spikes-to-calcium-dependent fluorescence would allow inversion of this 53 
transformation and the reliable extraction of spikes.  Calcium indicators with high sensitivity allow reliable 54 
detection of action potentials, at least under conditions when single spikes or burst of spikes are separated 55 
in time (Chen et al., 2013; Dana et al., 2014; Theis et al., 2016). However, under behaviorally relevant 56 
conditions neurons operate with a large range of spike rates, and spiking responses are typically 57 
superposed on a substantial background spike rate, which varies across the population (Li et al., 2015; 58 
O'Connor et al., 2010). Moreover, neuron-to-neuron variability in calcium dynamics, calcium indicator 59 
dynamics and patterns of firing rate could conspire to make this inversion challenging. These issues are 60 
compounded by the paucity of simultaneously recorded spikes and fluorescence data. It is therefore unclear 61 
if spike inference can invert the fluorescence data accurately to eliminate potential discrepancies between 62 
analyses performed on ephys and calcium imaging data. 63 

Here, we explore these issues empirically in the context of a decision-making task, where the dynamics of 64 
the neural circuit are rich and variable across neurons. In particular, neurons in frontal cortex show a wide 65 
range of spike rates and exhibit diverse temporal dynamics and selectivity (Brody et al., 2003; Li et al., 66 
2015; Wei et al., 2019). We analyzed ephys and calcium imaging measured in matched neuronal 67 
populations in the same delayed response task and directly compared the results of standard 68 
measurements of selectivity and population dynamics. We find qualitative discrepancies at both the level 69 
of single cells and neural populations. Spike inference algorithms were limited in resolving these differences. 70 
However, a phenomenological model of the spike-to-fluorescence transformation, based on simultaneous 71 
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imaging and electrophysiology data (Akerboom et al., 2012; Chen et al., 2013), explains many differences 72 
across the data sets. Finally, we developed a web-based platform, im-phys.org, that allows quantification 73 
of the effects of various transformations from electrophysiology to imaging.  74 

Results 75 

We measured neural activity using electrophysiology (‘ephys’) and calcium imaging under identical 76 
behavioral conditions and in matched neural populations, but in separate experiments. Mice performed a 77 
tactile delayed response task (Guo et al., 2014a; Guo et al., 2014b; Li et al., 2015) (Figure 1A). In each 78 
trial, mice judged the location of an object with their whiskers. During the subsequent delay epoch 79 
(approximately 1.3 seconds), mice planned an upcoming response. Following an auditory ‘go’ cue, mice 80 
reported object location with directional licking (lick-left or lick-right). 81 

Two-photon calcium imaging and ephys were performed in left anterolateral motor cortex (ALM; Figure 82 
1BDF). We report the results of three variants of calcium indicators in this study: GCaMP6s delivered by 83 
viral gene transfer, and GCaMP6s and GCaMP6f expressed in Thy-1 transgenic mice.  In the first series of 84 
imaging experiments, neurons were transduced with adeno-associated virus expressing GCaMP6s (6s-85 
AAV), a widely-used method (Chen et al., 2013; Peron et al., 2015a) (data from (Li et al., 2015), 1493 86 
neurons, 4 mice). In the second, neural activity was recorded by imaging transgenic mice expressing 87 
GCaMP6s in cortical pyramidal neurons (6s-TG, data from (Chen et al., 2017), 2293 neurons, 1 mouse). 88 
We treated these datasets separately since the mode of delivery of GCaMP can affect its properties. 89 
Specifically transgenic GCaMP typically results in neurons that have lower GCaMP6 expression levels and 90 
faster fluorescence dynamics compared to neurons transduced with AAV (Dana et al., 2014). Finally, we 91 
collected a dataset obtained with a faster, but less sensitive indicator, GCaMP6f (6f-TG, 2672 neurons, 2 92 
mice). We refer to these three datasets as 6s-AAV, 6s-Tg and 6f-Tg, respectively. We compared this data 93 
to ephys data acquired with silicon probes that record multiple neurons simultaneously (720 neurons, 19 94 
mice (Li et al., 2015)) (Figure 1CEG). Ephys recordings were subsampled so that their recording depths 95 
matched the generally more superficial calcium imaging experiments. Neurons were recorded by 6s-AAV 96 
and 6s-Tg at 120 – 740 µm. The matched ephys subset was taken at 100 – 800 µm leaving n = 720 neurons. 97 
Neurons were recorded by 6f-Tg at 140 – 470 µm. The matched ephys subset was taken at 100 – 470 µm, 98 
leaving n = 225 neurons. 99 

Filtering of selectivity by calcium imaging 100 

Individual ALM neurons exhibit diverse temporal dynamics, including changes in selectivity over time 101 
(Figure 2B) (Guo et al., 2014b; Li et al., 2015; Wei et al., 2019). We classified dynamics into three 102 
categories: ‘monophasic’ neurons showed consistent selectivity across the trial (Figure 2A); ‘multiphasic’ 103 
neurons changed selectivity over time (defined as having consistent selectivity for at least 335 ms which 104 
then changes and remains stable for at least 335 ms more) (Figure 2B); ‘non-selective’ neurons responded 105 
similarly across trial types but were still modulated during the task (Figure 2C). The proportion of 106 
monophasic selective neurons was similar between the datasets (58% ephys; 66% 6s-AAV; 50% 6s-Tg; 107 
45% 6f-Tg). However, the ephys data set contained a substantial proportion of multiphasic neurons 108 
(220/720; 31%), much larger than the imaging datasets (6s-AAV: 76/1493, 5%; 6s-Tg, 98/2293, 4%; 109 
compare to matched ephys, 220/720, 31%; 6f-Tg, 69/2672, 3%; compare to matched ephys, 52/225, 20%; 110 
p < .001, 𝜒"  test; Figure 2D-F). As neural response properties can change across cortical layers, we 111 
performed a more detailed analysis of the effect of recording depth on single neuron selectivity and find 112 
that selectivity was reduced in imaging compared to ephys across depths (Figure S1A-D). 113 

What could account for this difference? Ephys records a sparse subset of neurons blindly, which could 114 
introduce biases, for example a bias towards neurons with higher spike rates (Figure S1E-I). In contrast, 115 
in our imaging experiments all visualized neurons were analyzed. In addition, the spike sorting procedure 116 
used to identify units from raw electrode potentials can introduce artifacts, including erroneous merging of 117 
neurons (Figure S1J). However, we found that these factors were unlikely to explain our results for two 118 
reasons. First, we considered intracellular recordings for which spike sorting is not required (Guo et al., 119 
2017). The fraction of multiphasic neurons was 25.7% (n = 9/35), similar to the extracellular ephys data (p 120 
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= .67, 𝜒" test; Figure 2G) but significantly different from the imaging data (p < .001, 𝜒" test with both 6s-121 
AAV and 6s-Tg). Second, we tested the question of spike-sorting induced biases by considering synthetic 122 
data in which we deliberately introduced merges at different probabilities. Merging neurons generated more 123 
multi-selective neurons when two neurons with different temporal selectivity profiles were merged, but the 124 
ratio of accidental merging had to be unrealistically high to explain the difference between datasets (Figure 125 
S1J). 126 

Another source of difference could be that our comparisons so far were performed on the imaging data, not 127 
on spike rates inferred from the imaging data. Spike inference algorithms attempt to undo the transformation 128 
from spikes to claicum-dependent fluorescence, thereby recovering spike times (or spike rates) from 129 
imaging data (Berens et al., 2018; Deneux et al., 2016; Pnevmatikakis et al., 2013; Pnevmatikakis et al., 130 
2016; Theis et al., 2016; Vogelstein et al., 2010; Vogelstein et al., 2009). We tested two published methods: 131 
MLSpike (Deneux et al., 2016) and MCMC (Pnevmatikakis et al., 2013). In our hands, spike inference only 132 
partially corrected the differences between the datasets and in some cases actually pushed the data even 133 
further apart (Figure 2H). For instance, MLSpike produced even lower proportions of multiphasic neurons. 134 
MCMC was more accurate, increasing the proportions of multiphasic neurons, but still far short of the actual 135 
proportion in the ephys dataset (and for 6s-Tg and 6f-Tg decreased instead of increased the proportion of 136 
monophasic neurons). Deconvolution at best recovered about half of the missing multiphasic selectivity 137 
(6s-AAV, 18%; 6s-TG, 17%, compared to 31% in matched ephys; 6f-TG, 8%, compared to 20% in matched 138 
ephys; Figure 2H). 139 

Differences between calcium and ephys were not limited to the temporal nature of responses but were also 140 
present in trial-type selectivity. Namely we found that in the ephys dataset right-preferring neurons (i.e., 141 
neurons whose firing rate before right licks was higher than before left licks) were as common as left-142 
preferring neurons (Figure 2I, left; p = .118, 𝜒" test) (Guo et al., 2014b; Li et al., 2015). The same was true 143 
for imaging with a fast calcium indicator (Figure 2I, right; p = .102, 𝜒" test), but not for imaging with slow 144 
indicators (Figure 2I, left; p < .001, 𝜒" test; Figure S4B, spike-inference measure). What could be the 145 
cause of these differences? Spike rates in individual ALM neurons often increase or decrease during a trial 146 
in ramp-like patterns (Guo et al., 2014b; Inagaki et al., 2018; Li et al., 2015). Right-preferring selectivity was 147 
more often associated with neurons ramping up on right trials, whereas left-preferring selectivity included 148 
many neurons with firing rates ramping down in the non-preferred ('right') trial (Figure 2J). The large 149 
difference between the rise and decay times of calcium indicators could lead to differences in how the 150 
selectivity of neurons that ramp up or ramp down gets transformed by the indicator. To test to what degree 151 
such explanations explain the data we developed a model of the spike-to- fluorescence transformation. 152 

Simultaneous loose-seal electrophysiology and calcium imaging  153 

Modeling the spike-to-fluorescence transformation requires simultaneously electrophysiology and calcium 154 
imaging at the level of individual neurons. Since this data is not available for the transgenic mice used here 155 
we performed loose-seal recordings and calcium imaging in individual neurons (Figure 3). The dataset 156 
consists of gCAMP6f- and gCAMP6s-expressing L2/3 neurons in transgenic mice (6s-TG, 22 cells; 6f-TG, 157 
18 cells; Table S1). This new data more than doubles the number of previously available simultaneously 158 
recorded neurons (Theis et al., 2016). In addition we used published data with AAV-based gene 159 
transduction (Chen et al., 2013)(http://dx.doi.org/10.6080/K02R3PMN). Bursts of spikes produced 160 
fluorescence transients in the imaged neurons (Figure 3A-D). The ability to detect single spikes varied 161 
considerably between neurons (Figures 3E-G, S2). The detection of single spikes was lower in transgenic 162 
mice than with AAV-based gene transduction, likely reflecting the lower expression level in the transgenic 163 
mice.   164 

Spike-to-fluorescence transformations explain differences in single neuron selectivity  165 

Using the newly recorded data we developed a spike-to-fluorescence (S2F) forward model to generate a 166 
synthetic calcium imaging data based on a neuron’s spike train (Figure 4A) (Akerboom et al., 2012; Chen 167 
et al., 2013; Lütcke et al., 2013; Yasuda et al., 2004). In brief, spike times were first converted to a latent 168 
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variable, c(t), by convolution with a double-exponential kernel, with parameters rise-time (𝝉r) and decay-169 
time (𝝉d). This latent variable was pushed through a non-linearity, F(c), with a non-linearity sharpness 170 
parameter (k), a half-activation parameter (𝑐%/", corresponding to the half-rise point of the nonlinearity) and 171 
a maximum fluorescence change (Fm) (Materials and methods). The neurons were well-fit by the model 172 
(Figure S3B; variance explained, 6s-AAV, .87 ± .17, mean ± std.; 6s-TG, .80 ± .20; 6f-AAV, .82 ± .27, mean 173 
± std.; 6f-TG, .66 ± .23). The inferred parameter values reflected known indicator kinetics. For instance, the 174 
decay times measured for neurons expressing GCaMP6s were longer than those expressing GCaMP6f 175 
(Figure 4B). However, there was substantial variability between the parameter values inferred across 176 
neurons (Figures 4B, S3).  This variability is one factor that could explain the difficulty of the inversion of 177 
calcium responses which is central to spike inference approaches. We refer to simulations of calcium-178 
dependent fluorescence based on application of the S2F model to spiking activity as ‘∆F/FSynth’. 179 

We applied the model to ramp-up and ramp-down neurons. For ramp-up cells the separation of activity 180 
across trial types was retained in ∆F/FSynth, albeit with slower dynamics (Figure 4C). In contrast, for many 181 
ramp-down cells ∆F/FSynth became non-selective (Figure 4D). Overall, selectivity was conserved more 182 
frequently for ramp-up cells than for ramp-down cells. Since right-preferring cells were more often 183 
associated with ramp-up dynamics, and calcium imaging is more likely to capture ramp-up selectivity than 184 
ramp-down selectivity, the model explains the greater fraction of right-preferring neurons in the calcium 185 
imaging data (Figure 4E). This was true whether a neuron happened to be a right- or left-preferring neuron, 186 
i.e., there were no significant differences in the fraction of detectability in the synthetic data once the data 187 
was broken down into two categories, ramp-up and ramp-down (p > .05, 𝜒" test for all imaging conditions; 188 
Figure S4A). Consistent with the difference being produced by the slow decay kinetics of GCaMP6s, there 189 
was little difference between the fraction of right- and left-preferring neurons in the 6f-TG data (p > .05 for 190 
both cell types). In line with these results, we found that the forward model accounted for the drop in 191 
multiphasic neurons presented in the previous section (Figure S4C). These data show that the spike-to-192 
fluorescence transformation introduces systematic discrepancies in comparing the same analysis 193 
performed on ephys or imaging data. 194 

Dimensionality reduction emphasizes different sources of variance in ephys and imaging  195 

Large-scale recording methods are often used in combination with dimensionality reduction techniques to 196 
provide a compact description of the data (Cunningham and Yu, 2014). For example, principal component 197 
analysis (PCA) finds modes of population activity that capture the largest amount of variance in neural 198 
activity (Cunningham and Yu, 2014). Data visualization and analysis are often performed after truncating 199 
the decomposition after a few components. We found that the contribution of different sources of variance 200 
to the first principal components diverges between ephys and imaging. Accordingly, truncation of PCA in 201 
the first few principal components can lead to a qualitatively different PCA decomposition of neural activity 202 
between ephys and imaging.  203 

We found substantial differences in performing PCA on ephys and imaging datasets. First, the content of 204 
the first PCs was remarkably different between ephys and imaging. In the ephys data, variance in the first 205 
PC was mostly due to temporal dynamics (98.71 ± 0.06%, mean ± std., bootstrap analysis). In contrast, for 206 
GCaMP6s imaging trial-type selectivity was the dominant source of variance in the first PC (6s-AAV: 60.39 207 
± 0.29%; 6s-TG: 44.51 ± 0.65%) (Figure 5A). This difference was consistent with the temporal smoothing 208 
imposed by slower indicators, and as expected temporal dynamics were predominant in the first PC of 209 
GCaMP6f, closer to the values found in ephys, (6f-TG: 64.87 ± 2.47%; depth matched ephys: 91.02 ± 210 
0.14%). Second, in the ephys data, a relatively large number of PCs (> 10) contribute substantially to the 211 
variance, whereas in imaging and synthetic imaging most variance was explained by the first few PCs (test 212 
for number of PCs required to explain 90% of the variance, p < .001; t test, bootstrap). 213 

 These differences in the sources of explained variance can be seen in the profiles of the PC scores (Figure 214 
5B) as well as in the profiles obtained by a standard exploratory visualization, depicting the evolution of 215 
activity over time as a trajectory in the space of the first two PCs (Figure 5C). Spike inference algorithms 216 
correctly reduced the amount of trial-type variance in the first principal components (although not fully), but 217 
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with the caveat that the fraction of variance in the first two principal components was reduced too much 218 
(Figure S5).The spike-to-fluorescence model captured the qualitative differences between ephys and 219 
imaging, but overestimated the increase in variance in the first two principal components (Figure 5A-C). 220 

Population activity history affects instantaneous decoding differently in ephys and imaging  221 

Decoding analysis relating population activity to behavioral variables is widely used in systems 222 
neuroscience (Ganguly and Carmena, 2009; Harvey et al., 2012; Huber et al., 2012; Wei et al., 2019). Such 223 
analyses typically relate the state of population activity at a given time point to a behavioral variable of 224 
interest, such as behavioral choice. We performed decoding analysis to predict either trial type or the 225 
current behavioral epoch from population activity. Decodability of trial type in ephys increased earlier (one-226 
tail t-test, p < .001), but saturated at a lower level (one-tail t-test, p < .001) than in calcium imaging (Figure 227 
6A). Spike inference models, the MCMC framework in particular, partially reduced the delay of the rise of 228 
decodability but overestimated the decrease in decodability yielding lower performance in delay-response 229 
epoch than the ephys data (Figure S6). Both observations were recapitulated by the S2F model (delay: 230 
one-tail rank sum test, 6s-AAV, p < .001, 6s-TG, p < .001, 6f-TG, p < .001; enhancement: 6s-AAV, p < .001, 231 
6s-TG, p < .001, 6f-TG, p < .001; Figure 6B-C). The counterintuitive result of higher decoding accuracy in 232 
imaging for matched population size is explained by the long decay time of slow calcium imaging. The long 233 
integration in calcium imaging causes instantaneous decoding on imaging to be equivalent not to 234 
instantaneous decoding on spiking data, but to decoding on a more time averaged variable.  Such a choice 235 
is advantageous when a larger proportion of the selectivity is stable, as was the case in ALM sample and 236 
delay selectivity (Li et al., 2016). Consistently, decoders built on ephys that incorporated a one second 237 
integration time were more accurate than instantaneous ephys decoders and as accurate as slow indicators 238 
(Figure 6D). The delayed increase of decodability was also explained by the forward model. GCaMP6f, 239 
with its reduced signal to noise, yielded less accurate population decoders (Figure 6E; spike inference 240 
measure, Figure  S6). 241 

For different decoding analyses such averaging can reduce accuracy. For instance, the neurons that can 242 
be used to decode trial-type change substantially between the delay and response period, i.e., the patterns 243 
of population selectivity are typically dynamical themselves. To test the interaction of these dynamics with 244 
calcium indicators, we trained decoders to distinguish the current epoch in the task from the pattern of 245 
neural activity. In ephys (Figure 6F) we observed a rapid decrease of the probability of activity to belong to 246 
the previous epoch following a change in behavioral epoch, along with a sharp increase in the probability 247 
of belonging to the current epoch. In contrast, in the calcium imaging data such changes tended to be 248 
delayed and gradual, even for the fast calcium indicator (Figure 6G). This effect was also recapitulated in 249 
the synthetic calcium data from the S2F model (Figure 6H). In other words, at the change of a behavioral 250 
epoch, the asymmetry of fast rise times and long decay times in calcium indicators yields calcium imaging 251 
signals that are a mix of the decaying profile of activity in the previous epoch and the newly activated profile 252 
of activity elicited by the response epoch. 253 

Population dynamics is temporally dispersed in calcium imaging  254 

Neurons show temporally complex responses, even in simple trial-based behaviors (Brody et al., 2003; Li 255 
et al., 2015). These spike rate changes are critical for an understanding of neural circuit models of neural 256 
computation. Our analysis revealed a qualitative difference in the dynamics between populations recorded 257 
by ephys or imaging: a dispersion of the apparent dynamics. That is, the spike rates recorded in ALM 258 
peaked at transitions between behavioral epochs (Figure 7A) (Li et al., 2015). In contrast, in the calcium 259 
imaging data, peaks of fluorescence were delayed and jittered, causing a more sequence-like appearance 260 
(Figure 7B) (Harvey et al., 2012; Scott et al., 2017).  261 

To quantify this effect we computed a measure of the ‘peakiness’ of the distribution of neuronal activity (‘s’) 262 
across recording modalities as the difference between observed neural activity and temporally uniformly 263 
distributed neural activity (𝑃 = %

")
): 264 
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𝑠 = %
+
, %
")
∑ ∫ 𝑑𝑡(𝑃2(𝑡) − 𝑃)"

)
5267,9      265 

s was much larger for the ephys dataset (1.27 ± 0.23) compared to the 6s-AAV (0.49 ± 0.03; one-tail rank 266 
sum test, p < .001), 6s-TG (0.38 ± 0.04; one-tail rank sum test, p < .001), and 6f-TG (0.58 ± 0.07; one-tail 267 
rank sum test, p < .001) imaging data (Figure 7C). The forward model was able to recapitulate the 268 
differences between ephys and imaging (s = 0.39 ± 0.04, 6s-AAV ∆F/FSynth; s = 0.37 ± 0.03, 6s-TG ∆F/FSynth; 269 
s = 0.71 ± 0.07, 6f-TG ∆F/FSynth; Figure 7DE). Using the forward model we found that the degree of delay 270 
in the peak response is dependent on interactions between multiple factors including the assumed temporal 271 
and non-linear parameters of the indicator, as well as the absolute value of the underlying firing rate (Figure 272 
7FG). Here, spike inference algorithms were able to partially undo the difference between imaging and 273 
ephys, yielding a reduction in the temporal dispersal (Figure 7H). Similar overall results were obtained with 274 
different metrics for the sharpness of the maximum-activity-time distribution relative to a uniform distribution, 275 
such as the Kullback-Leibler divergence. 276 

Similar analyses on single neuron and population activity properties were performed on ephys and imaging 277 
data from the primary somatosensory cortex with qualitatively similar results (Figure S7). 278 

Discussion 279 

Calcium imaging using fluorescent protein sensors is a powerful method for recording activity in large 280 
neuronal populations (Peron et al., 2015a). In systems neuroscience, cellular calcium imaging fills a 281 
complementary role to extracellular electrophysiology. Imaging can sample neural activity densely (Peron 282 
et al., 2015a; Peron et al., 2015b) and reveal spatial relationships between neurons with related activity 283 
patterns (Kerlin et al., 2010; Ohki et al., 2005). Imaging can be used in a cell-type specific mode to sample 284 
rare neuronal populations that are difficult to target using electrophysiology (Fu et al., 2014). Imaging can 285 
be combined with post-experiment molecular analysis (Kerlin et al., 2010; Lovett-Barron et al., 2017; 286 
O'Connor et al., 2010) or even serial electron microscopy reconstruction (Bock et al., 2011; Briggman et al., 287 
2011). Imaging can track the activity of individual neurons over long time scales to explore the circuit basis 288 
of learning (Huber et al., 2012; Komiyama et al., 2010). Finally, imaging allows recording activity in neuronal 289 
microcompartments that are not accessible to electrophysiology (Chen et al., 2013; Jia et al., 2010; 290 
Petreanu et al., 2012; Xu et al., 2012). Electrophysiological recordings report neural activity with high 291 
temporal precision but have limitations of their own. Ephys recordings have a bias towards large neurons 292 
with high spike-rates. In addition, the process of transforming raw recordings into spike times associated 293 
with individual isolated units, i.e., spike sorting, can introduce artifacts such as merging spikes from different 294 
neurons. 295 

Although calcium imaging and ephys are often used almost interchangeably, the quantitative effects of the 296 
differences between ephys and imaging on measures typically used in system neuroscience have not been 297 
evaluated in a systematic manner. By comparing activity recorded with electrophysiology or imaging from 298 
the same circuit during the same behavioral task we showed that the different recording methods can lead 299 
to diverging results. On the level of single neurons, the proportion of neurons with specific response 300 
properties and different dynamics of selectivity differs between calcium imaging and ehpys. At the level of 301 
neuronal populations, we find diverging results for the content of population activity variance (trial condition 302 
differences being the main source of variance in imaging while temporal dynamics are the main source of 303 
variance in ephys), the relation of population activity to behavior, and the overall pattern of population 304 
dynamics. Spike inference algorithms only partially recovered the difference between ephys and imaging 305 
across the multiple metrics considered in this study (Figure S8B). Notably, we find large neuron-to-neuron 306 
variability in the inferred parameters of a forward, spike-to-fluorescence model. Such variability coupled 307 
with the large heterogeneity in firing rates and temporal patterns makes correctly solving the inverse 308 
problem difficult, which potentially explains our results. At the same time, most of the differences we found 309 
between ephys and imaging were explainable by a forward-model that generates a synthetic imaging 310 
experiment counterpart of a neuron’s ephys responses. Such a model takes into account the specific 311 
heterogeneity found in ephys recordings and can take into account neuron-to-neuron variability in calcium 312 
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imaging properties by sampling randomly from the varying parameters of the spike-to-fluorescence 313 
transformation.    314 

Im-phys.org – a website for more detailed comparison ephys and imaging  315 

We presented an extensive dataset with three calcium indicators, extracellular and intracellular 316 
electrophysiology and multiple models. However, a research paper still represents a small distillation of all 317 
possible analyses. We developed an online resource, im-phys.org (http://im-phys.org/ Figure S8) with three 318 
goals. First, the website allows analysis of all combinations of dataset and model, to evaluate the scenario 319 
that is most relevant to particular experiments. Im-phys.org allows spike inference algorithms to be 320 
systematically tested in real use case scenarios, i.e., not just testing recovery of any aspect of the patterns 321 
of spike rates but rather testing the impact of performing spike inference on undoing differences in specific 322 
metrics extracted from ephys and imaging (Figure S8B). Second, we hope that other groups will share 323 
data, models and analyses to allow more general comparison of ephys and imaging data. Im-phys.org 324 
allows submission of data that can be incorporated into various comparisons that are displayed on the 325 
website, controlled through UIs. Though few labs have matched ephys and imaging datasets, many labs 326 
have one or the either. Our resource can serve to aggregate and combine these datasets, as well as find a 327 
best match from an imaging to ephys dataset (Figure S8A). Third, im-phys.org is linked to a github 328 
repository containing the analyses code, models (S2F and F2S), and related data. These allow to use or 329 
analyses and models on data without sharing it through im-phys.org 330 

Differences between interrogating population activity by ephys and imaging affect data-driven 331 
models 332 

Differences in metrics of population activity between calcium imaging and ephys not only complicate the 333 
research literature but can result in the divergence of models used to understand the underlying data. Most 334 
population models, whether models in which the single units are modeled in more biophysical detail or more 335 
abstractly, are still highly reduced in the way they treat population heterogeneity. As such they often rely 336 
on dimensionality reduction of the recorded data to define the aspects of population activity the model is 337 
meant to capture. We found substantial differences between ephys and imaging data in application of PCA, 338 
and the truncation of the data after a few important data components can further amplify differences. In 339 
extreme cases one may be left with subsets that differ dramatically across imaging and electrophysiology. 340 
The amplification of difference by dimensionality reduction is relevant not just for modeling of the data, but 341 
more generally when generic forms of dimensionality reduction, such as PCA, are used early in the analysis 342 
pipeline to improve signal-to-noise ratio (which is important given the limited duration of typical behavioral 343 
experiments) for subsequent analysis, such as population decoding. Dimensionality reduction can be hard 344 
to avoid when analyzing large datasets (Cunningham and Yu, 2014), but can be modified to be less 345 
sensitive to known issues. 346 

Going forward 347 

Going forward, the discrepancies between ephys and calcium imaging can be reduced by improvements in 348 
calcium indicators and adjustments to experimental design. Calcium indicators could be improved on 349 
multiple fronts. They could be made faster and less nonlinear (Dana et al., 2018; Inoue et al., 2019). In 350 
addition, more uniform expression across cells can allow for more aggressive modeling of the nonlinearities 351 
that cannot be reduced, especially when coupled with priors on activity profiles derived from large scale 352 
electrophysiology. Faster indicators will result in the effect of previous activity history washing away faster, 353 
thus reducing effects that are history dependent. Imaging with multiple types of indicators in different 354 
experiments might produce additional constraints and help reduce biases. Voltage imaging holds great 355 
potential for fast accurate measurement of spiking activity, at least in sparsely labeled neuronal populations 356 
(Abdelfattah et al., 2019; Adam et al., 2019). At the level of experimental design, when population activity 357 
in a given behavioral epoch involves fixed dynamics, such as settling to a steady state or consistent ramping, 358 
longer trial epochs will allow the effect of the previous dynamical state to decay away. Indeed, we found a 359 
smaller discrepancy between the number of multiphasic neurons in ephys and 6s-TG data when the 360 
behavioral paradigm was adapted to use longer delay epochs. If priors on the profile of activity are known 361 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/840686doi: bioRxiv preprint 

https://doi.org/10.1101/840686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Wei et al  9 

from electrophysiological recordings, an effort that should become easier as neurophysiology probes 362 
become more powerful (Jun et al., 2017), data sharing more common, and preprocessing more 363 
standardized, fluorescence-to-spike models can assist in evaluating experimental design and its effect on 364 
dynamics. 365 

Overall our results highlight the importance of a deeper understanding of the transformation imposed by 366 
calcium imaging. The fact that our model was able to reproduce differences between the recording methods 367 
suggests that additional data and associated analysis methodology developments could potentially better 368 
address quantitative comparisons between analyses of population activity performed from imaging or ephys 369 
data. The online resource we built allows researchers to better understand how the discrepancies we 370 
observed would be relevant for the circuit and recording method of interest. More quantitative interpretation 371 
of calcium imaging and full utilization of all its advantages will require investment in ground-truth data sets 372 
and new statistical approaches. We hope this study and our online resource will catalyze this crucial effort. 373 
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Materials and methods 388 

Electrophysiological and imaging population activity recordings  389 

Electrophysiological (‘ephys’) or calcium imaging recordings were performed in separate experiments (Li et 390 
al., 2015). Mice were trained to perform a delayed version of a tactile discrimination task. Mice reported the 391 
position of a pole (anterior or posterior) by directional licking (lick-left or lick-right) after a delay period. The 392 
duration of sample and delay epoch was 2.6 s. In ephys, the delay epoch was 1.3 s; in imaging, it was 1.4 393 
s. Trials with early licking were excluded from analysis. Neuronal depths were 100 to 800 um (ephys), 150 394 
– 740 um (6s-AAV), 120 – 640 um (Thy1-GP4.3 mice, 6s-TG), and 140 – 470 um (Thy1-GP5.17 mice, 6f-395 
TG). Only sessions with more than 20 trials for each type (right-trial and left-trial) were included. For imaging 396 
data, we performed a post-hoc detection of outliers and removed trials where more than 30% of the time 397 
points contain a signal with 3 standard deviations away from median (these outliers relate to baseline 398 
fluctuations across trials, and removing them was necessary for variance-based analysis). Neurons were 399 
limited to putative pyramidal neurons. These reduced the total number of neurons with sufficient number of 400 
trials, yielding 1493, 2293, and 2672 units for 6s-AAV, 6s-TG and 6f-TG imaging, respectively.  401 

We used two sets of data from loose-seal electrophysiological recordings and imaging from GCaMP6-402 
expressing neurons in primary visual cortex. In one set neurons were transduced with 6s-AAV and 6f-AAV 403 
(data from (Chen et al., 2013)). In the other set we used 6s-TG and 6f-TG mice (Dana et al., 2014; Lin et 404 
al., 2016). More details of all datasets are described at http://im-phys.org/data. 405 

Simultaneous loose-seal recordings and imaging (Figure 3 and Figure S2) was performed as described 406 
previously(Chen et al., 2013) (more details at http://im-phys.org/data). GP4.3 and GP5.17 mice (Dana et 407 
al., 2014) were lightly anesthetized (0.5% isoflurane). Drifting grating visual stimuli were used to drive 408 
activity in the visual cortex. Loose-seal recordings were made through a craniotomy windows over the 409 
primary visual cortex. Two-photon imaging and loose-seal, cell-attached recordings were performed 410 
simultaneously. We acquired images in both low (284 x 284 um2) and high (38 x 38 um2) zoom 411 
configurations. Extraction of fluorescence transients was as described (Chen et al., 2013). 412 

To analyze the spike-triggered fluorescence changes, we created 1.2-s snippets around action potentials 413 
(APs), where a few APs only happened from 200 ms to 400 ms from the onset of each snippet. We 414 
computed baseline fluorescence using the snippets without AP in the entire time series. For snippet with 415 
APs, we required the fluorescence changes within the first 200 ms (before APs) was around baseline level 416 
(Figure 3C, S2A). We computed ROC curve as the probability if the peak fluorescence changes after 1 417 
(insert panels) or many APs (Figure 3E, S2C) can be detected at certain threshold comparing to baseline 418 
fluorescence fluctuations. D-prime is computed as :;<=(>?/?)@ABCD:;<=(>?/?)EF	ABC

HIJ(>?/?)EF	AB
. 419 

Spike-to-fluorescence model  420 

We developed a phenomenological model that converts spike times to synthetic fluorescence time series 421 
(Akerboom et al., 2012; Chen et al., 2013; Li et al., 2015; Yasuda et al., 2004). This ‘spike-to-fluorescence’ 422 
(S2F) model consists of two steps. First, spikes at times {𝑡L} are converted to a latent variable, c(t), by 423 
convolution with a double-exponential kernel: 424 

𝑐(𝑡) 	= ∑ 𝑒𝑥𝑝 Q− RDRS
TU
V W1 − 𝑒𝑥𝑝 Q− RDRS

TY
VZ + 𝑛2(𝑡)RCRS   (Equation 1) 425 

𝝉r and 𝝉d are the rise and decay times, respectively. 𝑛2(𝑡)~𝑁(0, 𝜎2") is Gaussian distributed ‘internal’ noise. 426 
c(t) was truncated at zero if noise drove it to negative values. Second, c(t) was converted to a synthetic 427 
fluorescence signal through a sigmoidal function: 428 

𝛥𝐹/𝐹cdeRf(𝑡) 	=
?g

%hijk[DL(m(R)Dm@/n)]
+ 𝑛i(𝑡)    (Equation 2) 429 
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k is a non-linearity sharpness parameter, c1/2 is a half-activation parameter, Fm is the maximum possible 430 
fluorescence change. 𝑛i(𝑡)~𝑁(0, 𝜎i")  is Gaussian external noise (Maravall et al., 2000; Tsien, 1989; 431 
Yasuda et al., 2004). 432 

We estimated the model parameters for each imaging condition using the simultaneous ephys and imaging 433 
experiments (Figure S3ABC). We then applied the S2F model to ephys data using parameters randomly 434 
sampled from the parameter distributions except for the parameters directly related to the nonlinearity. 435 
Since ALM spike rates in ephys vary over a larger range than the spike rates in the primary visual cortex 436 
these parameters may be underconstrained. Accordingly, we followed an alternative strategy to choose 437 
these parameters for a given neuron. For each neuron, after assigning the rest of the parameters, we 438 
transformed the spike trains to calculate the phenomenological calcium variable c(t). We then estimated 439 
the nonlinear parameters for that neuron by calculating the values that would best transform c(t) to the 440 
fluorescence dynamics of any neuron in the imaging dataset. For all neurons we were able to find matches 441 
with Spearman correlation higher than 0.7 between mean dF/F and mean synthetic dF/F. The parameters 442 
inferred in this process recapitulated the correlation structure of c1/2 and k found in the data (Figure S3D). 443 

Given the short timeframe over which baseline activity was recorded before each trial started, we extended 444 
the pre-trial period by simulating a Poisson spike train for the unrecorded time between trials with a constant 445 
rate equal to the baseline mean activity.  446 

To relate this model to previously studied models, Equation 2 can be generalized as 𝛥𝐹/𝐹cdeRf(𝑡) 	=447 
𝑓(𝑐(𝑡)) + 𝑛i(𝑡), where 𝑓(∙) and 𝑛i(𝑡)~𝑁(0, 𝜎i") is Gaussian external noise (Maravall et al., 2000; Tsien, 448 
1989; Yasuda et al., 2004). We considered two alternative S2F models used by previous studies (note 449 
though that both of these models did not contain internal noise in Equation 1): 450 

S2F Linear model: 𝑓r𝑐(𝑡)s = 𝐹tuj𝑐(𝑡) + 𝐹5, where 𝐹tuj is a scaling parameter (we kept the naming as 451 
max to clarify the relationship to other models); 𝐹5 is the baseline (Figure S3G, left). 452 

S2F Hill model: 𝑓r𝑐(𝑡)s = 𝐹tuj
m(R)E

m(R)EhvU
, where 𝐹tuj is the maximum possible fluorescence change; 𝑛 is 453 

the nonlinearity; 𝐾x is a half-activation parameter. Model performance is summarized in the supplementary 454 
material and reported in http://im-phys.org/analyses for each single cell (Figure S3G, right). 455 

Model parameter sensitivity (Figure S3C) was defined as the decrease of the fraction of explained variance, 456 
as a function of the deviation of the parameter value from the estimated solution: 𝑔 = z{|/{|	

z+/+
, where 𝑃 ∈457 

{𝜏�, 𝜏x, 𝑘, 𝑐%/", 𝐹t}. 458 

Calcium imaging to spikes for non-simultaneous ephys-imaging recordings 459 

We performed fluorescence-to-spike (F2S) inference using two published models (Deneux et al., 2016; 460 
Pnevmatikakis et al., 2013). These were two state-of-the-art generative models based on inference 461 
techniques developed by (Deneux et al., 2016; Pnevmatikakis et al., 2013). We used the authors’ code 462 
available on GitHub. 463 

Single neuron analyses 464 

Neural selectivity for left- or right-trials was determined using two-sample t-tests, with neural activity binned 465 
over 67 ms, which corresponds to one imaging frame. A neuron was selective if it showed selectivity (p 466 
< .05) for >335 ms (5 continuous frames). A selective neuron was multiphasic if the polarity of selectivity 467 
switched, with continuous periods of selectivity lasting at least 335 ms long. Selective neurons that were 468 
not classified as multiphasic according to this criterion were classified as monophasic. 469 
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Selective neurons (mono- and multiphasic) were classified into left- and right-preferring cells according to 470 
the condition in which their activity was higher (Figure 2IJ). Ramp-down (ramp-up) were defined as neurons 471 
that have activity that is greater (less) in the baseline epoch compared to the delay epoch (paired t-test, p 472 
< .05 across trials). Note that ramp-down cells were excluded from the analysis of peakiness (Figure 7). 473 

Principal component analysis  474 

Principal Component Analysis (PCA) was performed on the activity of neurons averaged across trial type 475 
(𝑠 ∈ 	 {𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}):  476 

𝒓(𝑠, 𝑡) = 𝑪𝒙(𝑠, 𝑡)+	< 𝒓 >�,R     (Equation 3) 477 

r is a 𝑛 × 2𝑇 matrix, where n is the number of recorded units in each dataset and T is the number of time 478 
points for each trial type. < 𝒓 >�,R is a vector of the mean activity of each neuron across time and trial type. 479 
𝒙(𝑠, 𝑡) is an 𝑛 × 2𝑇 PC score matrix, where the 𝑖th row corresponds to the 𝑖th PC score. We estimated the 480 
relative contribution to each PC of the different forms of variance: temporal dynamics, trial-type selectivity 481 
and other. Explained variance (EV) of temporal dynamics 𝐸𝑉2(𝑡) and trial-type selectivity 𝐸𝑉2(𝑠) for the 𝑖th 482 
principal component (PC) were computed as: 483 

𝐸𝑉2(𝑡) =<< 𝑥2(𝑠, 𝑡) >�
">R/< 𝑥2(𝑠, 𝑡)" >R,�    (Equation 4) 484 

𝐸𝑉2(𝑠) =<< 𝑥2(𝑠, 𝑡) >R
">�/< 𝑥2(𝑠, 𝑡)" >R,�    (Equation 5) 485 

respectively. 6f-Tg related population analyses were only applied to cells with ROC > 0.7. 486 

Population decoding 487 

We applied regularized linear discriminant analysis (LDA) on neural dynamics grouped into bins 488 
corresponding to single imaging frames (67 ms) to compute the instantaneous decodability of trial type. 489 
Regularization was performed by sparsity-regularized LDA (Guo et al., 2007; Wei et al., 2019). The optimal 490 
LDA decoder was computed separately for each time bin using correct trials only. We estimated 491 
performance for the instantaneous LDA decoder by sampling subsets of units and averaging 100 492 
subsamples. We separated the trials of each neuron into non-overlapping training (70%) and testing (30%) 493 
sets. The instantaneous decoder of trial type was computed from training set and its performance was 494 
evaluated on the testing set. 495 

We tested the ability of neuronal population activity at different times to discriminate the behavioral epoch 496 
by using a four-class LDA (Figure 6F-H). We defined the latency of neuronal response to behavioral epoch 497 
by the first time at which decoding reached a 0.7 accuracy threshold (arrows on Figure 6F-H). 498 
Regularization was performed by sparsity-regularized LDA (Guo et al., 2007; Wei et al., 2019). 499 

Sensitivity analysis of peakiness 500 

We used as a reference value an artificial, synthetic ephys dataset with 50 neurons whose firing rates were 501 
manually set to be non-zero only at the time corresponding to one imaging frame. From left to right in Figure 502 
7G, S2F model was configured (1) using the same parameters for all cells, except that the internal noise 503 
and external noise were randomly generated (at the same amplitudes); (2) using the same parameters for 504 
all cells, except that the spike times were jittered within the time length of the frame (i.e., all spikes were 505 
kept in the same image frame); (3) using the same parameters for all cells, except that the spike rates in 506 
the original frame varied from 0.1 Hz to 5 Hz (spike trains generated using Poisson process); (4) using the 507 
same parameters for all cells, except that the decay time constant of calcium indicator was randomly 508 
sampled from its distribution; (5) using the same parameters for all cells, except that nonlinearity of calcium 509 
indicator was randomly sampled from its distribution; (6) both decay time constant and nonlinearity of 510 
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calcium indicator were randomly sampled; (7) the same as (6) except that the spike rates in the original 511 
frame vary from 0.1 Hz to 5 Hz (spike trains generated using Poisson process). 512 

Distributions of measures  513 

For S2F model, one can randomly sample all the parameters from the distributions measured using 514 
simultaneous ephys-imaging recordings and all possible noise levels. The distribution of a measure 𝜓 (e.g. 515 
fraction of mono-selective neurons, peakiness etc.) can then be computed through synthetic data using 516 
randomly sampled S2F models. Specifically: 517 

 𝑃(𝜓) = ∫𝑃(𝜓, 𝛥𝐹/𝐹cdeRf(𝑡), {𝑡�k2Li}, 𝛩)            (Equation 6) 518 

where the joint distribution can be formulated through a chain rule: 519 

𝑃(𝜓, 𝛥𝐹/𝐹cdeRf(𝑡), {𝑡�k2Li}, 𝛩) = 𝑃 Q𝜓�𝛥𝐹/𝐹cdeRf(𝑡)V 𝑃r𝛥𝐹/𝐹cdeRf(𝑡)|{𝑡�k2Li}, 𝛩s𝑃r{𝑡�k2Li}s𝑃(𝛩)  (Equation 7) 520 

where 𝑃r𝛥𝐹/𝐹cdeRf(𝑡)|{𝑡�k2Li}, 𝛩s  is derived from Equations 1, 2, and 𝑃 Q𝜓�𝛥𝐹/𝐹cdeRf(𝑡)V  describes 521 
probability of measure 𝜓 at a given value for dynamics 𝛥𝐹/𝐹cdeRf(𝑡), 𝑃r{𝑡�k2Li}s is the empirical distribution 522 
of spike events in ground truth ephys and 𝑃(𝛩) is the distributions of S2F parameters. 523 

For unsupervised-learning-based F2S models (i.e. MCMC and MLSpike), we performed 100 subsamples 524 
of deconvolved synthetic ephys data to estimate distribution of the parameters.  525 
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 526 

Figure 1. Illustration of sampling population activity in anterior lateral motor cortex using imaging 527 
and electrophysiology.  528 

A. Delayed-response, two alternative forced-choice task. Mice discriminated a pole position (anterior or 529 
posterior) and reported it by directional licking (lick right, blue; lick left, red) after a delay period. End of 530 
delay period was signaled by an auditory cue B. Schematic of imaging setup. C. Schematic of 531 
electrophysiological setup. D. Schematic of neurons sampled by imaging (green). E. Schematic of sampled 532 
neurons by electrophysiology (orange). F. Example neuron, imaging. Top, individual trials (blue, right trial; 533 
red, left trial). Bottom, mean activity (mean, thick line; sem., shaded area). G. Example neuron, 534 
electrophysiology. Top, raster plot. Bottom, peri-stimulus time histogram (PSTH).  535 
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 536 

Figure 2. Single neuron trial-type selectivity differs between imaging and ephys  537 

A. Example neurons with monophasic selectivity. Left, ephys; right, imaging. B, Same as A for multiphasic 538 
neurons. C, Same as A for non-selective neurons. D-F, Fraction of selective neurons in depth-matched 539 
ephys (“ephys @6f” indicates depth matched to the more superficial 6f-TG recordings) and when imaged 540 
with 6s-AAV, 6s-TG, or 6f-TG. D. Fractions of monophasic neurons. E. Fraction of multiphasic neurons. F. 541 
Fraction of nonselective G. Proportion of multiphasic neurons in intracellular recordings is similar to that in 542 
extracellular recordings. Bar shows fraction of neurons in each of the categories for extracellular (left) and 543 
intracellular (right) ephys. H. Effect of spike inference on estimates of fractions of monophasic (left) and 544 
multiphasic (right) neurons. The distribution of fraction of neurons for imaging data (source data), is given 545 
in gray for 6s-AAV (top), 6s-TG (middle) and 6f-TG (bottom). The distribution for ephys (target data) is in 546 
black. Distributions from inferred spike rates from MCMC (Pnevmatikakis et al., 2013) are in cyan  and for 547 
MLSpike (Deneux et al., 2016) are in magenta. Arrows denote the difference between the imaging data and 548 
ephys data (gray arrow) or inferred ephys and ephys data (cyan arrow for MCMC and magenta arrow for 549 
MLSpike). I. Fraction of right-preferring neurons in the different datasets divided into slow indicators (left) 550 
and fast indicators (right). J. Bar plot of fractions of ramp-down, ramp-up and ‘other’ cells in ephys for right-551 
preferring (left) and left-preferring neurons (right).  552 
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 553 

Figure 3. Simultaneous loose-seal recordings and calcium imaging of layer 2/3 pyramidal neurons 554 
in vivo. 555 

A. Illustration of the recording setup. Transgenic mice expressing GCaMP6s (GP4.3) or GCaMP6f (GP5.17) 556 
were lightly anesthetized and viewed drifting grating visual stimuli. GCaMP-expressing L2/3 neurons were 557 
recorded in the loose-seal mode during calcium imaging. B. Example recordings from neurons expressing 558 
GCaMP6f (top, 6f-TG) and GCaMP6s (bottom, 6s-TG). Red ticks, spikes. C. Traces of fluorescence 559 
dynamics following different numbers of action potentials (APs) for example neurons. Top, 6f-TG; bottom, 560 
6s-TG. Gray, no AP; black, a single AP; red, 2 APs; blue, 3APs; green, 4APs; magenta, 5APs. Thin lines, 561 
single trials; thick lines, average. D. Peak fluorescence increases as a function of the number of spikes in 562 
200 ms bins. Black, single trials; red, trial average. E. ROC curve of all spike events. Inner panel, ROC 563 
curve for single AP events. F. Distribution of d-prime for single spikes across cells. Left, 6s-TG; right, 6f-564 
TG. G. Mean peak fluorescence changes as a function of number of spikes in 200 ms time intervals across 565 
cells. Left, 6s-TG; right, 6f-TG. Each circle corresponds to a recorded neuron. Bars indicate average.  566 
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 567 

Figure 4. Forward modeling of the spike-to-fluorescence transformation largely explains difference 568 
in selectivity patterns 569 

A. spike-to-fluorescence model. Top: schematic plot of the spike-to-fluorescence (S2F) forward model that 570 
generates a synthetic fluorescence trace (∆F/FSynth) from an input spike train. Middle: example fit and data. 571 
Experimental, measured ∆F/F (blue) is overlaid with the simulated ∆F/FSynth (orange) from the S2F model. 572 
The input to the model, the simultaneously recorded spikes (black), is shown below the traces. B. 573 
Distributions of the inferred model parameters for different indicators (yellow: 6s-AAV; green: 6s-TG; Purple: 574 
6f-TG; gray: 6f-AAV. C. An example ramp-up cell (top, ephys; bottom, 6s-AAV synthetic); selectivity remains 575 
detectable in synthetic imaging data. D. An example ramp-down cell (top, ephys; bottom, 6s-AAV synthetic); 576 
selectivity becomes undetectable in synthetic imaging. E. S2F model predicts that selectivity of ramp-down 577 
neurons but not ramp-up neurons, would be often obscured in imaging datasets. Bar plot shows fraction of 578 
cells that remain detectably selective in synthetic imaging (6s-AAV synthetic, left; 6s-TG synthetic, middle; 579 
6f-TG synthetic, right) plotted separately for ramp-down and ramp-up cells.    580 
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 581 

Figure 5. Different sources of variability extracted in dimensionality reduction on imaging and ephys 582 

A. Fraction of variance of neural activity explained by principal components 1-10 divided into different 583 
sources of variability: red: temporal dynamics; blue: trial type; yellow: other (interaction term). From left to 584 
right: ephys, 6s-AAV, 6s-TG, 6s-AAV synthetic, 6s-TG synthetic; ephys depth-matched to 6f-TG recordings, 585 
6f-TG, 6f-TG synthetic. Vertical dashed line indicates the PC index at which the remaining components 586 
capture <1% of total variance. B. Trial-averaged scores of first three PCs over time (from top to bottom), 587 
averaged separately for the two trial types (right trial, blue; left trial, red). Same order from left to right as in 588 
A. C. Trial dynamics in the first two-PC subspace for the two trial types (right trial, blue; left trial, red). Same 589 
order from left to right as in A.  590 
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 591 

Figure 6. Population decoding differs in sensitivity and temporal profile between imaging and ephys 592 

A. Performance of instantaneous regularized linear-discriminant-analysis (LDA) trail-type decoder for 100-593 
unit subpopulations. Vertical dotted lines indicate behavioral epochs, from left to right: presample, sample, 594 
delay, response. Top, decoders trained on ephys; middle, decoders trained on 6s-AAV; bottom, difference 595 
between the two. For top and bottom plots: individual gray lines show single subsample performance and 596 
black thick line shows average. In bottom plot mean is indicated by think line and shaded area corresponds 597 
to standard deviation. B. Toy model demonstrating observed delayed but enhanced decodability in imaging 598 
data. Schematic of relation between activity (left) and decodability (right) when the model has two constant 599 
levels of activation for the two trial types (orange and red). C. Example cell showing similar behavior to the 600 
toy model. D. Comparison of decodability from imaging to decodability from 1-second filtered ephys. Top, 601 
1-second filtered ephys; bottom, difference between filtered ephys and imaging. E. Comparison of 602 
decodability of trial type per behavioral epoch. Decodability for all datasets separated into slow indicators 603 
(left) and fast indicators (right). Bars color coded according to dataset. Left:  black, ephys; magenta, 6s-604 
AAV; red, 6s-TG; green, 6s-AAV synthetic; cyan, 6s-TG synthetic. Right: black, ephys (depth matched to 605 
6f-TG); orange, 6f-TG; purple, 6f-TG synthetic. F-G. Performance of behavioral-epoch LDA decoders. F. 606 
Probability of decoder based on ephys to assign population activity to each of the different epochs shown 607 
in the following color scheme: pre-sample (blue), sample (orange), delay (green), and response (red) epoch; 608 
arrows indicate the inferred transition times of epochs from neural codes. G. Same plot format as F, but for 609 
imaging. H. Sample plot format as F, but for synthetic imaging.  610 

0.5

1

1

0.5

n = 100 units
Ephys

6s-AAV

-2 0 2
Time from movement onset (s)

Tr
ia

l t
yp

e 
de

co
da

bi
lit

y
ac

cu
ra

cy

0.2
0

Ac
cu

ra
cy

di
ffe

re
nc

e Ephys - imaging

Time from movement onset (s)

Ephys 6s-AAV 6s-TG

∆F/FSynth 6s-AAV ∆F/FSynth 6s-TG

Ephys @6f depth

6f-TG

∆F/FSynth 6f-TG

A

Time from movement onset (s)
-2 0 2 -2 0 2 -2 0 2

-2 0 2 -2 0 2

Pre.
Samp.
Delay
Resp.

0

1

Fr
ac

tio
in

 
pr

ed
ic

te
d 

ep
oc

h

0

1

Fr
ac

tio
in

 
pr

ed
ic

te
d 

ep
oc

h

E

F G

H

0

1

Fr
ac

tio
n

pr
ed

ic
te

d 
ep

oc
h

-2 0 1

-2 0 2

-2 0 2

Sp
ik

es
 /s

0

80

-2 0 2
Time from movement onset (s)

0

2

0

0se
le

ct
iv

ity
 d

-p
rim

e 
(a

.u
.)

-2 0 2

3

3

∆F
/F

Sy
nt

h

D

B C

D
ec

od
ab

ilit
y

0.5

1

S D R S D R

Slow data (n = 25) Fast data (n = 25)
Ephys; 6s-AAV; 6s-TG
∆F/FSynth 6s-AAV;
∆F/FSynth 6s-TG

Ephys; 6f-TG
∆F/FSynth 6f-TG

Behavioral epoch

1

0.5

-2 0 2
Time from movement onset (s)

Tr
ia

l t
yp

e 
de

co
de

 a
cc

.

0.3

0Ac
cu

ra
cy

di
ffe

re
nc

e

1-sec filtered ephys

Filtered ephys - imaging

Ephys

∆F/FSynth

Activity Trial-selectivity

Delay Enhancement

Left trials
Right trials  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/840686doi: bioRxiv preprint 

https://doi.org/10.1101/840686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Wei et al  20 

 611 

Figure 7. Temporal dispersion of population dynamics differs between imaging and ephys 612 

A. Heatmap of normalized trial-averaged firing rates for right trials (left) and left trials (right) for ephys data. 613 
Firing rates were normalized to maximum of activity across both conditions. Neurons were first divided into 614 
two groups by their preferred trial type then sorted by latency of peak activity. B. Same plots as A but for 615 
6s-AAV (left), 6s-TG (middle) and 6f-TG (right). Below the 6f-TG are neurons from ephys depth matched to 616 
6f-TG. C. Fraction of neurons with a peak at given time point over time. Distribution in time plotted 617 
simultaneously for both trial types (red: right trials, blue: left trials, black horizontal line: uniform distribution). 618 
Datasets shown left to right (from left: ephys, 6s-AAV, 6s-TG, and 6f-TG respectively). D-E. The same plots 619 
as B-C for synthetic imaging (6s-AAV synthetic, left; 6s-TG synthetic, middle; 6f-TG synthetic, right). F. 620 
Example cells with peaks at a similar time in ephys (left; mean activity, thick black line; sem, shaded area; 621 
peak, magenta circle; baseline, orange thin line) along with the corresponding synthetic data (right). 622 
Neurons are sorted according to their peak times in synthetic imaging (early to late, from top to bottom). G. 623 
Sensitivity analysis of peakiness by synthetic, artificial data (Materials and methods). Bars show normalized 624 
peakiness for the different model variants: (1) identical S2F parameters and identical spike times; (2) 625 
identical S2F parameters, jittered spike times (3) identical S2F parameters, variable firing rate (4) identical 626 
S2F parameters except for the decay time constant of the calcium indicator that was randomly sampled 627 
from its distribution; (5) identical S2F parameters, except for the nonlinearity of the calcium indicator that 628 
was randomly sampled from its distribution; (6) both decay time constant and nonlinearity of calcium 629 
indicator randomly sampled; (7) variable decay time constant, non-linearity and firing rates. H. Same plots 630 
as B-C for inferred firing rates from imaging, i.e., synthetic ephys.  631 
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Supplementary materials 632 

A comparison of neuronal population dynamics measured with calcium imaging and 633 
electrophysiology 634 

Ziqiang Wei, Bei-Jung Lin, Tsai-Wen Chen, Kayvon Daie, Karel Svoboda, Shaul Druckmann  635 
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 636 

Figure S1. Effect of recording depth and firing rate in ephys 637 

A-D. Analysis as a function of recoding depth. A. Single neuron selectivity-type analyses. Left: horizontal 638 
bar plots show breakdown of population into selectivity types (gray: non-selective neurons, orange: 639 
monophasic-selective neurons, green, multiphasic-selective neuron. Right: horizontal bar plot shows 640 
number of neurons at each depth. The ratio of monophasic- to multiphasic selective neuron was roughly 641 
identical across depths (𝜒"-test to depths with n > 50 cells, ephys: p = .19; 6s-AAV: p = .73; 6s-TG: p = .97; 642 
6f-TG: p = .43). For the same depth, ephys has more selective neuron and more multiphasic selective 643 
neuron than imaging (𝜒"-test, p < .001 for all). B. Percentage of variance of neural activity explained by 644 
each principal component (Figure 5). Left: length of horizontal bar shows fraction of variance in each 645 
principal component. Colors show breakdown into different types of variance (blue: trial-type, red: time, 646 
orange: other). Right: horizontal bar shows number of neurons in each depth. For the same depth, the 1st 647 
PC show more temporal dynamics content in ephys and 6f-TG (𝜒"-test, p < .001 for all), while that show 648 
more trial-type content in 6s-AAV and 6s-TG (𝜒"-test, p < .001 for all). C. Decodability of trial type (Figure 649 
6). The number of cells at each depth is identical to that in PCA analyses. The decodability differs across 650 
depths, where the neurons in superficial layers show weak decodability of trial type in sample-delay epoch 651 
(multivariate ANOVA test on time-series to depths with n > 50 cells in ephys, 6s-AAV and 6s-TG; that to 652 
depth with n > 10 cells at ROC > 0.7 in 6f-TG; p < .001, 1000 bootstrap). For the same depth, the average 653 
decodability of trial type is higher in late delay to early response in imaging than that in ephys (rank sum 654 
test, p < .001 for all, 1000 bootstrap). D. Peakiness (Figure 7). The peakiness differs across depths (rank 655 
sum test, p < .001, 1000 bootstrap). For the same depth, peakiness is higher in ephys than imaging (rank 656 
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sum test, p < .001 for all, 1000 bootstrap). E-I. Analysis as a function of spike rates. E. Schematic of 657 
resampling procedure to target firing rate and distribution of firing rates after subsampling to different 658 
average spike rates (magenta: original data; cyan: ephys subsampled to 1 Hz average; yellow: ephys 659 
subsampled to 4 Hz average; green: ephys subsampled to 10 Hz average. F. Effect of target firing rate 660 
subsampling on fraction of monophasic (left) and multiphasic neurons (right) G. Values of peakiness are 661 
shown with the same color code as F. H.  Fraction of variance in the first principal components are shown 662 
by length of bar with same color code as F. Saturation of bar shows the breakdown into different 663 
components of variance (trial-type, time, other). I. Trial-type decodability over time shown with the same 664 
color code as F and with 6s-AAV added as a reference. J. Analysis as a function of spike sorting accuracy 665 
-- possible effects of merging. Increased fraction of multiphasic neurons is unlikely to have stemmed 666 
exclusively from failures of spike-sorting. Box plots indicate fraction of neurons in each selectivity class (left: 667 
non-selective, middle: monophasic, right: multiphasic) as a function of increased probability of artificially 668 
induced merging between two neurons. Dashed line indicates fraction of selectivity type found in the ephys 669 
dataset.  670 
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 671 

Figure S2. Single- and few-AP responses of neurons in transgenic GCaMP6s and 6f mice.  672 

A. Traces of fluorescence dynamics following different numbers of action potentials (APs) for example 673 
neurons (same plots as Figure 3C for additional examples). Gray, no AP; black, a single AP; red, 2 APs; 674 
blue, 3APs; green, 4APs; magenta, 5APs. Thin lines, single trials; thick lines, average. B. Peak as a 675 
function of the number of spikes (same plots as Figure 3D for additional examples). Black, single trials; 676 
red, trial average. C. ROC curve of all spike events. Inner panel, ROC curve for single AP events (same 677 
plots as Figure 3E for additional examples).  678 
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 679 

Figure S3. Detailed values of model parameters for simultaneously recorded neurons 680 

A. Pairwise correlation plots for each of the spike-to-fluorescence parameters. Panels along the diagonal 681 
describe the distribution of each parameter (these are identical to Figure 4B but reproduced to facilitate 682 
comparisons). Off-diagonal panels depict the correlation between two parameters. Spearman’s rank 683 
correlation of parameters across cells (regardless of recording method) and associated p-value are 684 
provided in each off-diagonal panel. Each circle corresponds to a response set. Data from the different 685 
indicator conditions is overlaid and marked by color. (gray: 6f-AAV, 11 neurons, 37 response sets; yellow: 686 
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6s-AAV, 9 neurons, 21 response sets; purple: 6f-TG, 18 cells, 32 response sets; green: 6s-TG, 22 neurons, 687 
33 recording periods). B. Boxplots of explained variance of S2F on validation data for simultaneously 688 
recorded neurons (color follows the same convention as in A). C. Boxplot of distribution of parameter 689 
sensitivity values. D. Pairwise correlation of re-estimation of k and c1/2 using ALM imaging dynamics 690 
(Materials and methods). The re-estimated parameter values are shown as a scatter plot. Each dot 691 
corresponds to a neuron (n = 720 for 6s-AAV and 6s-TG; n = 225 for 6f-TG in matched depths). The 692 
distribution of the re-estimated parameter values strongly overlapped with those obtained in simultaneous 693 
imaging-ephys recordings. c1/2 and k had a strong inverse correlation as in the simultaneously recorded 694 
data (rs < -.64, p < .001). E. Boxplots of firing rates of neurons in each recording sessions (6f-AAV, gray, 695 
0.51 ± 0.25 Hz, mean ± std., range 0.05 – 1.25 Hz; 6s-AAV, yellow, 0.43 ± 0.38 Hz, range 0.05 – 1.68 Hz; 696 
6f-TG, purple, 1.25 ± 1.48 Hz, range 0.09 – 5.22 Hz; 6s-TG, green, 1.08 ± 0.85 Hz, range 0.09 – 3.00 Hz). 697 
F. Scatter of simultaneous ephys-imaging data model fit and the dynamical range of the data (expressed 698 
as mean spike rate). G. Scatter of simultaneous ephys-imaging data model fit quality between different S2F 699 
models (Materials and methods). Left: comparison between S2F linear model (x-axis) and S2F sigmoid 700 
model (y-axis); right, comparison between S2F hill model (x-axis) and S2F sigmoid model (y-axis).   701 
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 702 

Figure S4. Forward model explains differences in neuronal selectivity between imaging and ephys 703 

A. Fraction of cells that remain selective in synthetic imaging plotted separately for ramp-down and ramp-704 
up cells (left: 6s-AAV synthetic, middle: 6s-TG synthetic, right: 6f-TG synthetic), which is further broken 705 
down into right- (blue) and left-preferring (red) trials. B. Fraction of right-preferring neurons in imaging after 706 
spike inference models. Left: the same analyses as that in Figure 2I, but performed on inferred spiking data 707 
obtained via the MCMC framework; right: the same analyses as that in Figure 2I, but performed on inferred 708 
spiking data obtained via the MLSpike framework. C. Estimation of the fraction of monophasic and 709 
multiphasic neurons that would be discovered by an imaging experiment through use of the S2F forward 710 
model. Plots show the estimates for monophasic (left) and multiphasic (right) neurons. The proportion of 711 
the source data, ephys, is in black. The experimentally measured proportions in imaging are in gray.  Blue 712 
color shows the distribution of selectivity type proportion for different repetitions of each algorithm on 713 
subsamples of the dataset for synthetic imaging using 6s-AAV (top), 6s-TG (middle) and 6f-TG (bottom) 714 
parameters.  715 
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 716 

Figure S5. Spike inference results for principal component analysis 717 

Left: fraction of variance explained by principal components 1-3 for each of the datasets, and its division 718 
into different sources of variability: red: temporal dynamics; blue: trial type; yellow: other (interaction term). 719 
Bars from left to right: ephys, 6s-TG, 6s-AAV; ephys depth-matched to 6f-TG recordings, 6f-TG. Middle: 720 
equivalent results for principal component analysis performed on inferred spiking data obtained via the 721 
MCMC framework. Right: equivalent results for principal component analysis performed on inferred spiking 722 
data obtained via the MLSpike framework.  723 
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 724 

Figure S6. Spike inference results for trial-type population decoding 725 

A. Accuracy of trial-type population decoding over time for different datasets. Left column top to bottom: 726 
6s-TG, 6s-AAV, 6f-TG. Right column: ephys. B. Accuracy of trial-type population decoding over time of 727 
datasets comprised of inferred ephys from the different imaging datasets. top to bottom: 6s-TG, 6s-AAV, 728 
6f-TG. Left column: MCMC framework, right column: MLSpike framework.  729 
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 730 

Figure S7. Analysis of matched datasets from a primary somatosensory area 731 

Differences between ephys and imaging are likely to depend not only on the analysis and indicator, but also 732 
on the underlying dynamics which change from one brain area to the other. We analyzed a second group 733 
of matched population recordings, obtained from primary somatosensory area (S1) rather than ALM. We 734 
find that differences in some analyses were no longer present, but others remained. We find that the fraction 735 
of multiphasic neurons in S1 was far smaller than that in ALM (n = 1/55, ephys; n = 4/719, 6s-AAV; p < .001, 736 
𝜒" test) and there was no significant difference between the fraction of multiphasic neurons observed in 737 
ephys and imaging (p = .801, 𝜒" test). Our forward model correctly predicted this lack of change (p = .674, 738 
𝜒"  test between imaging data and synthetic imaging data). Similarly to ALM data, trial type variance 739 
dominated the first principal component in imaging but not in ephys and population decoding was 740 
substantially delayed in imaging relative to ephys.  741 

A. Single neuron selectivity type. Bar plots show fraction of neurons found in each of the three selectivity 742 
types (left: monophasic, middle: multiphasic, right: nonselective) for the different recording methods (left: 743 
ephys, middle: 6s-AAV, right: 6s-AAV synthetic). B. principal component variance content. Bar plots show 744 
fraction of variance contained in the first three principal components (from left to right: PC1, PC2, PC3). 745 
Each bar is broken into the contribution from trial-type variance (blue), time variance (red) and other (yellow). 746 
C. Population trial-type decodability. Plot shows mean decodability over time for ephys: top, 6s-AAV: middle 747 
and synthetic 6s-AAV: bottom. Dashed lines designate different trial periods (sample, delay response). Note 748 
that the experiments with 6s-AAV had a slightly shorter delay period, hence the difference in location of 749 
dashed lines. Since 6s-AAV synthetic is derived from ephys it has the same trial structure as ephys.  750 
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 751 

Figure S8. A community based online resource, im-phys.org, for determining quantitative effects 752 
of measuring population activity by imaging or ephys 753 

A. Top, schematic of our community resource that can allow datasets acquired by different labs to be found 754 
in one location and matched in analyses. Bottom, schematic of combining different analyses with different 755 
datasets on im-phys.org. B. Schematic of using im-phys.org to predict values (metric distributions) expected 756 
for different population analyses from datasets acquired by different techniques through use of a variety of 757 
forward and inverse models. 758 
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Cell ID Recording duration (s) Mean spike rate (Hz) Mean spike rate during stimulus (4 s) (Hz) Max spike rate in 100-ms bins (Hz) Decay time (sec)
141001_cell1 292 0.26 4 40 2.55
141001_cell2 1067 0.92 9.5 100 1.13
141002_cell1 312 2.2 16.25 90 1.58
141002_cell2 156 0.75 3 20 1.37
141002_cell3 156 2.23 7.25 70 1.17
141002_cell4 412 1.76 9 60 2.02
141006_cell1 186 2.27 7.5 60 0.53
141006_cell2 132 0.4 4.75 90 0.40
141007_cell1 526 0.76 6.5 50 1.33
141007_cell3 1315 0.15 3.25 40 1.11
141007_cell4 443 3.39 10 40 0.55
141010_cell1 526 0.34 5 70 1.73
141010_cell2 165 0.29 2 50 1.56
141010_cell3 526 0.33 1.5 40 1.45
141010_cell5 611 3.19 13 60 0.79
141028_cell1 160 1.68 12.5 70 0.93
141029_cell1 363 2.67 6.25 50 0.56
141029_cell2 100 0.84 4.5 70 0.62
141029_cell4 526 1.89 8.5 60 1.90
141104_cell1 263 0.47 5.25 50 1.23
141104_cell2 766 2.31 14.25 70 0.90
141104_cell3 761 0.96 7.25 70 0.78
N=22 444±316 1.37±1.02 7.32±4.01 60±19 1.19±0.55

Column1 Recording duration (s) Mean spike rate (Hz) Mean spike rate during stimulus (4 s) (Hz) Max spike rate 100-ms bins (Hz) Decay time (sec)
140822_cell1 240 0.29 3 100 0.39
140822_cell2 240 4.24 15 70 0.89
140826_cell1 100 0.7 3.25 40 0.23
140828_cell1 248 0.45 11.5 80 0.35
140904_cell2 744 0.59 8.5 220 0.41
140904_cell3 50 2.46 5 60 0.31
140908_cell1 744 2.19 11.75 70 0.81
140908_cell3 120 0.9 7.75 50 0.53
140911_cell1 403 1.11 5.5 40 0.69
141110_cell1 526 0.4 3 60 0.41
141110_cell2 789 0.95 8.25 50 0.85
141110_cell3 263 1.46 11.75 110 0.70
141113_cell1 263 1.89 12 70 0.91
141113_cell2 526 0.7 6 70 1.17
141113_cell3 263 1.76 8.5 50 0.39
141113_cell4 2630 0.54 8.5 70 1.04
141114_cell1 1152 4.35 18.75 80 0.67
141114_cell2 263 2.74 11.75 60 0.42
N=18 531±598 1.54±1.25 8.88±4.30 75±41 0.62±0.28

Summary of recordings in GCaMP6s-TG mice

Summary of recordings in GCaMP6f-TG mice

Table S1
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