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SUMMARY 
 
Human psychophysical studies demonstrate that visual detection thresholds are sometimes 
close to the limits imposed by the physics of the stimulus. Another potential limit is the 
variable spiking of cortical neurons, which theoretically reduces information about the 
stimulus. The correlation structure of noise in the cortical population is critical in setting this 
limit. We investigated these correlations by recording simultaneously from visual cortical 
areas V1 and V4 in macaque monkeys during performance of a stereo depth detection task. 
We found evidence of rapid, information-limiting, noise correlations within each area, at a 
temporal scale of tens of ms. However, the correlation structure between the two areas had 
a different pattern at temporal scales of 100+ms that attenuated within-area correlations, 
potentially supporting recovery of information. We suggest that processing in multiple, 
distinct cortical areas may aid the estimation and attenuation of information-limiting noise 
correlations. 
 
Key words: V1, V4, Cortex, Vision, Rhesus, Noise correlation, Stereo depth, Encoding, 
Behaviour, Utah array 
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INTRODUCTION 
 
The weakest detectable visual stimuli are close in intensity to the limits imposed by the 
physics of the stimulus (Hecht et al., 1941, Parker and Newsome, 1998, Levick et al., 1983). 
Processing in central neocortical areas may also place limits on sensory signals. Earlier work 
questioned how the firing induced by stimuli could be detected against the variability of 
cortical neuronal activity (Tolhurst et al., 1983, Parker and Hawken, 1985, Barlow et al., 
1987, Newsome et al., 1989), elucidating how detection relates to the statistics of firing in 
single neurons. This question has been explored with different tasks and sensory systems 
(Parker and Newsome, 1998), and remains a topic of intensive research (Pitkow et al., 2015, 
Krug et al., 2016, Krause and Ghose, 2018). A good model is the processing of stereoscopic 
information, which clearly requires the cortex to combine separate images from the two 
eyes to see stereo depth. 
 
Early work on the somatosensory periphery showed that the covariation of residual noise in 
a pool of sensory neurons is also an important factor (Johnson et al., 1973). Without 
covariance, additive pooling results in a steady improvement of sensory thresholds with 
increasing pool size. Covariance limits the improvement. Recent work expounds that insight, 
showing how the structure of correlations is critical in setting limits on the encoding and 
decoding of information within sensory cortex (Abbott and Dayan, 1999, Pouget et al., 2003, 
Averbeck et al., 2006, Moreno-Bote et al., 2014, Kanitscheider et al., 2015b). This 
theoretical work has been supported by the development of techniques that record 
simultaneously from multiple cortical neurons. 
 
Yet, few studies make the critical measurement of correlation structure in the population 
responses of animals performing a sensory discrimination task  (Pitkow et al., 2015, Yu and 
Gu, 2018, Bondy et al., 2018, Sanayei et al., 2018, Cohen and Maunsell, 2009, Ruff and 
Cohen, 2014, Ruff and Cohen, 2016, Ni et al., 2018, Verhoef and Maunsell, 2017). Most 
employ tasks that involve a binary decision, potentially limiting which cortical neurons are 
relevant to the task. We addressed this by training monkeys to discriminate stereo depth, 
while we probed a range of neuronal encoding by recording multiple neurons 
simultaneously in two cortical sites: the primary visual cortex (V1) and the extrastriate area 
V4. 
 
An open question is whether correlations limit the passage of signals through stages of 
cortical processing (Zylberberg et al., 2017). Since human psychophysical performance is 
near the physical limits of sensory detection (Hecht et al., 1941), communication through 
the cortex must be almost noise-free under some circumstances. We tackle this issue by 
examining the correlation structure and information encoding of neuronal activity within 
and between cortical areas V1 and V4. Specifically, we test how information may pass 
between cortical areas, with respect to neuronal correlations during task performance. 
 
We couple our approach with a time-dependent measure of correlations (Bair et al., 2001), 
and extend this approach to develop time-dependent measures of information encoding. 
Like previous studies, we find evidence of information-limiting correlations for the pattern 
of cortical activity within single cortical areas. Our results suggest a simple mode, which 
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demonstrates that the potentially deleterious effects of information-limiting correlations do 
not build up as sensory signals pass from one cortical area to another. We suggest that this 
is an important and previously unrecognized principle of neural encoding across multiple 
areas of the cerebral neocortex. 
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RESULTS 
 
We trained two Rhesus macaques (Macaca mulatta) to observe 4 patches of random dot 
stereograms (RDS) and perform an odd-one-out task (Figure 1A&B), in which they detected 
the one patch that presented a change in binocular disparity. In the ‘present RDS’ phase 
(Fig.1Aiii), all 4 targets had the same disparity, which was chosen from a set of 13 different 
values. The ‘popout’ phase (iv) presented the change in depth. 
 
The monkeys’ behaviour indicated attention to the RDS stimuli in the ‘Present RDS’ phase, 
as they were better at reporting the location of the disparity step change as it grew in 
magnitude (Fig.1B, % correct), while their reaction times decreased (RT). On catch trials with 
no change in any RDS, the animals had to guess, so their accuracy was at chance levels 
(Fig.1B, dotted line) and their RTs were longest. 
 
V1 and V4 neurons were measured using Utah array electrodes implanted chronically in 
each area. The electrode placement meant that the recorded neurons were stimulated by 
the lower-right RDS. The RDS was located to drive significant co-activation of the V1 and V4 
units (Fig.1C&D, Fig.S1). It was impossible to optimally stimulate every unit recorded by the 
arrays. Hence, we applied entry criteria, such that each unit had statistically significant 
tuning to disparity (one-way ANOVA at the 1% level) and fired at least 5 spikes per second to 
its preferred disparity. The recordings were made as the animals attended to the RDS stereo 
depth, to perform the task. We focus on the spiking from the ‘Hold fixation’ and ‘Present 
RDS’ phases of the trial (Fig.1Aii&iii). 
 
 
V1 and V4 units were selective for binocular disparity 
 
The V1 and V4 neural signals that we recorded could have supported task performance. 
Disparity tuning curves are shown for example V1 (circles) and V4 (plus sign) units in Figure 
2A, along with the best-fitting Gabor functions (solid lines; V1, gold; V4, blue; Prince et al., 
2002), which describe the response profiles as a function of disparity. To quantify a unit’s 
level of disparity selectivity, we computed the rate of mutual information between the RDS 
disparity and the spike counts, called the disparity mutual information (DMI). This measure 
was well correlated with the established measure of selectivity (Fig.2B & Fig.S2A) – the 
disparity discrimination index (DDI; Prince et al., 2002) – for the V1 (dots; Spearman 
correlation, Initial, r = 0.976, p = 9.559e−130) and V4 (plus sign; r = 0.953, p = 4.705e−111) 
neurons. 
 
We tested when the units became selective for disparity by convolving the spike trains with 
a causal exponential kernel (20ms time constant) to obtain the firing rate and DMI time 
series for each unit. The average firing rates (Fig.2C & Fig.S2B; V1, gold; V4, blue) had a 
transient burst of activity in response to the onset (black dotted) of the RDS, which then 
settled down to a steady rate. As expected, V1 began responding to the RDS before V4. 
 
Units in both areas were selective for binocular disparity almost as soon as they began 
responding to the RDS, with the average DMI rising and falling in a similar way to the firing 
rate (Fig.2D & Fig.S2C). We verified this similarity for each unit by finding the Spearman 
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correlation of the firing rate and DMI, matched by time bin, in an 800ms window starting 
44ms after the RDS onset. The result was significantly positive for V1 (mean r = 0.192, right-
tailed t-test p = 3.339e−22) and V4 (r = 0.245, p = 7.819e−31), showing that units were more 
selective for disparity when their firing rate was high. 
 
Thus, we partitioned each trial into three consecutive windows for further analysis (Fig.2C & 
S2B, top). The Spontaneous window (leftward arrow) captured neural responses during the 
‘Hold fixation’ phase of the trial (Fig.1Aii), in which the subjects held their gaze prior to the 
arrival of RDS signals in V1. The Initial window (thick bar and black solid lines) captured the 
transient burst of firing rate and DMI in response to the onset of the RDS. Lastly, the Steady 
state window (rightward arrow) captured responses to the RDS for the remainder of the 
‘Present RDS’ phase of the trial (Fig.1Aiii). Again, within-unit comparisons showed that 
disparity selectivity was stronger in the Initial than in the Steady state window, for V1 (mean 
paired difference = −0.577 bits/s, left-tailed t-test p = 1.294e−12) and V4 (−0.220 bits/s, p = 
6.827e−11). 
 
 
Information limiting correlations 
 
If the visual cortex performs linear computations, then a special class of noise correlation – 
differential correlation (Moreno-Bote et al., 2014) – has the unique ability to limit the 
information in a sensory pool. It could build up in one layer of neurons (e.g. V4) after 
pooling common noisy inputs from another (V1; Kanitscheider et al., 2015c). We give an 
example pair of V4 neurons in Figure 3A–C to show how differential correlations could limit 
information. 
 
The pair had similar tuning for binocular disparity (i.e. 0 < rsignal, Fig.3A). Both units had a 
common negative slope in their tuning curves around 0.1° (black dashed), where they were 
sensitive to the same small changes in disparity. Joint responses to 0.1° trials were obtained 
by counting spikes in the Initial window (Fig.3B, grey). At 0.1°, the pair had a positive noise 
correlation (Fig.3C). Critically, the principal component (arrow) of the covariance was nearly 
parallel to the tangent line (grey) of the tuning curves at 0.1°. 
 
To see the consequence of this, consider a linear discriminator that classifies the joint 
responses as one of two disparities on either side of 0.1°.  The optimal decision boundary is 
perpendicular to the tangent line (grey), but the noise correlation (arrow) makes the joint 
responses vary across the decision boundary, causing classification errors (Averbeck et al., 
2006). Put simply, correlated noise would mimic true changes in the stimulus, limiting the 
sensitivity of this pair. 
 
This outcome contrasts a second, inter-cortical pair (Fig.3D–F). As before, both units had 
steep, overlapping slopes in their tuning curves (Fig.3D). Unlike the V4/V4 pair, the V1 and 
V4 units were selective for opposite disparities (rsignal < 0). Spike counts from both units in 
response to 0° (Fig.3D, black dashed) were obtained as before (Fig.3E), and the joint 
responses were examined (Fig.3F). Although this pair has a negative signal correlation, they 
have a positive noise correlation: the noise correlation does not align to the tangent. In this 
case, correlated noise would be less likely to leak across the decision boundary. 
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rCCG measures noise correlation at different time scales 
 
Noise correlations encompass the synchronous firing of spikes up to long-term co-
fluctuations in spike numbers (Smith and Kohn, 2008, Smith and Sommer, 2013, Cohen and 
Kohn, 2011). But measurement of spike count correlation (rSC) often confounds these slow 
and rapid correlations. Another, time-based measure – rCCG (Bair et al., 2001) – was 
introduced to disentangle noise correlations at different temporal scales. rCCG is an integral 
of the spike-train cross-correlation, and converges upon rSC as the integral width (τ) reaches 
that of the analysis window. We asked if information-limiting correlations occupied a limited 
set of temporal scales by using rCCG to examine noise correlations within and between V1 
and V4 (Figures 4 & S3). 
 
Within V1 (Fig.4A), the time scale of noise correlations changed as the trial progressed. 
Before the RDS appeared, Spontaneous correlations were slower, on the order of hundreds 
of ms (dashed). The correlations got faster after RDS onset, peaking at τ = 20ms; rCCG(20ms) 
was greater in the Initial window (solid black) than the Spontaneous window (mean paired 
difference = 2.141e−2, paired t-test p = 1.592e−124). Even in steady-state responses to the 
RDS, the slower correlations were supressed, with a drop in rCCG (100ms) from the 
Spontaneous window to the Steady state (magenta, −1.092e−2, p = 1.005e−21). 
 
These changes in rCCG over time reflect the V1 to V1 cross-correlograms (CCG, Fig.4B). The 
Spontaneous CCG was positive and had a broad peak, coinciding with the steady increase of 
Spontaneous rCCG. In contrast, the Initial and Steady state CCGs had narrow positive peaks 
flanked by negative side lobes, showing that the majority of correlated spikes occurred 
within tens of ms of each other. This matched the peak in Initial and Steady state rCCG at τ = 
20ms. 
 
Unlike V1, correlations within V4 (Figs.4D & S3A) began saturating at τ = 20ms in all three 
analysis windows. V4 correlations were also stronger in the Spontaneous window, with 
rCCG(20ms) dropping in the Initial window (−2.188e−2, p = 9.053e−105) and then changing 
little from the Initial to Steady state windows (9.464e−4, p = 0.041). These differences 
appeared in the V4 CCGs (Figs.4E & S3B) in which the Initial and Steady state CCGs were 
mainly attenuated versions of the Spontaneous CCG. 
 
In marked contrast, the correlations between V1 and V4 (Fig.4G) saturated at τ = 100ms. 
Though weak, they were significantly positive (mean rCCG(100ms); Initial = 8.075e−3, right-
tailed t-test p = 1.512e−43; Steady state = 7.398e−3, p = 4.088e−61), but only in response to 
the RDS (Spontaneous = −1.286e−3, p = 1). There was no change in the V1/V4 correlations 
from the Initial to the Steady state window (mean difference = −6.767e−4, paired t-test p = 
0.159). The V1/V4 CCGs (Fig.4H) reveal a consistent delay whereby V1 spikes tended to 
occur 50ms earlier than correlated V4 spikes. 
 
Importantly, rCCG provides a low-variance estimate of short-term correlations, compared to 
rSC (Bair et al., 2001). τ can be chosen so that rCCG(τ) integrates the central peak of the CCG 
and discards the slow components, which rSC captures. This point is made by a direct 
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comparison of Steady state rCCG(100ms) and rSC in V1 (Fig.4C), V4 (Fig.4F & Fig.S3C), and 
between areas (Fig.4I). There was a strong, positive Spearman correlation of rCCG and rSC in 
all cases (V1 r = 0.750, V4 r = 0.772, V1/V4 r = 0.807, all p → 0), showing that they measured 
a common source of correlation. But the standard deviation (σ) of rSC (V1 σSC = 0.135; V4 σSC 
= 0.112; V1/V4 σSC = 0.112) was greater than that of rCCG(100ms) (V1 σCCG = 0.044, two-
sample F-test F2418,2418 = 9.569; V4 σCCG = 0.056, F2225,2225 = 3.955; V1/V4 σCCG = 0.030, 
F4597,4597 = 13.949; all p → 0). Hence, rCCG is the more accurate measure of short-term 
correlations. 
 
Noise correlations varied with disparity tuning, temporal scale, and time 
 
A property of differential correlations is that they limit discrimination thresholds in the 
neighbourhood of a specific stimulus value (Moreno-Bote et al., 2014). Therefore, we asked 
if the noise correlations had any consistent relationship to disparity selectivity (Figure 5 & 
S4). If so, then embedded differential correlations may have been present. Thus, we plotted 
rCCG as a function of the signal correlation between pairs (rsignal), grouped by temporal scale 
(τ, Fig.5A,C,E & S4A), or as a function of τ, grouped by rsignal (Fig.5B,D,F & S4B). 
 
For pairs in V4, there was a clear positive relationship of rCCG and rsignal (Fig.5C & S4A) at 
short (τ = 20ms, dashed) and long (τ = 150ms, solid) time scales in the Initial (black) and 
Steady state (magenta) windows: Spearman correlations were significant in all four cases 
(Initial τ = 20ms, r = 0.172, p = 4.133e−16; Initial τ = 150ms, r = 0.141, p = 2.448e−11; Steady 
state τ = 20ms, r = 0.170, p = 5.674e−16; Steady state τ = 150ms, r = 0.131, p = 5.906e−10). 
This coincided with an increase in rCCG at a range of τ for pairs with similar disparity 
preferences (Fig.5D & S4B, rsignal > 0, dashed) compared to those with opposite preferences 
(rsignal < 0, solid). For pairs in V1, a similar but weaker positive relationship was observed 
(Fig.5A&B) that was significant in the Initial window (τ = 20ms, r = 0.042, p = 0.038; τ = 
150ms, r = 0.050, p =0.013) and Steady state window for long time scales (τ = 150ms, r = 
0.054, p = 0.009) but not short (τ = 20ms, r = 0.030, p = 0.144). 
 
The correlation patterns between V1 and V4 (Fig.5E&F) were therefore unexpected in two 
ways. First, there was no measurable relationship between rCCG(20ms) and rsignal (Initial r = 
−0.013, p = 0.392; Steady state r = −0.004, p = 0.779). second, at longer time-scales, a weak 
relationship emerged, but it was negative (τ = 150ms; Initial r = −0.032, p = 0.032; Steady 
state r = −0.025, p = 0.091). That is, V1/V4 pairs tended to have opposite noise and signal 
correlations (like in Fig 3D–F), unlike the pairs within each area (e.g. Fig.3A–C). 
 
 
Empirical evidence of differential noise correlations 
 
Theory predicts that measured noise correlations are the sum of two sources, one that 
limits the sensory threshold with differential correlations and one that does not (Moreno-
Bote et al., 2014). The differential correlations will scale with the product of the first 
derivatives of the tuning curve (Fig.3C). The second source does not limit information, but it 
does mask the differential correlations. We reasoned that the low variance measure of 
noise correlation, rCCG, would be more likely to unmask weak and rapid differential 
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correlations. Thus, we examined the relationship of rCCG and the product of derivatives over 
a range of time scales. 
 
In V1 (Fig 6A–C) and within V4 (Fig 6D–F & Fig.S5E–G), we found that noise correlations had 
a positive relationship with the product of derivatives (fʹ×fʹ), shown by plotting rCCG against 
fʹ×fʹ (V1 Fig6A &B 6B; V4 Fig 6D & 6E, Fig.S5E & S5F) using the time scales (τ, see arrows in 
Fig 6C & 6F) that maximized regression line slopes (orange). In these examples, the 
Spearman correlation was significantly positive for V1 (Fig 6A, Initial r = 0.033, p = 1.137e−6; 
Fig 6B, Steady state r = 0.049, p = 3.423e−13) and V4 (Fig 6D, Initial r = 0.072, p = 1.437e−24; 
Fig 6E, Steady state r = 0.079, p = 2.726e−29). To see how this relationship changed with the 
temporal scale of the noise correlations, we plotted the Spearman correlation as a function 
of τ for V1 (Fig 6C) and V4 (Fig 6F & S5G). This showed that rCCG was the most related to fʹ×fʹ 
in a narrow range of time scales (10 ≤ τ ≤ 100ms). 
 
Again, the result between V1 and V4 was unexpected (Fig 6G–I). Instead of a positive 
relationship, we observed a significantly negative relationship of rCCG and fʹ×fʹ in the Initial 
(Fig 6G, r = −0.026, p = 1.023e−7) and Steady state (H, r = −0.019, p = 9.298e−5) windows 
that peaked for a narrow range of τ close to 100ms (I). 
 
 
Differential noise correlations are attenuated at long time scales 
 
Differential correlations will result in a saturation of the information in a neuronal pool of a 
certain size. Therefore, we measured the depth information in pools of increasing size 
(Figure 7 & S6). Using Initial responses, we found the normalized and averaged bias-
corrected linear Fisher information (Kanitscheider et al., 2015b) for pools of V1 units 
(Fig.7A), V4 units(Fig 7B & Fig.S6A), or V1 and V4 units (Fig 7C). Fisher information increases 
when the population response can better distinguish between different RDS disparity 
values, and results from the addition of informative neurons or from changes in the pool’s 
correlations. Since we added units to each pool from the most selective for disparity down 
to the least selective (Sanayei et al., 2018), part of the apparent saturation in Fig 7A – C (& 
Fig.S6A) is not due to the correlations. 
 
We then compared the Fisher information in the empirical pool against the information in 
an equivalent pool of decorrelated units (Fig 7A–C, thick dashed), for the cases of rapid (τ = 
20ms, dotted) and slow (τ = 150ms, solid) noise correlations. For all pool types, we found 
that the empirical information at τ = 20ms began to diverge from the decorrelated 
information for pools of 10 units. In pools with just V1 or V4 units, there was a similar but 
weaker divergence when τ = 150ms. However, for the mixed V1 and V4 pool, the empirical 
information at τ = 150ms was closely aligned with the decorrelated information (Fig 7C). 
 
To get more detail about the effect of time scale, we plotted the average raw Fisher 
information of the Initial responses as a function of τ (V1, Fig 7D; V4, Fig 7E & Fig S6B; 
mixed, Fig 7F). The empirical information (solid) was compared against the decorrelated 
information (dashed). For all pool types, the empirical information tended to increase with 
τ. But only the empirical information only converged on the decorrelated information in the 
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mixed V1 and V4 pool, around τ = 100ms. The normalized, paired difference in decorrelated 
and empirical information yielded similar results (Fig 7L, left; Fig.S6D, top). 
 
We confirmed this result by plotting the decorrelated information against the empirical 
information at τ = 150ms (V1 ,Fig 7G; V4 ,Fig 7H & Fig.S6C; mixed Fig 7I). The decorrelated 
information was greater than empirical for the V1 (mean paired difference ‘PD’ = 66.117, 
paired-sample t-test p = 4.700e−6) and V4 (PD = 32.316, p = 1.745e−7) pools. But there was 
no significant difference for the mixed pool (PD= −20.558, p = 0.183). Similar results were 
observed using Steady state responses (Fig.7L, right; Fig.S6D, bottom, & E–G), except that 
the empirical information never entirely converged on the decorrelated information. 
 
It may be that the increase in the mixed V1/V4 information was due to its larger pool size, 
compared to the V1 or V4 pools, and not due to any change in its noise correlations. This 
was tested by plotting the information of the mixed pool with 12 units against the sum of 
information from separate V1 and V4 pools of size 6, each (Initial, Fig 7J; Steady state, 
Fig.S6H). The value of 6 was chosen as this was the V1 pool size limit in one of the 
experiments. The average paired difference in information (Fig 7K) revealed that the mixed 
pool had extra information, over a range of τ. This difference increased with τ; hence 
information increased in the mixed pool as its covariance structure changed. 
 
 
A model V4 output neuron can attenuate differential noise 
 
Could information-limiting correlations be removed between V1 and V4? Some pairs of V1 
and V4 units had opposite disparity preferences and positive noise correlations (e.g. Fig.3D–
F), satisfying one possible criterion for cancelling the correlated noise without reducing the 
sensory signal (Abbott and Dayan, 1999, Averbeck et al., 2006). Thus, we built a simple 
model of a V4 output neuron (Figure 8), of a type that might project to downstream areas. 
The model had two afferent neurons (Fig 8A), a V1 projection neuron and a local V4 unit; 
this detail could be varied without a loss of generality. 
 
Correlated noise was removed by subtracting the weighted V1 responses from the input V4 
responses, both integrated in a Δt ms window, to produce the V4 output responses. Each V1 
and V4 pair in our dataset was used to predict the responses of a model V4 output neuron, 
the disparity selectivity of which was then measured. We hypothesized that the V1/V4 input 
pairs with positive noise correlation (rnoise > 0) and negative signal correlation (rsignal < 0) 
would yield V4 output neurons with better disparity selectivity (Fig 8B, V4 input variance, 
dashed, output V4 variance, grey). 
 
We tested our hypothesis by plotting the average difference of the V4 output DMI and V4 
input DMI (ΔDMI) against the signal correlation (rsignal) of the input pair, using responses 
from the Initial phase of firing and a 160ms integration window (Fig 8C). Values above zero 
indicate model V4 output neurons with more selectivity for disparity. When empirical data 
were used (solid), the V4 output neuron could improve its selectivity by cancelling noise or 
by pooling signals. To see the improvement due to cancellation, we recalculated the models’ 
responses after shuffling the trials so that the noise correlation of the afferent inputs was 
broken but their disparity tuning was preserved (thick dotted). Although the ΔDMI of both 
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data sets was positive, there was an increase owing to cancelled noise when signal 
correlation of the input pairs was negative (rsignal < −0.5, mean difference = 1.246e−2bits/s, 
paired t-test p = 3.298e−5; rsignal > +0.5, 7.107e−3, p = 0.070). 
 
A limitation of DMI is that the analysis procedure assigns the data into discrete bins, 
potentially underestimating the disparity selectivity. We verified the DMI results by 
measuring the disparity selectivity of each V4 unit, using the area under the receiver 
operating characteristic curve (AROC), which does not require binning. The difference in 
AROC between the V4 model output and input (Fig 8D) confirmed the result above (rsignal < 
−0.5, 2.961e−3, p = 4.974e−112; rsignal > +0.5, −7.894e−4, p = 3.269e−10). 
 
As differential correlations seemed to be reduced by slower, V1 to V4 correlations (Fig 7), 
we asked if the V4 output neuron would improve with a wider integration window. Thus, we 
evaluated the Initial V4 output responses over a set of Δt values. For each Δt, the empirical 
V4 output DMI (Fig 8E) or AROC (Fig 8F) was subtracted by the V4 output selectivity 
measure after shuffling the inputs to break correlations, but not the tuning. When the input 
pair had rsignal < −0.5, there was a non-significant tendency for ΔDMI to increase with Δt (Δt 
= 20ms vs 160ms, mean paired difference = 6.676e−3, p = 0.072); however, the ΔAROC 
measure demonstrated a significant increase in selectivity (1.540e−3 , p = 9.490e−25). 
 
When repeated for Steady state responses (Figure S7), we found that V4 output neuron DMI 
did not improve. The AROC measure, however, detected a weak improvement (Fig S7B) 
when the input pair had opposite disparity preferences (none vs keep tuning, mean paired 
difference = 4.9181e−4, paired t-test p = 3.1995e-26). No improvement in selectivity was 
found with increasing Δt (Δt = 100ms vs 800ms, mean paired difference = −3.902e−4, p = 
7.986e−16). 
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Discussion 
 
Cortical areas V1 and V4 contain noise correlations that could limit the information they 
convey about stereo depth. This noise limits information chiefly at short time scales as the 
animal is discriminating depth. Unexpectedly, noise correlations between the two areas 
were found to have a different structure at longer time scales, which could reflect the 
brain’s capacity to limit harmful correlations. 
 
Our results lead us to propose a general framework for thinking about the effect of noise 
correlations on neuronal processing. First, within-area noise correlations that potentially 
limit sensory discrimination are a by-product of local information-processing (Harris and 
Mrsic-Flogel, 2013, Kanitscheider et al., 2015c). Second, we suggest that the signalling 
between areas acts to remove the harmful consequences of these local, intrinsic 
correlations. The removal process may use at least two strategies: one is the connectivity 
between cortical areas (e.g. Figure 8) and the other is dynamic processing that adapts to the 
ongoing statistics of the neural signals. An implication of this framework is that one function 
of keeping diverse neocortical areas may be to contain the impact of differential 
correlations. Thus, the perception of stereo depth – and possibly other stimuli – could be 
driven by signals that are reliably passed between areas to guide accurate motor behaviour. 
 
 
Detecting differential correlations 
 
Empirical evidence of differential correlations has rarely been reported, due in part to the 
prediction that they are so small (Moreno-Bote et al., 2014) that thousands of neurons and 
thousands of trials are needed to detect them (Kanitscheider et al., 2015c, Kohn et al., 
2016). 
 
But the magnitude of noise correlations is dynamic, and changes with a number of factors 
(Cohen and Kohn, 2011), including state of consciousness (Ecker et al., 2014), stimulus 
presentation (Churchland et al., 2010), perceptual grouping (Cohen and Newsome, 2008, 
Poort and Roelfsema, 2009, Bondy et al., 2018, Wasmuht et al., 2019), attention (Cohen and 
Maunsell, 2009, Mitchell et al., 2009, Ruff and Cohen, 2014, Verhoef and Maunsell, 2017), 
and perceptual learning (Ni et al., 2018, Sanayei et al., 2018). Our experiment brought many 
of these global factors under control by using awake subjects that performed a demanding 
perceptual task. 
 
Another advance we have made in detecting differential correlations is in how they are 
measured. Spike count correlation (rSC) is often used despite the fact that correlations vary 
over temporal scales (Bair et al., 2001, Kohn and Smith, 2005, Smith and Kohn, 2008, Smith 
and Sommer, 2013, Denfield et al., 2018). If differential correlations are rapid, then they 
could be masked by the slower correlations that are captured by rSC. By using the rCCG 
measure introduced by Bair et al. (2001), we found evidence of differential correlations 
operating at tens of milliseconds. This is much shorter than the width of the analysis 
windows that have typically been used to measure rSC (Cohen and Kohn, 2011). 
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Another complication is that the time scale of noise correlation is dynamic, and can change 
within an area due to stimulation or behavioural state. This can be seen by comparing our 
results with previous studies of V1 (Kohn and Smith, 2005, Smith and Kohn, 2008) and V4 
(Smith and Sommer, 2013) that used rCCG. They found noise correlations that saturated 
around 100ms during stimulation, in both areas; but the subjects were either anaesthetized 
(Kohn and Smith, 2005, Smith and Kohn, 2008) or passively fixating (Smith and Sommer, 
2013). 
 
We saw a similar rCCG profile in the spontaneous responses of V1; but with stimulation, rCCG 
saturated at 20ms. In V4, saturation was also near 20 ms – before and during stimulation. 
rCCG also saturates at tens of ms in MT when monkeys perform a perceptual task (Bair et al., 
2001, Wasmuht et al., 2019). Thus, the rapid, differential correlations that we observed may 
have only been detectible during a perceptual task. 
 
Recording depth and topography 
 
We used 1mm electrodes. So our recordings were likely from the supragranular layers near 
the layer 3-4 border, from a mixture of neurons that projected nearby or to other cortical 
areas (Harris and Mrsic-Flogel, 2013). The correlations may have carried a stronger 
differential component if many neurons projected locally. This stems from the theory that 
differential correlations build up between neurons with intersecting noisy afferents 
(Kanitscheider et al., 2015c). Given the functional heterogeneity across layers in V1 and V4 
(Buffalo et al., 2011, Nandy et al., 2017, Pettine et al., 2019, Denfield et al., 2018), cross-
laminar recordings will be required to resolve this issue. 
 
Some of the signal from V1 will have been relayed to V4 by other areas; but there are direct 
axon projections from V1 to V4 and from V4 to V1 (Ungerleider et al., 2008). Although we 
did co-activate the V1 and V4 neurons with a single stimulus, the measured V1 RFs were not 
perfectly coincident with those of V4. Hence, some of the excitatory drive for the V4 
neurons presumably came from other, unmeasured V1 neurons. Importantly, we saw 
qualitatively similar V4 correlations in a set of control experiments with the RDS centred on 
the aggregate V4 RF (see Figs.S1–S6). 
 
In V1 and V4, noise correlations span a range of cortical (i.e. retinotopic) distances when 
neurons respond to the same stimulus (Smith and Kohn, 2008, Poort and Roelfsema, 2009, 
Smith and Sommer, 2013, Cohen and Maunsell, 2009) – which we observed (mean 
rCCG(20ms); V1 pairs < 1.44mm apart = 4.987e−2; V1 > 1.44mm = 1.805e−2; V4 < 1.44mm = 
3.416e−2; V4 > 1.44mm = 2.279e−2; all t-test p → 0; median distance = 1.44mm). Moreover, 
noise correlations in both areas increase when neurons respond to a common stimulus 
amongst an array of stimuli (Poort and Roelfsema, 2009, Ruff and Cohen, 2014). Thus, it is 
likely that the correlations of perceptually grouped neurons vary systematically across the 
cortex. We suggest that by stimulating V1 and V4 with the same object that we increased 
the likelihood of the visual system having grouped them into a perceptual pool. 
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Mechanisms of noise removal 
 
In a sense, our results are puzzling. Neuronal correlations in V1 and V4 show positive 
relationships between the neuron pairs with similar stimulus tuning and tuning curve slope 
(differential correlations). This kind of pattern is reported for motion in V5/MT and 
orientation in V1. With simple feedforward connections, one ought to observe the same 
relationship between V1 and V4. However, the general pattern of V1/V4 correlations is 
inverted (Fig.5E&F, Fig.6I). 
 
Noise correlations like that can be removed linearly without losing information (Abbott and 
Dayan, 1999, Averbeck et al., 2006). Thus, our simple model (Fig.8) suggests that the 
combined action of V1 and V4 attenuates the local correlations through linear operations. 
However, differential correlations cannot be linearly removed by later processing (Moreno-
Bote et al., 2014, Pitkow et al., 2015, Kanitscheider et al., 2015c). One way of resolving this 
discrepancy rests on our result that the covariance structure between areas is not static, but 
evolves across temporal scales. Notably, the V1/V4 pattern emerged at slower time scales 
than the rapid differential correlations within each area. 
 
Related results come from MT (Cohen and Newsome, 2008) and V4 (Ruff and Cohen, 2014) 
in which positive noise correlations strengthened between neurons with opposite tuning 
(but see Bondy et al., 2018). In V1, positive correlations that increase the information in 
linearly-pooled responses can appear between neurons that respond to different stimuli 
(Poort and Roelfsema, 2009). Lastly, to change the V1 to V4 correlation structure in a trial 
would require the kind of fast and highly specific adaptations that are observed between 
them in attention tasks (Grothe et al., 2012, Rohenkohl et al., 2018). 
 
Adaptable covariance may imply an underlying, non-linear computation. But what could be 
biologically plausible? A spike-count variance code could overcome correlations if correlated 
inputs were high-pass filtered in a spatial domain (e.g. across neurons) followed by a 
quadratic non-linearity to compute variance (Shamir and Sompolinsky, 2004). Another 
potential choice is divisive normalisation (Carandini and Heeger, 2012), which can model the 
structure of correlations between areas V1 and MT (Ruff and Cohen, 2016). Divisive 
normalisation might decorrelate responses in two ways (see Eq. 3.1 in Tripp, 2012). First, 
spike count variance can be saturated by the correlated variance of other neurons, 
attenuating correlations in the normalised response. Second,  the normalised responses of 
correlated units can move in opposite directions to their raw values, decorrelating them. 
One mechanism need not exclude others, and the brain might profit from the parallel action 
of several computations. 
 
Sources of differential correlations 
 
Present analysis suggests both bottom-up (Kanitscheider et al., 2015c) and top-down (Ecker 
et al., 2016) origins of differential correlations. In the former, stimulus noise is sent through 
diverging projections to downstream areas; differential correlations then build up between 
neurons with common noisy inputs (Kanitscheider et al., 2015c), especially if sub-optimal 
computations are used (Beck et al., 2012). In the latter, noise in the selection of an attended 
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feature value can lead to a gain profile that shifts position relative to the stimulus 
preferences of a population of neurons – inducing differential correlations (Ecker et al., 
2016). 
 
Our results invite a compromise. Both sources are present, but take effect at different 
moments. The initial burst of firing is a bottom-up event in which information is most 
reduced by rapid noise correlations, which are unlikely to have a top-down origin (Denfield 
et al., 2018). In our data, only the Initial responses could reach the decorrelated information 
level, at a temporal scale of 100ms. The Steady state information did increase at wider 
temporal scales, yet failed to hit the decorrelated level. One interpretation is that rapid 
differential correlations in the Initial response had a bottom-up source, followed by slow 
differential correlations with a top-down source that could not be locally attenuated. This 
fits well with the common reports of top-down or contextual effects that follow the initial 
response of visual neurons to a stimulus (Roelfsema et al., 1998, Pack and Born, 2001, 
Cohen and Maunsell, 2009, Nienborg and Cumming, 2009, Poort et al., 2012, Herrero et al., 
2013, Smith et al., 2015). 
 
 
Neural pooling and perception 
 
The statistical relationship between a pool of sensory neurons and perceptual behaviour is 
connected to the noise correlations within the pool (Shadlen et al., 1996, Nienborg et al., 
2012, Parker, 2013, Haefner et al., 2013, Pitkow et al., 2015). That relationship may evolve 
over time, with a sensory pool driving a brief, bottom-up effect on behavioural choice, 
followed afterwards by a top-down reflection of choice bias (Smith et al., 2012). These 
effects are difficult to separate in many experiments, which employ long stimulus viewing 
times (Britten et al., 1996, Dodd et al., 2001, Nienborg and Cumming, 2009, Poort et al., 
2012, Pitkow et al., 2015, Yu and Gu, 2018). 
 
However, a subject may base perceptual decisions on only a few hundred ms of viewing in 
natural conditions (Cohen and Newsome, 2009). As such, studies using mixtures of reaction 
time tasks and short-duration stimuli often observe that the transient response is accounted 
for by a small pool of neurons (Ghose and Harrison, 2009, Harrison et al., 2013, Weiner and 
Ghose, 2015, Krause and Ghose, 2018) with a bottom-up link to behaviour (Price and Born, 
2010, Smith et al., 2011, Weiner and Ghose, 2014). Our results suggest that the transient 
response is a high-fidelity signal that could be decoded from a small pool of neurons. Later, 
top-down signals may arrive that impose slow and widespread differential correlations in a 
larger pool, thus injecting choice correlations into neurons that are never read out (Cohen 
and Newsome, 2009, Nienborg and Cumming, 2009, Nienborg and Cumming, 2010, Pitkow 
et al., 2015, Yu and Gu, 2018). 
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METHODS  
 
Animals 
We recorded from two adult male Rhesus macaque monkeys (Macacca mulatta) acquired 
from the UK Public Health England breeding colony at Porton Down through the Centre for 
Macaques (M135 and M138). Each animal was implanted with a titanium headpost (Gray 
Matter Research) and a CerePort pedestal (Blackrock Microsystems) in separate, aspectic 
surgical procedures under general anaesthesia. Each CerePort was connected to a pair of 
64-channel Utah arrays that were implanted subdurally in the upper layers of the exposed 
cerebral cortex. The exact locations for surgical implantation were determined by a 
preliminary magnetic resonance imaging (MRI) scan of the animal’s head to reveal bone and 
soft tissue structures.  
 
Animals were trained to fixate on a target and then to perform an odd-one-out task using 
saccadic eye movement responses. All procedures were done in compliance with Home 
Office (UK) regulations. The key results were qualitatively similar in both animals, and so we 
have pooled the data across animals. 
 
Visual stimulus 
Visual stimuli were presented with a Wheatstone stereoscope comprising of a pair of CRT 
monitors (Eizo Flexscan F78 or ViewSonic P225f) at 84cm from the subject’s eyes. Cold 
mirrors were used to reflect images into the eyes so that the infrared light from an eye 
tracking camera (Hi Speed Primate, SensorMotoric Instruments GmBH), set behind the 
mirrors, could pass through. Monitors had a resolution of 1600 x 1200 pixels, a refresh rate 
of 85Hz, and subtended 26.7° × 20.1° of the subject’s visual field. Each pixel was 1.6e−2° 
wide. The VGA signal was split and duplicated, so that the left-eye monitor received three 
copies of the red channel for its RGB input, while the right-eye monitor received three 
copies of the green channel. When viewed on a conventional single colour monitor by 
human observers, the stereo images were visible as red/green anaglyph images; but viewed 
through the stereoscope, the images appeared as grayscale images presented to each eye 
of the subjects.  
 
Quadro K2200 (NVIDIA) video cards in multi-core Intel processor computers running Ubuntu 
14.04 (Linux kernel 4.4.0 lowlatency) were used to drive the monitors. Stimuli were 
programmed using PsychToolbox (3.0.14) running in Matlab R2015b (The Mathworks). All 
stimuli were presented on a mid-gray background, using appropriate OpenGL alpha-
blending (GL_SRC_ALPHA + GL_ONE_MINUS_SRC_ALPHA) to obtain sub-pixel resolution. 
A 4 × 4cm square was shown in the upper-left corner of each monitor during trials. This was 
recorded with a photodiode (PIN-25DP, OSI Optoelectronics) by the electrophysiology 
system, in order to synchronise high-precision frame time stamps from PsychToolbox with 
the neural activity. The square was blocked from the subject’s view. A full white, 0.3° 
diameter circular dot was used as the gaze fixation target. 
 
Random dot stereograms (RDS) were used to present binocular disparities for the 
behavioural, odd-one-out task and to stimulate recorded neurons. Each RDS comprised of a 
circular patch of 0.16° diameter circular dots. Dot positions were randomly sampled on each 
frame; the frame rate matched the refresh rate of 85Hz. Four RDS were presented, but dot 
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positions were sampled independently for each RDS. Half of the dots were black, and half 
were white. Dots occluded each other in a random order. Each RDS had two regions, a 6° 
diameter circular centre and a 1° wide annular surround. The dot density in both regions 
was 25% (area occupied by dots / total area), assuming no dot overlap; in other words, the 
number of dots per RDS was 25% of the RDS area divided by the area of a single dot, 
rounded up. The RDS centre varied in binocular disparity such that a flat circular plane of 
dots was shifted convergently (negative disparities, toward subject) or divergently (positive, 
away). Surround dots were always on the fixation plane at zero disparity i.e. the surface of 
the monitors’ screens. The surround functioned to mask monocular cues when non-zero 
disparities were presented in the centre, and to help the subject maintain vergence. When 
the RDS centre was at a non-zero disparity, each of its monocular images had a horizontal 
shift that overlapped the RDS surround on one side while leaving a gap on the other. 
Surround dots in the overlap region were discarded, while uncorrelated dots were used to 
fill the gaps. Thus, the resulting monocular images carried no trace of the disparity of the 
RDS centre, so that the subjects could only perform the task using the stereoscopic 
information. 
 
Task 
 Subjects performed an odd-one-out task (Figure 1A) that was divided into four 
epochs. At the start of each trial, a fixation point was presented (Fig.1Ai). The subject then 
had to maintain its gaze at the fixation point for 0.5 second to initiate the trial (Fig.1Aii). 
Following this, four RDS were presented for 1 second (M135) or 2 seconds (M138), one in 
each quadrant of the visual field (Fig.1Aiii). Subjects had to maintain their binocular gaze 
within a 0.75° radius of the centre of the fixation dot to both initiate the trial and progress 
through to the end of the presentation phase. During the presentation phase, all four RDS 
had the same baseline disparity in their central region. Baseline disparities were randomly 
selected on each trial with equal probability from a set of 13 values: 0°, ±0.01°, ±0.02°, 
±0.05°, ±0.10°, ±0.20°, ±0.50° (similar to Shiozaki et al., 2012). At the end of the 
presentation period, one of the four RDS had a disparity step change in its central region, 
gaining an additional 0°, ±0.05°, or ±0.10° (Fig.1Aiv). Both the location and value of the step 
change were randomly selected on each trial with equal probability. Thus, the RDS that 
changed became the odd-one-out (i.e. the popout target), which the subject was required 
to detect by making a saccade towards its location. With four possible target locations, the 
probability of correctly selecting the target by chance was 0.25 (Figure 1B). A juice reward 
was given for correct performance. No reward was given for incorrect saccades, or if the 
subject responded prior to the step change. After the training or testing session, animals 
had ad libitum access to water in the home enclosure for a limited period of time every day. 
Animals were weighed each day and assessed.   
 
Recording 
 The animals’ binocular gaze positions were sampled at 500Hz and recorded 
alongside the neural responses. In cortex, each subject was implanted with two Utah arrays 
(Blackrock Microsystems). Both arrays had 64 platinum electrodes, each 1mm in length, 
arranged in an 8 × 8 grid with 400μm spacing. It is unclear exactly which layer of the cortex 
that each electrode tip had entered, due to the curvature of the cortical surface relative to 
the flat array, and from slight deviations of the arrays from the plane tangential to the 
cortex. Nonetheless, given the electrode lengths, the presumption is that the recordings 
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reported here are primarily from the upper, supragranular layers of the cortex. One array 
was implanted in cortical area V1 and the other in V4. A CerePlex E headstage (Blackrock 
Microsystems) was attached to the CerePort implant. The headstage applied 0.3Hz 1st order 
high-pass and 7.5kHz 3rd order low-pass anti-aliasing Butterworth filters to the analogue 
signals before 16-bit digitizing all 128 channels at 30kHz. Digitized signals were transmitted 
to the Cerebus (128 channel electrophysiology system, Blackrock Microsystems) using fibre 
optics, thus minimizing noise at the analogue stage. All computers, monitors, and the 
reward pump were located in a separate control room while the subject, headstage, 
stimulus monitors, digital hub, and CRTV camera were within a test room that had Faraday 
shielding. A 2nd order 250 to 5000Hz bandpass digital Butterworth filter was applied online 
to each data channel before applying a threshold of −6.5 times the root-mean-squared 
(RMS) of the estimated noise level to detect action potentials (Rizk and Wolf, 2009); the 
thresholds were newly estimated on each experiment for each electrode. The −6.5×RMS 
threshold was the default setting for the Cerebus, which worked well in practice to detect 
multi-unit activity without saturating the acquisition system and losing data. 
 
 The simultaneous V1/V4 data in this study came from 6 recording sessions with 
M135 and 4 sessions with M138, yielding 8279 trials from M135 (1380 per-session mean 
[60.7 standard deviation]) and 6073 from M138 (1518 [58.0]). Approximately similar 
number of trials with each baseline disparity were obtained. We made no assumptions 
about the identity of each unit, treating each day’s recording separately. Here, the term 
‘unit’ simply means a cluster of spike waveforms from one electrode (see below). This 
yielded a total of 63 V1 (10.5 [3.2]) and 111 V4 (18.5 [3.5]) units from M135, and 132 V1 
(33.0 [3.5]) and 102 V4 (25.5 [3.7]) units from M138. Thus, we retrieved 315 V1 (52.5 
[32.6]), 975 V4 (162.5 [63.5]), and 1206 inter-cortical (201.0 [91.6]) neuron pairs from M135 
and 2104 V1 (526.0 [108.4]), 1251 V4 (312.8 [90.6]), and 3392 inter-cortical (848.0 [183.7]) 
pairs from M138. All pairwise analyses compared units from separate electrodes (Figures 3 
– 6 & 8).   
 
In order to stimulate both V1 and V4 receptive fields (RF) with the central region of the 
lower-right RDS, the array of all four RDS stimuli was sometimes shifted upwards and to the 
left, in which case they had an asymmetrical arrangement relative to the fixation point 
(Figure 1C). A second set of V4 control data was obtained in which the lower-right RDS was 
centred on part of the aggregate receptive field of the V4 Utah array (Figure S1); in this case, 
the four RDS locations were symmetrically placed around the fixation point. In these 
sessions, 11 baseline disparity values were used, including: 0°, ±0.05°, ±0.1°, ±0.2°, ±0.3°, 
±0.4°. The task was slightly different in that the odd-one-out did not have a disparity step 
change. Rather, it reversed the binocular correlation of its central dots from +100% 
correlated to -100%. That is, dots had the same contrast in the left and right-eye images 
during the presentation period. After the presentation period, odd-one-out dots in the left 
image were paired with dots of opposite contrast in the right image. However, we only 
analysed responses to the +100% correlated dots, prior to the popout phase of the trial. 
Thus, despite this change of task, the control data were obtained under similar sensory 
stimulation conditions to the test data. For M135, the diameter of each RDS centre was 4°. 
For M138, it was 1°. 7 control sessions were recorded from M135, yielding a total of 5257 
trials (751.0 [135.7]), 413 V4 control units (59.0 [8.4]) and 1536 pairs (219.4 [88.4]). 3 
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control sessions were recorded from M138, yielding 2082 trials (694.0 [240.8]), 266 V4 
control units (88. 7 [15.3]) and 1101 pairs (367.0 [181.7]). 
 
 
Analysis 
 The data were analysed using programs that were written and executed in Matlab 
R2015b (The Mathworks). 
 
Pre-processing 
 
 In both animals, we found incidences of cross-talk between a sub-set of electrodes. 
This was apparent as a fraction of tightly synchronous waveform times between certain 
pairs of electrodes, defined as waveforms occurring within ±1.3e−4 second i.e. ±4 samples 
at 30KHz of each other. Synchronous waveforms often had highly similar, stereotypical 
shapes. Testing with a Blackrock digital neural signal simulator indicated that all 
components downstream of the CerePort functioned properly. Electrodes were discarded 
from the analysis if they had at least 6% synchronous spikes with any other electrode and 
the median Pearson correlation of the synchronous waveforms was 0.5 or more. An 
electrode was also discarded from analysis, if there was no significant change in the 
multiunit spiking rate following onset of the RDS stimulus. This was defined by counting 
spikes in two 500ms wide analysis windows, one from −500ms to the appearance of the RDS 
and the other from 50ms to 550ms. A paired-sample t-test was used to compare the firing 
rates before and after RDS appearance at a significance level of 5%. When a significant 
difference was found then the electrode’s spikes were sorted for further analysis. On 
average, 9 V1 electrodes (minimum 5, maximum 14) and 14 V4 (min 12, max 17) electrodes 
from M135 were used, while 27 V1 (min 22, max 31) and 20 V4 (min 19, max 23) electrodes 
were used from M138 per session. 
 
 Spikes detected online with the Cerebus were sorted using our implementation of 
the clustering algorithm by Fee et al. (1996) and the heuristic choices of UltraMegaSort2000 
(Hill et al., 2011; https://neurophysics.ucsd.edu). An additional step was taken after aligning 
the spike waveform peaks but prior to the principal component analysis. Each waveform 
was weighted by a Gaussian shaped window with a standard deviation of 1ms that was 
centred on the waveform peak; area under the Gaussian that overlapped the waveform was 
normalized to preserve the overall magnitude of the spike. This emphasised the peak region 
of the waveforms during sorting. Automated spike sorting was then verified and corrected 
manually. We based our analyses on both single units and multiunit clusters and use the 
term ‘unit’ to refer to either, as in other work with Utah array electrodes (Ruff and Cohen, 
2014). 
 
 The disparity tuning curve was found for each unit, using spike rates from an analysis 
window of 44 to 1044ms (M135) or 44 to 2044ms (M138) following onset of the RDS stimuli. 
Only units with significant disparity tuning (one-way ANOVA, p < 0.01) were kept for further 
analysis. Additionally, any unit with a tuning curve peak of less than 5 spikes/second was 
also discarded. 
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Single unit analysis 
  
The selectivity of a unit for binocular disparity was quantified in two ways. Disparity 
discrimination index (DDI; Prince et al., 2002) was used to validate disparity mutual 
information (DMI). DDI was defined as: 
 

!"#$ − !"&'
(!"#$ − !"&') + 2,-../.

 

 
where !"#$ and !"&' were the largest and smallest responses of the unit’s disparity tuning 
curve, and ,-../.  was the square root of the residual variance around the means over the 
whole tuning curve. DDI was computed using the square root of the firing rates (as in Prince 
et al., 2002). 
 
DMI was computed non-parametrically (Wallisch et al., 2014) by first estimating the joint 
probability distribution of the disparity and spike count using 13 evenly spaced bins in both 
marginal dimensions to get a two-dimensional histogram (one marginal bin per disparity 
value, 11 marginal bins used for V4 control data). Disparities were ranked ordinally before 
binning. Joint probabilities were empirically estimated by: 
 

0$1(2, 4) =
1

7
8 9"(2, 4)

:

";<

 

 
where 7 was the total number of trials and 9"(2, 4) had a binary value: 
 

9"(2, 4) = =
1, ordinal	disparity	was	in	bin	2	and	spike	count	was	in	bin	4	on	trial	P

0, otherwise
 

 
The marginal probabilities were computed in a similar manner. For ordinal disparity values 
(0$) and spike counts (01), they were: 
 

0$(2) =
1

7
8 S"(2)

:

";<

 

 

01(4) =
1

7
8 T"(4)

:

";<

 

 
where S"(2) and T"(4) had a value of 1 if the data fell into the respective bin on trial m, 
and 0 otherwise. The raw empirical mutual information was estimated by: 
 

U.#V =880$1(2, 4)WXYZ
0$1(2, 4)

0$(2)01(4)

[

\;<

[

&;<

 

 

(1) 

(3) 

(2) 

(4) 

(5) 

(6) 
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where ] was the number of bins along the marginal. However, this information estimate 
will be biased – without further correction. The correction was found by applying equation 
(6) to randomly shuffled copies of the data. Using 30 repeats (Hatsopoulos et al., 1998), a 
shuffle-correction term was estimated as: 
 

Û _`aab- =
1

30
82^_`aab-(d)

ef

^;<

 

 
where 2^_`aab-(d) was the output of equation (6) following the sth random shuffling of the 
data. The final, corrected mutual information between the disparity and spike count was 
taken as: 
 

U =
U.#V − Û _`aab-

Δh
 

 
where Δh was the width of the spike-counting analysis window, in seconds, providing a 
value in bits/second. 
 
A time series analysis of firing rates and DMI was conducted on spike trains that were 
convolved with a causal exponential kernel (20ms time constant). DMI was measured 
independently for each time point using Δt = 0.02s (Eq.8) to estimate the instantaneous rate 
of information. The firing rate and DMI time series were used to define three analysis 
windows for the pairwise and population analyses. The Spontaneous window started 500ms 
before RDS onset, ended 44ms after RDS onset, and covered the period of gaze fixation 
prior to the units’ first responses to the RDS. The Initial window was located to cover the 
first transient response to the RDS, which was measured from 44ms to 200ms after the RDS 
appeared. A final Steady state window ran from 200ms to 1044ms for M135 and from 
200ms to 2044ms in M138, covering responses to the RDS up to but not including those to 
the disparity step-change. 
 
Paired signal and noise correlations 
 
 In the analysis of pairs of neurons, we focused on three key metrics, as defined by 
Bair et al. (2001). First was the degree to which the firing rate of two units was driven by the 
same stimulus values – the pair’s signal correlation. Signal correlation was defined as the 
Pearson correlation of the pair’s disparity tuning curve values: 
 

î &j'#b =
kl!\

m!n
mo − kl!\

mokl!n
mo

σqr
sσqts

 

 
where !\m  and !nm  were the average spike counts of units 4 and u in response to a disparity 
v, k was the expected value of the average spike counts across disparity values, and σ was 
the standard deviation of the average spike counts across disparity values. 
 

(7) 

(8) 

(9) 
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The second metric was the degree to which the residual variances in the tuning curves were 
shared by the two units, the pair’s noise correlation. If the stimulus value is fixed over a set 
of trials, then noise correlation can be quantified as spike-count correlation (rSC) using: 
 

iwx =
kly\yno − kly\ok[yn]

σ'rσ't
 

 
where y\  and yn were the spike counts on a single trial from units 4 and u, k was the 
expected value across trials, and σ was the standard deviation across trials. In order to pool 
across trials with different disparity values we first z-score normalized the spike counts of 
each unit for each sub-set of trials, grouped by disparity; rSC was then computed as: 
 

iwx = kl|\|no 
 
where |\  and |n were the z-scored firing rates on a single trial for units 4 and u. 
 
A limitation of rSC is that it only measures noise correlation at the time scale of the spike-
counting window, which is typically on the order of seconds. However, noise correlations 
may occur at a range of time scales, from near synchrony at the scale of milliseconds to 
slower modulations over seconds. Noise correlation can be estimated at different time 
scales in the same analysis window (Spontaneous, Initial, or Steady state) using rCCG, which is 
the normalized integral of the cross-correlation between paired spike-trains. By integrating 
from 0 to ±Δt lags under the cross-correlation, rCCG measures rapid noise correlations when 
Δt is small and includes slower noise correlations when Δt is large. rCCG converges upon rSC 
when Δt approaches the width of the analysis window. To compute rCCG, the spike train of 
unit u on trial P was first binned into a series of ms-wide bins; the spike train become a 
binary series of zeros and ones such that: 
 

Sn
"(h) = =

1, if	unit	u	fired	an	action	potential	during	ms	h	on	trial	P
0, otherwise

 

 
If there were 7 trials and the analysis window was Ä ms long, then 1 ≤ P ≤ 7 and 1 ≤
h ≤ Ä. The post-stimulus time histogram (PSTH) of unit u during time h was: 
 

0n(h) =
1

7
8 Sn

"(h)

:

";<

 

 
The spike-train correlation function at τ ms of lag is: 
 

CÑÖ(τ) =
1

7
88S\

"(h)Sn
"(h + τ)

Ü

á;<

:

";<

 

 
If 4	 = 	u then à\n(τ) is the auto-correlation, otherwise if 4 ≠ u then it is the cross-
correlation between units j and k. Likewise, the auto- or cross-correlation of the PSTH was: 
 

(10) 

(11) 

(12) 

(14) 

(15) 

(13) 
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ä\n(τ) =80\(h)0n(h + τ)

Ü

á;<

 

 
In fact, ä\n(τ) serves as a shift-predictor for à\n(τ). Thus, the integral of the shift-corrected 
spike-train auto- or cross-correlation was: 
 

ã\n(θ) = 8 là\n(τ) − ä\n(τ)o

çé

è;êé

 

 
where the area ã\n(θ) was summed symmetrically from −θ to +θ ms of lag.  
 
Following this, rCCG was defined as: 
 

ixxë(τ) =
ã\n(τ)

íã\\(τ)ãnn(τ)
 

 
Using (17), equation (10) for rSC can be recast as: 
 

iwx =
ã\n(Ä)

íã\\(Ä)ãnn(Ä)
 

 
where 1 ≤ τ ≤ Ä. When τ is small, then noise correlations on a short time scale are 
measured; whereas, when τ is large, slower noise correlations are estimated. We found rCCG 
separately for each disparity value. The mean rCCG across disparities was found by taking the 
weighted average, weighing by the number of trials per disparity condition. 
 
A third metric of paired activity is the normalized spike-train cross-correlogram (CCG), which 
shows the relative timing of correlated spikes between the pair of units, defined here as: 
 

ààì(τ) =
à\n(τ)

Θ(τ)íλ\λn
 

 
Θ(τ) = Ä − |τ| 

 
where λn was the average firing rate (spikes per second) of unit u, and −Ä ≤ τ ≤ +Ä. CCG 
was also found separately for each disparity value, and the mean across disparities was 
weighted by the number of trials. For presentation purposes, CCGs were convolved with the 
symmetrical 5ms kernel [0.05, 0.25, 0.40, 0.25, 0.05] (Kohn and Smith, 2005). 
 
First derivatives of the tuning curves 
 
 In order to estimate the first derivative of the disparity tuning curves, we found the 
best-fitting, one-dimensional Gabor function for the tuning curves of each unit, in both the 

(16) 

(17) 

(18) 

(19) 

(20) 
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Initial and Steady state analysis windows (Prince et al., 2002, Tanabe et al., 2004). The 
Gabor was expressed as: 
 

ì(v) = óf + ó<ò
êô

(mêöõ)
õ

Zöú
õ ù

óXd(2πóü(v − óZ) + ó†) 
 
where ì(v) was the value of the Gabor function at a disparity value of v, and ó&  were the 
parameters that were optimized for each tuning curve. The baseline offset (óf) was 
constrained between zero and the maximum observed response on any trial. The amplitude 
of the Gaussian envelope (ó<) was constrained between zero and twice the difference 
between the maximum observed response on any trial and the minimum. The horizontal 
offset of the Gaussian envelope (óZ) was constrained between the minimum and maximum 
disparity values that were tested. The width of the Gaussian envelope (óe) was constrained 
between 0.1 and the total range of tested disparity values. The disparity frequency of the 
cosine (óü) was estimated from the power spectrum of the tuning curve by first linearly 
interpolating (function interp1, MATLAB, The Mathworks) the z-scored tuning curve from 
the minimum to maximum tested disparity, at 0.001° steps. The discrete Fourier transform 
at frequency ° (T(°); function fft, MATLAB, The Mathworks) was estimated from the 
interpolated tuning curve, and the power spectrum at ° was computed using: 
 

¢(°) =
|T(°)|Z

£
 

 
where £ was the number of interpolated points. We found the frequency between 0 and 50 
cycles per degree that maximized the power spectrum (°"#$) and then constrained the 
disparity frequency to be óü = °"#$ ± 0.1°"#$. The phase of the cosine (ó†) was 
constrained to be within ±π. The parameters were fit using the trust-region-reflective 
algorithm to minimize the square of the residual error (function lsqcurvefit, MATLAB, The 
Mathworks). After optimizing the parameters for each tuning curve, we estimated the first 
derivative of the tuning curves at each tested disparity with: 
 

G′ =
G(d + Δd) − G(d − Δd)

2Δd
 

 
using a value of 0.5e−3° for Δv. The Gabors better captured the responses to smaller 
disparities near zero, hence the 9 smallest disparities were used to estimate fʹ×fʹ. 
 
The results in Figure 6 were verified using a second method to estimate the first derivative 
of the tuning curves, in which the raw tuning curves were linearly interpolated at d ± Δd/2 
and the difference was divided by Δd, for each tested disparity value of d. 
 
Population response analysis 
 
In order to estimate the ability of simultaneous neuronal responses to distinguish one 
disparity value from another, we calculated the bias-corrected linear Fisher information as 
defined by Kanitscheider et al. (2015b); their code formed the basis of our own Matlab 
implementation (Kanitscheider et al., 2015a). Linear Fisher information quantifies the ability 
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of a linear decoder to distinguish two sets of simultaneous population spike counts that 
arose in response to two different stimulus values. Hence, this was calculated by: 
 

U®©ö(τ) =
Δ!

Δv

á.

Σ(τ)ê<
Δ!

Δv
´
2M≠ÆØ − U − 3

2M≠ÆØ − 2
± −

2U

M≠ÆØΔdZ
 

 
Δv = v# − v© 

 
Δ! = !m≤ − !m≥  

 
Σ(τ) = ¥Σm≤(τ) + Σm≥(τ)µ/2 

 
where v# and v© were two of the tested disparity values such that v# ≠ v©, !m  was a 
column vector of the average spike counts for ∑ units in response to disparity value v, ∏q

∏m
 

was also a column vector in which each element of the column vector Δ! was divided by 
Δv, hi was the transposition operator that turned ∏q

∏m
 into a row vector, Σm(τ) was the 

∑ × ∑ covariance matrix for disparity value v at a timescale of τ ms, ∫ê< was the inverse of 
matrix ∫ (Moore-Penrose psudoinverse, function pinv, Matlab, The Mathworks), and U®©ö(τ) 
was a scalar value with a unit of degrees−2. We randomly discarded trials so that each 
disparity value had the same number of trials as that which had the minimum (7"&'), as 
assumed in the derivation by Kanitscheider et al. (2015b). In practice, few trials were 
discarded, with the remainder being well above the minimum required for the covariance 
matrix to be invertible, which is (∑ + 2)/2. For units 4 and k, we defined elements of Σm(τ) 
to be: 
 

Σ\,n
m (τ) = ixxë

m (τ)σ\
mσn

m  
 
where ixxëm (τ) , σ\m  and σnm  was the rCCG and spike-count standard deviations of units 4 and k 
on trials with disparity v. Thus, we could estimate the effect of noise correlations at 
different time scales on the linear Fisher information of the population response. It was 
possible to estimate the variance of the linear Fisher information for different time scales of 
noise correlation as: 
 

VarU®©ö(τ) =
2U®©ö(τ)

Z

27"&' − ∑ − 5
Ω1 +

4(2M≠ÆØ − 3)

M≠ÆØI®¿¡(τ)ΔdZ
+

4U(2M≠ÆØ − 3)

¬M≠ÆØI®¿¡(τ)ΔdZ√
Zƒ 

 
A theoretical measure of linear Fisher information is obtained when all units in the 
population are decorrelated with each other such that the variance of their spike counts is 
statistically independent. This is often achieved numerically by shuffling the data. However, 
it is possible to estimate this value analytically without shuffling – using only the diagonal of 
the covariance matrix (called Ibc,shuffle in Kanitscheider et al., 2015b): 
 

U®©ö,m-ö/.. = U®©ö,m-ö/..(τ) =
2∑

7"&'ΔvZ
8

(Δ!&/Δv)
Z

Σ&,&(τ)

≈

&;<

−
7"&' − 2

7"&' − 1
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Eq. 30 emphasizes the fact that with this calculation the decorrelated linear Fisher 
information is the same for all time scales of noise correlation, because the auto-correlated 
value of rCCG is always 1 (see eq. 18 when j = k) and σ\m  does not vary with τ (eqs. 27 & 28). 
 
Any difference between the empirical and decorrelated information could signal the 
presence of information-limiting noise correlations in the population. In order to make a 
direct comparison between all combinations of disparity values, and for different 
compositions of neuronal population, we computed the normalized difference as: 
 

ΔU®©ö(τ) =
U®©ö,m-ö/..(τ) − U®©ö(τ)

í∆«iU®©ö(τ)
 

 
in a unit of standard deviations of U®©ö(τ) (see Figs.7L & S6D). Outliers were discarded when 
the estimated variance resulted in a normalized difference of 40 or greater. With 13 tested 
disparities, there were 78 unique pairs of disparity values and therefore 78 values of U®©¡(τ), 
∆«iU®©ö(τ), U®©ö,m-ö/.., and ΔU®©ö(τ) were each computed for all neuronal pool sizes, 
compositions, and correlation time scales. Neuronal pools comprised of V1 units only, V4 
units only, or a mixture of V1 and V4 units. Over 10 sessions, this yielded 780 information 
values in each case. 
 
 To see if linear Fisher information saturated with increasing population size, we first 
ordered a given set of units by the DMI of their Initial responses, from largest to smallest. 
Units were added to the neuronal pool one at a time in this order, and the Fisher 
information was computed at each step; that is, the most disparity-selective unit was added 
first, and the least selective unit was added last. The result was an information curve that 
was a function of pool size. Initial DMI was always used to order the units because their 
Initial responses were the most selective for disparity (see Figs.2 and S2). This ordering 
imposed a saturating shape on even the decorrelated information curves. However, we 
could then examine whether the saturation worsened as a result of noise correlations. 
Information curves were found for the Initial and Steady state responses at time scales of 20 
and 150ms (Initial) or 20, 150, 400, and 800ms (Steady state) and for decorrelated units 
(both). In order to average across experimental sessions and combinations of disparity 
values, it was necessary to normalize the information values in a way that would preserve 
the relative shape of information curves at different time scales. To do this, the curves were 
first grouped by experiment and disparity values. Normalization was then achieved within a 
group by: 
 

U'/."¬τ, d»/»√ =
U.#V¬τ, d»/»√ − βj.»

αj.»
 

 
where U.#V¬τ, d»/»√ was the value of U®©¡(τ) or U®©ö,m-ö/..  at population size d»/» units. βj.» 
was the minimum value of U.#V(τ, 1) across values of τ. αj.» was then taken to be the 
maximum value of U.#V¬τ, d»/»√ − βj.» across values of τ and d»/». Results obtained using 
the unit order above were confirmed in a control analysis that randomly permuted the unit 
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order before computing the information curves; the control was repeated 100 times for a 
total N = 78,000. 
 
A model V4 output neuron can attenuate differential noise 
 
We modelled a theoretical V4 output neuron in order to test whether a simple mechanism 
could attenuate differential noise that was present upstream in V1 and V4. Thus, the model 
unit had only two afferent inputs, a V1 unit and a V4 unit (see Fig.8A). There were two chief 
parameters of the model, the signal correlation of the V1/V4 input pair and the width of a 
window used to integrate their responses. V4 output responses were predicted by 
subtracting a weighted version of the V1 input from the V4 input. V4 output neurons were 
modelled for all recorded V1/V4 pairs as afferent inputs, and for window widths of 20, 40, 
80, and 160ms for Initial responses or 100, 200, 400, and 800ms for Steady state responses. 
The V1 input weight (w in Fig.8A) should reflect the magnitude of noise shared by the 
afferent pair that was not explained by the random sampling of disparity values from trial to 
trial. To measure it, we used a simple generalized linear model (GLM) to predict the spike 
count of the V4 input from its disparity tuning curve and the spiking of the V1 input, using 
the ln link function: 
 

ln yÃü
" = óf

jb" + ó<
jb"ìÃü(v") + óZ

jb"yÃ<
"  

 
yÃü
"  was the spike count of the V4 input unit on trial P, ìÃü was the Gabor function that 

best fit the V4 input’s tuning curve, ìÃü was evaluated at the disparity value v" used on 
trial P, and yÃ<"  was the spike count of the V1 input unit on trial P. The GLM was used to fit 
(function glmfit, MATLAB, The Mathworks) three parameters: the baseline spike count 
(óf
jb"), the amount of disparity signal (ó<

jb"), and the amount of shared variance between 
the afferent pair (óZ

jb"). The Gabor term was important, as it helped to push óZ
jb" towards 

accounting for shared residual variance rather than shared signal. 
 
Once obtained, we predicted the V4 output responses with: 
 

yÃü,Õ≈Ü
" = yÃü

" − òS¢¬óZ
jb"yÃ<

" √ + β 
 
where yÃü,Õ≈Ü"  was the V4 output spike count on trial P following. Thus, the V4 output was 
the V4 input minus the weighted V1 input. β was a constant term that restored the baseline 
value of the modelled V4 output disparity tuning curve to match that of the V4 input. Any 
negative values were capped at zero. This produced V4 output spike counts with a similar 
dynamic range to the V4 input. The exponential function was used to transform the scaled 
V1 response because the logarithmic link function was used in the GLM. 
  
To avoid over-fitting, we applied equations (33) and (34) to different halves of the trials in a 
two-fold, cross-validation procedure. Trials were divided into even and odd-numbered 
groups. Thus, the training and test sets had a similar size and composition, balancing the 
need to train the GLM against the need to accurately compute DMI and AROC (see below). 
One group of trials was used to train the model with Eq. (33) and then the other group was 
used to evaluate it with Eq. (34). The process was repeated a second time after reversing 

(33) 

(34) 
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the roles of each group. DMI and AROC were used to evaluate the disparity selectivity of the 
V4 output responses for each test set, yielding two estimates of each metric per condition 
that were averaged together. 
  
The training, testing and evaluation procedure was applied to the empirical data, in which 
the inter-cortical noise correlations were intact (Fig.8C&D, none). However, it was necessary 
to determine the degree to which any change in disparity selectivity of the V4 output 
responses was due to the combined disparity information signalled by the afferent pair. 
Therefore, the procedure was applied a second time to data that were shuffled. This had the 
effect of preserving the disparity selectivity of both the V1 and V4 input units, while 
destroying their noise correlations (keep tuning). A third evaluation was done using shuffled 
data in which the V4 input preserved its disparity selectivity, but both the noise correlations 
and V1 input disparity selectivity were abolished by shuffling across all available trials rather 
than those with the same disparity (all trials). 
 
 We evaluated summation of the V1/V4 inputs with integration windows of different 
widths (Figure 8E&F). This was accomplished by sub-dividing each analysis window (Initial or 
Steady state) into a set of smaller, contiguous windows that were each Δt ms wide. Spike 
counts were obtained and equations (33) and (34) were applied separately for each sub-
division; that is, an independent set of GLM parameters was trained and tested for each 
sub-division of the analysis window. The V4 Gabor function was scaled to produce the spike 
count expected in a window of size Δt ms. Before computing DMI or AROC, the V4 output 
spike counts were summed back together across sub-divisions: 
 

yÃü,Õ≈Ü
" = 8 yÃü,Õ≈Ü

" (ω)

œ

–;<

 

 
where yÃü,Õ≈Ü" (ω) was the V4 output spike count obtained in the ωth sub-division of the 
analysis window, out of — sub-divisions with a width of Δt ms. 
 
 In computing DMI non-parametrically, it is possible that the true information was 
underestimated as a result of discretizing the data through binning. Therefore, we verified 
the DMI results using a second, continuous method based on signal detection theory (Green 
and Swets, 1966) that has previously been used to quantify the sensitivity of single neurons 
to different stimulus values (Newsome et al., 1989). We used a similar approach to estimate 
disparity selectivity. In this approach, one builds a receiver operating characteristic curve 
(ROC) by labelling one set of spike counts as true positives and another as false positives. If 
the true-positive spike counts were from trials with one disparity value and the false 
positives were from trials with another, then the area under the ROC (AROC) becomes the 
probability that an ideal observer could correctly classify the true-positive spike counts. This 
leads directly to a measure of how well the neuron can discriminate the two tested 
disparities. A chance value of AROC = 0.5 means that the two spike-count distributions were 
indistinguishable. Values of 0 or 1, however, indicate perfect separation of the distributions, 
with intermediate values of AROC indicating different amounts of overlap. We calculated 
AROC using trapezoidal integration of the true- and false-positive cumulative distribution 
functions (“Ü  and “”, respectively): 

(35) 
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8[“”(S&) − “”(S&ê<)][“Ü(S&) + “Ü(S&ê<)]

Ã

&;<

 

 
where S& ∈ {S<, SZ, Se, … SÃ} is the ordered (ascending) set of ∆ unique spike counts from 
either the true- or false-positive distribution, and “Ü(Sf) = “”(Sf) = 0. The absolute 
difference of AROC from chance is a measure of separation between two spike count 
distributions regardless of which was labelled as the true- or false-positives: 
 

|ã,‘à| = |ã,‘à − 0.5| 
 
|ã,‘à| was computed for each of the 78 unique pairs of disparity values. With 4598 V1/V4 
afferent pairs, we obtained a total of 4598 DMI and 358,644 AROC predicted values for the 
model V4 output neurons. The difference in V4 output and V4 input disparity selectivity is 
shown in Figures 8C–D and S7. 
 
Bootstrap confidence intervals 
 
95% bootstrap confidence intervals were found using the bias corrected and accelerated 
percentile method (function bootci, MATLAB, The Mathworks) with at least 1000 bootstrap 
samples. 
  

(36) 

(37) 
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FIGURE LEGENDS 
 
Figure 1. Task and stimulus. A) (i) Trials started with flashing fixation point (FP, white circle). 
(ii) Once fixated (dashed circle), FP flash stops. (iii) 500ms later, four random dot 
stereograms (RDS, white dots) appeared. (iv) After fixed duration (1s M135, 2s M138), 
central dots of one RDS change disparity (illustrated by red/green dots) and FP disappears. 
Animals made saccade onto ‘odd-one-out’ target RDS (arrow) for reward. Neural responses 
measured from phases (ii) and (iii). B) Percent correct trials (chance=25%, dashed line) and 
reaction time (RT) over popout disparity (M135 N = 8279, M138 N = 6073): error bars 95% 
binomial confidence intervals (CI) or standard error of the mean (SEM). C) Positions of V1 
(yellow circle) and V4 (blue cross) receptive field (RF) centres. RDS stimuli positioned so that 
lower-right RDS stimulated V1 and V4 neurons (dashed lines). D) Aggregate RF of all V4 units 
(average firing rate, heat map). C&D) Left panels show M135, right panels show M138. 
 
Figure 2. V1 and V4 units were selective for binocular disparity. A) Example disparity tuning 
curves from V1 (circles, yellow) and V4 (crosses, blue); symbols show average firing rates; 
lines show best-fitting Gabors: SEM below symbol size. B) Disparity mutual information 
(DMI) for V1 (yellow dot, N = 195) and V4 (blue cross, N = 213) units compared with 
disparity discriminability index (DDI). C) Average firing rate (mean line, SEM ribbon) across 
all V1 (yellow) and V4 (blue) units, over trial sequence: analysis windows cover spontaneous 
responses (left arrow), Initial phasic response (solid bar and lines), later Steady state 
responses (right arrow); dashed line marks the onset of RDS. D) As in C but for DMI. 
 
Figure 3. Alignments of noise correlations and disparity tuning. A) Disparity tuning curves of 
pair V4/1 (black) & V4/2 (grey; M138.336.94/147), signal correlation (rsignal = +0.851); 
crosses and SEM show average firing, lines show best-fitting Gabors (V4/1 r2 = 89%, V4/2 r2 
= 93%). Vertical dashed line at +0.1° shows trials (N = 108) examined in panels B&C. B) 
Raster plots and average firing rates for V4/1 (top) and V4/2 (bottom); RDS onset at t=0; for 
108 trials at baseline disparity +0.1°; shading shows time window for firing rates in C. C) 
Dots show joint firing rates; slight jitter applied for visualization; noise correlation, rSC = 
0.241, p = 0.012.  Tangent line (grey) shows joint tuning curves at +0.1°; arrow shows first 
PCA component (×40, for visibility) of joint responses. D – F) the same as A – C but for an 
example V1/V4 pair (M138.336.57/87; V1 black in D, r2 = 98%; V4 grey in D, r2 = 94%) with 
negative signal correlation (rsignal = −0.982). Trials with baseline disparity of 0° (D, black 
dashed, N = 116) yield significant positive noise correlation (F, rSC = 0.203, p = 0.029). 
 
Figure 4. rCCG measures noise correlation at different time scales. A) Average rCCG as function 
of temporal scale τ for all V1/V1 pairs’ (N = 2419) spontaneous (dashed black), Initial (solid 
black), and Steady state (magenta) responses (see Fig 2C); ribbons show SEM. B)  As A, but 
has average V1/V1 cross-correlograms (CCG). C) Scatter plot of Steady state rCCG at τ =100ms 
versus spike-count correlation (rSC). Marginal distributions show each metric separately. D – 
F) the same as A – C but for V4/V4 pairs (N = 2226). G – I) the same as A – C but for V1/V4 
pairs (N = 4598). 
 
Figure 5. Noise correlations varied with disparity tuning, time scale, and time. A) Noise 
correlation (rCCG) for V1/V1 as function of signal correlation (rsignal), grouped by time scale (τ) 
of rCCG (20ms, dashed; 150ms, solid) and analysis window (Initial, black; Steady state, 
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magenta); each bin has 10% of the data; error bars are SEM. B) Average V1/V1 rCCG over 
time scale τ,  grouped by signal correlation (positive rsignal, dashed; negative rsignal, solid) and 
analysis window, as A; ribbon shows SEM. C&D) same as A&B but for V4/V4 pairs. E&F) 
same as A&B but for V1/V4 pairs.  
 
Figure 6. Empirical evidence of differential noise correlations. A) rCCG(τ) from V1 at τ = 41ms 
plotted over product of first derivatives of disparity tuning curves (fʹ×fʹ), for Initial response 
phase, N = 21,771 cases (2419 V1/V1 pairs at 9 disparities −0.1° to +0.1°). Best-fitting, least-
squares regression line (orange) rCCG(τ) = k + m had positive slope (m): k = 3.452e−2; m = 
1.244e−7. B) As A but for Steady state: τ = 95ms; k = 1.594e−2; m = 2.812e−7.  C) Spearman 
correlation coefficient of rCCG and fʹ×fʹ for Initial (black) and Steady state (magenta) 
responses, at all τ ≤ 400ms. Filled circles show p < 0.05. Arrows show τ used in A (black) and 
B (magenta). D – F) Same as A – C but for V4/V4 pairs and using τ = 21ms for D and τ = 32ms 
for E, with N = 20,034. Positive regression slopes in D: k = 3.020e−2; m = 3.039e−6, and E: k 
= 3.330e−2; m = 3.891e−6. G – I) Same as A – C but for V1/V4 pairs and using τ = 88ms for G 
and τ = 109ms for H, with N = 41,382. Negative regression slope in G: k = 7.782e−3; m = 
−4.711e−7, and H: k = 6.354e−3; m = −2.804e−7. 
 
Figure 7. Differential noise correlations are attenuated at long time scales. A – C) Average 
normalized bias-corrected linear Fisher information, over neuronal pool size. Information 
shown for rapid (dotted), slow (solid), and no (decorrelated, dashed) noise correlations, N = 
780 (78 disparity pairs × 10 experiments). D – F) Average Fisher information rCCG τ. 
Information is empirical (thick solid) or decorrelated (dashed). G – I) Decorrelated vs. 
empirical information at τ = 150ms. A – I, pools had V1 (A,D,G), V4 (B,E,H), or V1 and V4 
(C,F,I) units. J) Information of mixed V1/V4 pool (size 12) vs. summation over V1 and V4 
pools (size 6) for rapid (left) and slow (right) correlations. K) Average paired differences of 
data in J (left) over τ. Right, same but for Steady state. * significant paired t-tests for 
adjacent data (Initial α = 0.05, Steady state α = 0.05/3). L) Average normalised difference of 
decorrelated and empirical information over τ (Initial, left; Steady state, right) for V1 
(yellow), V4 (blue), or V1 and V4 (green). Units added to pools by decreasing order of Initial 
DMI. A – J, Initial data. Max. pool sizes in D – I & L. 95% bootstrap CI. 
 
Figure 8. A model V4 output neuron attenuates differential noise. A) Diagram of model V4 
output neuron. Diamonds, afferent neurons. Rasters, afferent spikes in ∆t ms window. 
Weighted V1 count (wΣV1,IN) subtracted from V4 count (ΣV4,IN) gets V4 output count (ΣV4,OUT). 
B) Disparity tuning prediction, afferent V1/V4 rsignal < 0 and rnoise > 0. V4 input variance (ΣV4,IN, 
dotted). Model V4 output variance (ΣV4,OUT, grey). C) Average change in DMI over rsignal of 
afferent V1/V4 pairs,  ∆t = 160ms. Trials shuffled to break V1/V4 correlations but not 
disparity selectivity (keep tuning, thick dotted), to break both (all trials, thin dashed), or not 
shuffled (none, solid). D) As C but using AROC disparity selectivity measure, N = 358,644 (78 
disparity pairs × V1/V4 pairs). C&D, each bin has 10% of data. E) Average difference in DMI 
over ∆t, V4 model output DMI with no shuffling minus shuffled DMI with preserved tuning. 
Afferent V1/V4 rsignal < −0.5 (black, N = 794) and rsignal > +0.5 (grey, N = 835). F) As E, but for 
AROC. N = 4598 model V4 output neurons, per recorded V1/V4 pair. Initial data shown. SEM 
error bars. 
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