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Abstract—We demonstrated a flexible Genome-Wide 

Association Study (GWAS) platform built upon the iPlant 
Collaborative Cyber-infrastructure. The platform supports big 
data management, sharing, and large scale study of both 
genotype and phenotype data on clusters. End users can add 
their own analysis tools, and create customized analysis 
workflows through the graphical user interfaces in both iPlant 
Discovery Environment and BioExtract server.  
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I.  INTRODUCTION 

The iPlant Collaborative (iPlant) is a United States National 
Science Foundation (NSF) funded project that has created an 
innovative, comprehensive, and foundational cyber-
infrastructure (CI) in support of plant biology research [1]. 
iPlant is an open-source project with application programming 
interfaces that allow the community to extend the infrastructure 
to meet their needs. 

A Genome-Wide Association (GWA) Study is an 
examination of many common genetic variants in different 
individuals to see if any variant (e.g. single-nucleotide 
polymorphisms (SNPs), insertion-deletions (indels), etc.) is 
associated with a trait (e.g. disease, plant height, etc.) [2]. A 
typical GWA study will require genotyping a group of 
individuals, variant detection and imputation, phenotyping the 
same group, trait data extraction, and association mapping. 
With rapid advances in genotyping and phenotyping techniques 
in the last decade, large amounts of data are accumulating. The 
storage, sharing, analysis, and re-analysis of these data have 
become a challenge in biology research. Therefore, GWA is 
closely tied to the mission of iPlant for building a research 
oriented CI, especially in modeling complicated data types for 
storage, sharing and analysis. 

Here, we present a cloud-based open platform built on 
iPlant CI for GWA. The platform supports parallel 
computation on high performance computing clusters (cloud-
based) and open for end-users to add new analysis tools to 
extend the analysis. The analysis tools and workflows 

presented are accessible through the graphical user interfaces in 
both the iPlant Discovery Environment and the BioExtract 
server [3]. 

II. BACKGROUND 

Conventional linkage or quantitative trait loci (QTL) 
mapping has been effective in identifying genes associated 
with traits of interest. However, the identified genes are 
commonly restricted to the ones segregating in the 
Recombinant Inbred Line (RIL) families.  Additionally, the 
mapping resolution is usually low due to the limited number of 
recombination events that occur during the creation of the 
RILs. On the other hand, in most cases, a GWA study is 
performed with natural populations by scanning an entire 
genome for SNPs associated with a trait of interest, thus 
enabling mapping quantitative traits with high resolution in a 
way that is statistically very powerful.  

A major issue of GWA mapping is that it generates false 
positives due to population structure [4], a systematic 
difference in allele frequencies between subpopulations in a 
population possibly due to different ancestry. One commonly 
used approach for controlling population structure is structural 
association (SA), which relies on randomly selected markers 
(or SNPs) from the genome to estimate population structure. 
The estimated population structure, e.g. using STRUCTURE 
[5], is then incorporated into the association analysis. To 
further capture the relatedness between individuals for 
eliminating more false positives, the unified mixed model 
approach has been proposed, including different MLM (mixed 
linear model) approaches implemented in TASSEL [6, 7] and 
EMMAX [8]: 

y = Xβ + g + e                                (1) 

where y is the phenotype, X is a matrix of fixed effects, 
including genotypes and population structure, β is a vector of 
effect size, g represents random effects, including the matrix of 
kinship coefficients and the vector of polygenic effects and e is 
a vector of random independent effects with variance  
modeling the residual error. Both g and e are assumed to have a 
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Gaussian distribution with a mean of zero. The general linear 
model (GLM), discussed later, models the associations in a 
fashion similar to equation (1) but without g. 

Both TASSEL and EMMAX are based on single-locus tests 
combined with some kind of diffuse genomic background. For 
complex traits controlled by several large effect loci, these 
single-locus approaches may not be appropriate. Explicit use of 
multiple cofactors has been shown to outperform simple 
interval mapping in traditional linkage mapping, including both 
multiple-QTL mapping [9] and composite interval mapping, 
e.g. QTL Cartographer [10]. Therefore, a multi-locus mixed 
model approach, MLMM, has been proposed with a stepwise 
regression strategy and shown to be more sensitive (fewer false 
negatives) than single-locus approaches on both simulation and 
real data set [11]. Therefore, during the course of building the 
iPlant CI, we have integrated QTL Cartographer, 
STRUCTURE, TASSEL, EMMAX, MLMM, and many other 
applications for adding key functionalities supporting 
association analysis. We also developed in-house wrapper 
scripts for connecting these applications through various 
format conversions, thus enabling an automated reusable 
workflow for large scale GWA studies. 

iPlant’s scope is beyond GWA but closely tied to GWA. A 
large portion of the analysis tools integrated into iPlant CI are 
focused on the next generation sequencing (NGS) data 
analysis, including transcriptome data analysis (e.g. RNA-seq, 
assembly), genome assembly, epigenome data analysis (e.g. 
Methyl-seq, Chip-seq), and genome assembly and annotation. 
These developments are all related to GWA either directly or 
indirectly, e.g. variant calling from transcriptome data. 
Sequencing has become the standard method for acquiring 
genotypes for GWA. However, for the purpose of GWA study, 
at least hundreds of lines (individuals) need to be sequenced 
and analyzed. To reduce the sequencing cost, a simplified 
Genotyping-By-Sequencing (GBS) approach has been 
developed [12], which relies on the selection of methylation-
sensitive or insensitive restriction enzymes to avoid sequencing 
repetitive regions. GBS significantly reduces the cost of GWA 
genotyping with the tradeoff of a higher degree of missing 
SNPs compared to whole genome sequencing. Therefore, we 
have integrated both the GBS analysis workflow [12] and a 
missing SNP imputation tool, called NPUTE [13], to support 
the genotype analysis for GWA. 

III. TECHNICAL DETAILS 

Before starting a scientific data analysis, users need to 
upload the input data into iPlant Data Store, which is built on 
the Rule-Oritented Data System (iRODS) [14]. The most 
common way to upload the data is through the iPlant 
Discovery Environment (DE) [15]. The iPlant DE also 
provides integrated scientific tools that can retrieve the input 
data, and send the computation task to the high performance 
computing clusters at Texas Advanced Computing Center 
(TACC) via the iPlant Foundation API (fAPI) [16]. 
Alternatively, users can also access the input data and perform 
the analysis through either the iPlant Atmosphere (a virtual 
machine platform) or the BioExtract server [3] (alternative 

GUI similar to the iPlant DE). More technical details are 
provided in following sections. 

A. Data Store 

The iPlant Data Store is a centralized facility to address the 
existing needs of the community to share and store 
scientifically relevant data sets and metadata. Underlying the 
Data Store is a federated network of Integrated Rule-Oriented 
Data System (iRODS) [14] servers running at University of 
Arizona and replicated at the TACC. Users can access the Data 
Store in several ways, including the iPlant DE [15], a RESTful 
web service interface through the iPlant fAPI [16], Davis web 
application [17] (web interfaces), iDrop [18] (desktop 
application), and FUSE interface [19] for command line tools. 
The provenance in the Data Store is addressed through the use 
of universally unique identifiers (UUID) for every file, folder, 
and piece of metadata. Every action taken by a user is 
associated with one or more UUID and logged by a centralized 
tracking service. 

The instructions for registering for an iPlant account, 
deploying applications, and the tutorial for this workflow can 
be found on the public wiki site: https://pods.iplantc.org/wiki/. 
Once registered, the user gets a 100 GB (gigabytes) initial 
allocation in the iPlant Data Store, which can be increased 
upon request. Users can share data with collaborators through 
the iPlant DE and web links. The easiest way to get familiar 
with the iPlant CI (Data, Apps, and Analysis) is through the 
DE (https://de.iplantc.org/de). User support is available through 
support@iplantc.org. 

B. Foundation API 

The iPlant fAPI is a hosted, Software-as-a-Service (SaaS) 
resource for the computational biology field. Operating as a set 
of RESTful web services, the fAPI bridges the gap between the 
HPC and web worlds that allows modern applications to 
interact with the underlying infrastructure [16]. To deploy a 
new software package as a private tool through fAPI that runs 
on the command line, a user simply needs to upload it to iPlant 
Data Store, and register it with a Javascript Object Notation 
(JSON) file through fAPI. The JSON file contains metadata 
describing the Graphical user interface (GUI) and the 
computing environment. The GUI makes entering or adjusting 
parameters easy for analysis or re-analysis. At runtime, the data 
is copied from iPlant Data Store to cluster nodes and executed 
with designated binaries and parameters. Results are copied 
back to the Data Store once completed. The private tools can 
be made public by notifying iPlant staffs for sharing with 
others. 

The fAPI has been adopted by iPlant’s own DE, the 
BioExtract Server, and Easy Terminal Alternative [20].  

C. Discovery Environment 

The iPlant DE is a distributed, service-oriented architecture 
(SOA) that exposes service endpoints in a RESTful manner 
and primarily communicates using JSON. The focus of the DE 
centers on providing a “software workbench” or “platform” for 
the execution and management of scientific analyses. GUIs for 
scientific analysis are driven by metadata “descriptions” 
encoded in a different JSON file other than the fAPI. These 
“descriptions” can be authored by users through a tool 
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integration service (TiTo), enabling the collaborative extension 
of the overall application’s analysis capabilities. The execution 
of an analysis can be tailored to the needs of the computation 
and can either run on a local Condor cluster or a remote 
computing resource through the fAPI Data, Authentication 
(Auth), Applications (Apps), and Jobs services. 

 
Fig. 1. iPlant DE interface for constructing automated workflow. 

Currently, there are over 400 public applications integrated 
into the iPlant DE. Users can deploy their own applications by 
either requesting installation on the iPlant server or through 
fAPI by following instructions on the wiki site. Using both 
public and private apps, users can construct automated 
workflows in the DE with the interface shown in Fig. 1. This 
shows the three steps for constructing the variant calling 
workflow using the Genotyping-By-Sequencing protocol [12]: 
describe, add and order apps, and map outputs/inputs among 
apps. This workflow takes short read sequencing data and 
outputs variants for GWAS.  The construction procedure 
requires that inputs and outputs of each step be explicitly 
named, giving the advantage that the resulting workflow can 
be built beforehand and reused. Once completed the workflow 
can be kept private or submitted for public use. 

D. BioExtract 

The BioExtract Server [3] is an open, web-based system 
designed to aid researchers in the analysis of genomic data by 
providing a platform to facilitate the creation of bioinformatics 
workflows. There is a unified authentication mechanism 
between iPlant and BioExtract using the fAPI’s Auth service. 

Therefore, any analysis tools registered through the iPlant 
can be accessed in BioExtract via an auto-generated 
defined by the fAPI JSON file. Different from the DE’s b
before-run workflow construction, BioExtract implement
run-then-build approach. That is, BioExtract’s scien
workflows are created by recording tasks performed by
user. These tasks may include execution database que
saving query results as searchable data extracts, and execu
local and web-accessible analytic tools. The series of reco
tasks can then be saved as a reproducible, sharable work
available for future execution with the original or mod
inputs and parameters.  

Data in the iPlant Data Store can be accessed by BioEx
applications or workflows directly through the integrated iP
fAPI IO and Data services. The analysis runs across system
TACC using the iPlant fAPI job services. The public 
based apps of iPlant are also available on BioExtract se
(under Tools/iPlant at http://bioextract.org). To use these 
and access the iPlant Data Store, user’s iPlant credentials 
to be synchronized on the BioExtract server by “Register iP
Account” (http://bioextract.org/users/create-account.xh
Once synchronized, all of iPlant’s public as well as the 
own private apps can be used to create automated workfl
After logging in, users can click on the “Workflow” butto
the top bar, then “Create and Import Workflows” and “Re
Workflow”. All subsequent analyses will be recorded and
be saved as a workflow for future use. 

Fig. 2 shows the execution of the GWA mapping workf
which submits 29 jobs to TACC’s Lonestar cluster with
click and returns analysis results from six different associa
models. Further details are discussed in the next section. E
rectangular button on the chart represents one stand-alone
corresponding to names in the left panel. The workflo
constructed by running each tool at least once. The connec
between tools is established by using outputs of one too
inputs for another tool. The same analysis can be repeated 
different arguments in the construction process, and the f
or inappropriate ones can be deleted later. Finally,
workflow can be shared and re-executed with diffe
configurations of input data and parameters.  
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Fig. 2. Screen shot of executing a GWAS workflow on the BioExtract server. 
The status of each application (icon) is distinguished by its color (green: 
completed; blue: executing; yellow: waiting). 

E. Atmosphere 

iPlant Atmosphere provides the computing resource in a 
virtual machine (VM). The completely customizable VM can 
be launched and managed through a rich web interface. Thus, 
researchers can use the VM to develop novel analytical tools 
and provide the tools for accessing through a web browser. The 
VM can also be mounted to the iPlant Data Store so that the 
user can access their data directly for post-analysis, if 
necessary, after being processed in the iPlant DE. 

As an example of using Atmosphere to provide GWA 
phenotyping tools for community use, a virtual image is built 
with a pre-installed application, HypoTrace [21], which is an 
image analysis based phenotyping tool. Such applications 
usually need a built-in graphical user interface for interactive 
operations on raw image data. The computationally demanding 
non-interactive operations can be passed to high performance 
computing clusters via the iPlant fAPI within the Atmosphere 
image. Users can initiate his/her own VM from the web 
interface using the image instance HypoTrace for analysis.  

IV. GENERAL GWA WORKFLOW 

The existing GWA platforms, e.g., easyGWAS [22], focus 
on association mapping between prepared variant data and trait 
data, using predefined association tools and workflows. The 
iPlant CI based platform has the following key advantages. 
First, it provides big data management and sharing. Second, it 
provides large scale computational support for variant calling, 
imputation, and association analysis. Third, it is open for the 
community to contribute new analysis tools. Fourth, it supports 
many popular applications and provides automated workflows 
for GWA mapping with different models. For example, Fig. 3 
shows iPlant’s general workflow for GWA. Users can 
construct their own workflow to suit their research needs or use 
their favorite association applications. The workflow presented 
in Fig. 3 is a mega-workflow consisting of several workflows, 
including the variant calling workflow (e.g. GBS workflow as 
shown in Fig. 1), association workflow (e.g. MLM workflow in 
Fig. 2), and phenotyping analysis workflow (e.g. using 
HypoTrace Atmosphere image).  

We will use the Sorghum Association Panel (SAP) re-
sequencing data [23] as an example to walk through the 
workflow. The sequencing data is deposited into the NCBI 
SRA with accession numbers SRR636574 and SRR636575. 
The workflow starts in the iPlant DE by importing FASTQ 
sequence data into the Data Store [24] using the “NCBI SRA 
import” and “NCBI SRA Toolkit fastq-dump” tools. As 
described before, each file or folder will be assigned a UUID. 
The FASTQ files are further organized for feeding into the 
GBS workflow (built in DE) for calling variants. In this case, 
trait data are extracted from a previous study labeled with 
accession names [25]. Before merging trait data with variant 
data, accession names in trait data are converted to accession 
ids with an application named “TNRS4GWAS” for naming 
resolution. When users launch the app TNRS4GWAS, the 
users credentials are validated via the fAPI Auth service, then 

the input data are copied to the TACC computing clusters via 
the iRODS (the fAPI Data service), The fAPI Job service is 
then activated to submit the job to the clusters with arguments 
defined by TNRS4GWAS GUI through the fAPI App service. 

 

 
Fig. 3. General GWAS workflow (data in a dashed box; applications in a 
solid box; open arrow for functionality to be built; close arrow for 
implemented functionality). 

It is essential to impute missing marker data before the 
association mapping. An imputation tool, NPUTE [13], is used 
to fill missing marker data using the nearest neighbor 
algorithm. Then the marker data is filtered by minor allele 
frequency and converted for downstream analysis. To deal with 
the confounding factor of population structure in GWAS, a 
popular application, STRUCTURE [5], is integrated. Similarly, 
various kinship estimation methods are added for the similar 
purpose of feeding into various association models. 

For association mapping, we have streamlined three 
popular tools, including TASSEL [6-7], EMMAX [8], and 
MLMM [11] for comparison. Each of these tools takes marker 
and trait data in different formats; therefore conversion is 
usually needed for automating the analysis workflow. For 
TASSEL, different models can be tested by including 
population structure, kinship or not. The association between 
marker and trait is quantified with p values. The p values need 
to be corrected or adjusted for multiple comparisons. A XYPlot 
function is added to plot the so-called “Manhattan Plot” for 
visualization. Further development of the visualization function 
will allow interactive selection of significant p values for 
extracting nearby genes and their associated pathways for 
further analysis. For high throughput phenotyping, image 
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analysis tool, HYPOTrace [21], has been added and will be 
scaled to support extracting traits from images. 

NPUTE determines the optimal window size for imputation 
by testing known markers with various sizes of windows. 
Similarly, STRUCTURE picks the optimal number of clusters 
by testing various assumptions of the number of population 
clusters. These computations are time consuming but without 
data dependency among them. Thus, both NPUTE and 
STRUCTURE are integrated with the fAPI and parallelized 
through TACC’s parametric launcher module.  

All applications are integrated in the DE for running on 
either a Condor cluster (Variant calling workflow) or the 
TACC Lonestar cluster (all GWAS applications) through fAPI. 
A GWAS workflow is also automated on the BioExtract 
Server, which allows testing of various models in a parallel 
fashion once the data dependency is clear. The construction of 
automated workflows on the BioExtract Server using fAPI 
based apps demonstrates that the iPlant CI makes building 
innovative solutions with ease, without having to worry about 
the foundational infrastructure. 

V. USE CASES 

No single workflow can address all research problems, but 
our goal is to demonstrate that the iPlant platform is flexible 
enough for helping scientists solve real world problems. For 
this reason, we have two uses cases below to show how 
different challenges are addressed using the iPlant 
infrastructure. The first one is the re-analysis of the published 
sorghum association panel or SAP data set with the workflow 
presented in Fig. 2 and Fig. 3. The second one is the large scale 
analysis of the maize Nested Association Mapping (NAM) data 
set [26] with 115 traits using the bootstrapping method 
implemented in TASSEL. The main challenges in the first use 
case include extracting large amounts of sequencing data from 
the NCBI SRA, variant calling, imputation and automating the 
analysis workflow for testing various association models. The 
second use case involves a computationally demanding 
problem, bootstrapping. The entire analysis is completed in a 
few weeks using iPlant CI while it is estimated to require 2.5 
years on a typical 8-core desktop. 

Another reason we include the second use case is that the 
NAM data set relies on projecting SNPs from founder lines at 
run time, instead of keeping all SNPs beforehand, for efficient 
storage and association computation. It is worthwhile to point 
out that the iPlant platform is not designed to be a data 
repository of published or authoritative data, but rather, a 
scratch space where raw or published data can be imported and 
analyzed. Therefore, in the first use case, we aim to 
demonstrate how we extract a published data set from a public 
data repository, format it correctly, and combine the data with 
trait data for association analysis. On the contrary, the second 
use case shows that some popular data sets, e.g. the NAM 
genotype data set are hosted in the iPlant Data Store. In such 
cases, the user only needs to provide trait data for association 
mapping. 

A. Sorghum Association Panel (SAP) 

Sorghum is an important crop species for feeding 500 
million people in sub-Saharan Africa and south Asia because it 

can sustain high yields where precipitation is low or erratic. To 
examine the diversity of sorghum, genetically dissect its agro-
climatic traits, and enable marker-assisted breeding, 971 
sorghum accessions have been recently sequenced [23] using 
the GBS protocol [12]. After filtering for local linkage 
disequilibrium and tag coverage (a GBS workflow parameter 
describing sequencing depth), this study yielded 265,487 SNPs 
with an average density of one SNP per 2.7 kbp. The authors 
deposited around 200 GB of compressed raw sequence data 
(generated on the Illumina HiSeq 1000) into NCBI SRA after 
publication. Once uncompressed, the whole data set reaches 
over 1 TB (terabytes) that can be stored and analyzed using 
iPlant CI. The SAP data (336 accessions) is buried inside this 
data set. 

For the GBS sequencing, barcoded multiple plant 
accessions were pooled together and sequenced. A single text 
file, called key file, contains the mapping information between 
barcodes and samples, including Illumina flowcell name, lane, 
barcode, and DNASample (accession id) on each row that are 
needed by the downstream GBS workflow for variant calling. 
The GBS workflow takes each lane as an input file and 
requires flowcell name (presented with instrument name 
instead in these deposited reads) and lane number being 
encoded in the file name for de-multiplexing at run time. 
However, NCBI requires the raw data being de-multiplexed 
before submission for treating each strain as a BioSample. The 
automatic de-multiplexing (in this case) also completely 
messed up the read data, making it almost impossible to repeat 
the variant calling analysis with the GBS workflow. After 
personal communication with the authors, we were able to 
extract the SAP data and format them properly by mapping 
instrument name with flowcell names. Currently, NCBI made 
an exception on GBS data that allows treating each lane as a 
BioSample. The key file should also be posted as comments 
that can be retrieved as the page source from the SRA website. 
The GBS data will be serving as a good user case for iPlant’s 
future developments on the data management system. 

Before dealing with the missing SNPs (mostly due to the 
reduced representation of the genome using the GBS protocol), 
there is a practical problem that needs to be addressed for 
physically linking the genotype data [23] to available traits 
[25]. For the SAP data set, the SNPs are marked with the 
accession ids (unique identifier for each individual plant) while 
non-matching alias names were assigned to each accession for 
the trait data collected years ago. To make matters worse some 
plant accessions have multiple alias names used by different 
research groups that conducted trait research on the sorghum 
panel, mostly due to lacking  standard naming conventions. 
This has created a serious problem in data integration, or in this 
case, linking genotype data to phenotype data. Similar to the 
iPlant TNRS [27] effort, we have manually curated a database 
for mapping various forms of accession names to unique 
accession ids, and developed a tool, TNRS4GWAS, to 
facilitate the integration of genotype data and phenotype data. 
Currently, the tool supports accession name to id conversion 
for various plant species, including Arabidopsis, Rice, 
Sorghum, and Maize.   

As discussed earlier, we integrated a parallel version of 
NPUTE for imputing missing SNPs. Fig. 4A shows the 
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imputation accuracy at different window sizes for the nearest 
neighbor estimation. We parallelized NPUTE so that the 
imputation accuracy estimation for each window size (number 
of SNPs on each side) can be submitted simultaneously to the 
cluster. At each window size, NPUTE estimates imputation 
accuracy by looping through all known SNPs one by one, thus 
making it a time consuming process. A mismatch accumulator 
array (MAA) is adopted in NPUTE to improve performance, 
but parallelization can further reduce the computation time 
from days to hours. 

  

Fig. 4. (A) Imputation accuracy at different window size; (B) Likelihoods of 
grouping data into K clusters.  

Fig. 4A shows that the optimal window size is 2, which 
suggests that 2 SNPs on each side of the missing SNP offer the 
best information for the imputation. After this, the missing 
SNPs can now be imputed with the optimal window size 
determined in the estimation step. It is worthwhile to point out 
that the small window size of 2 is caused by highly linked 
SNPs in our processed data set (we choose to not filter SNPs 
by linkage disequilibrium or LD to keep more markers). In 
population genetics, LD is the non-random association of 
alleles at two or more loci [28]. Here, we choose to 
demonstrate NPUTE since it is also adopted by the original 
publication for processing sorghum data [23]. Certainly the 
iPlant CI is open for supporting additional imputation 
algorithms or utilizing pedigree information if available. After 
filling missing data (with NPUTE), filtering for minor allele 
frequency and conversion (using a tool named 
NumericalTransform, which is built using both TASSEL and 
PLINK [29]), the genotype data is ready for estimating 
population structure, or performing mixed model analysis using 
TASSEL, EMMAX, and MLMM. 

We integrated STRUCTURE and parallelized it for 
simultaneously testing various assumptions of the number of 

populations (or clusters). Since STRUCTURE adopted a 
Markov Chain Monte Carlo (MCMC) Bayesian approach, we 
also allow the user to repeat each assumption several times 
simultaneously for checking whether the MCMC iteration 
numbers are sufficient for convergence. As an example, the 
likelihood (averaged across three repeats) value is plotted 
against each assumption of cluster numbers in Fig. 4B. For the 
SAP data, our integrated version of STRUCTURE allows 
quick estimation of population structure in hours instead of 
weeks. We provide a tool, named STRUCTURE4TASSEL, to 
format the output of STRUCTURE appropriately as input to 
TASSEL for GLM and MLM analysis. 

It is tricky to interpret the optimal number of clusters from 
the likelihood values estimated by STRUCTURE. The general 
rule is to choose the one with the highest likelihood but not 
over-dividing the data into too many clusters. For re-analysis of 
SAP data, we assume the number of clusters is 3. Fig. 4B 
shows that the likelihood values are no longer increasing 
rapidly after assumption of 3 clusters (e.g. comparing the 
increases from 3 to 4 with 1 to 2 or 2 to 3). Furthermore, the 
outputs of STRUCTURE under different assumptions are kept 
so that the user can choose to further test each assumption with 
downstream tools, e.g. TASSEL. 

For the SAP data, 310 accessions remained after merging 
genotype data with trait data (height). The output p values at 
each loci (x axis) from TASSEL (Fig. 5A-C), EMMAX (Fig. 
5D) and MLMM (Fig. 5E), all after Bonferroni correction, are 
shown in Fig. 5. The dashed line on the right highlights the 
location of a dwarf gene, Dw1/SbHT9.1 on chromosome 9. 
Fig. 5E shows one stepwise regression results (MLMM model) 
after taking the most significant SNP (indicated by the dashed 
line on the right) as the co-factor to the mixed model. MLMM 
is designed to account for loci of larger effect, and interestingly 
adding the cofactor indeed highlights another SNP (55424715) 
that is not significant in a single point mixed model analysis 
(with either TASSEL or EMMAX).  The SNP also falls on the 
coding part of a predicted transcript FGENESH00000020814 
[31]. The nonsynonymous mutation (C/T) on this and adjacent 
loci causes the modest threonine (ACC) to isoleucine (ATC or 
ATT) conversion. 

Further experimental verifications of all genes nearby 
might be necessary for confirming the above novel observation 
via MLMM. However, with this use case, we aim to 
demonstrate how a flexible GWA workflow is constructed on 
top of the iPlant platform. For this purpose, we have extended 
the original analysis by incorporating more popular (including 
STRUCTURE, EMMAX) or novel (MLMM) applications into 
the automated workflow. For format conversion needed among 
these applications, we choose to rely on existing 
implementations in well maintained applications, e.g. TASSEL 
and PLINK for sustainability.  

 In summary, the iPlant platform adds value to individual 
software applications by enabling the automation of GWA 
analysis, including the variant calling procedure (e.g. via GBS 
workflow), resolving accession names (via TNRS4GWAS), 
gaining more computing power to reduce computation time 
(e.g. via our parallelization of both NPUTE and 
STRUCTURE), and most importantly, simultaneously testing 
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various assumptions and association models (e.g. TASSEL, 
EMMAX, MLMM) without worrying about format 
conversions. Another key advantage of the iPlant platform is 
that it is open for end users to integrate additional applications, 
modify existing applications, and build customized workflows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Output of various models with the dashed line highlighting the 
location of dw1/SbHT9.1 gene (right) and a predicted gene (left). (A) marker 
~ trait (TASSEL); (B) marker ~ trait + population structure (TASSEL); (C) 
marker ~ trait + kinship (TASSEL); (D) marker ~ trait + kinship (EMMAX); 
(E) marker ~ trait + kinship + cofactor (MLMM). 

B. Nested Association Mapping (NAM) 

Contrasting the SAP use case, where we assembled a 
collection of widely used applications for complex association 
analysis, in this NAM use case we aim to demonstrate the 
advantages of storing re-sequenced genomes to solve large-
scale computation problems using the iPlant platform. The 
association analysis in this use case is limited to the GLM 
model with the bootstrapping method [30] implemented in 
TASSEL. 

NAM was created as a method of combining the 
advantages and eliminating the disadvantages of two traditional 
methods for QTL (or linkage analysis) and association 
mapping. The maize NAM population was constructed from 
twenty-five diverse corn lines chosen as founder lines that 
encompass the remarkable diversity of maize and preserve the 
historic linkage disequilibrium. Each line was crossed to the 
B73 maize inbred to create the F1 population. The F1 plants 
were then self-fertilized for 6 generations to create a total of 
200 homozygous RILs, for a total of 5000 RILs. Each RIL was 
originally genotyped with the same 1106 molecular markers 
[26], and extended to 7000 markers for 6000 RILs in this use 
case. The 25 founder lines were sequenced using NGS 
technology, and 1.6 million variable regions were initially 
discovered [31]. 

We have built an application, NAMGWAS, for GLM 
association of NAM SNPs with trait data uploaded by end 
users. This application is built with the SNP projection 
procedure, GLM modeling, and the bootstrapping method 
implemented in TASSEL. For this application, we hosted the 
SNPs for B73 and 25 founder lines, a NAM map file, and the 
7000 markers for each NAM line. The NAM map file lists 
NAM markers with both genetic and physical positions, which 
are used to project the founder genotypes to the RILs using a 
nearest neighbor approach with window size of 1. The 
projection was done at runtime for each RIL at each locus for 
association with the trait of interest; then the projected SNP 
was discarded without storage. This turns out to be more 
efficient than storing all the SNPs for all RILs beforehand. 

 

For the NAM genotype data set, it is not necessary to 
estimate the population structure since it is “known”: 25 
populations corresponding to 25 founder lines. Therefore, the 
population information is integrated directly into the GLM 
model for reducing false positives. To quantify how significant 
a detected association is, the TASSEL implementation adopted 
a bootstrapping strategy, which turns out to be rather time 
consuming. Thus, we enhanced the NAMGWAS application 
for allowing a user to split bootstrapping iterations into 
multiple jobs at runtime for faster computation. Future 
optimization of the bootstrapping code in TASSEL will be 
critical for improving performance.  

Using NAMGWAS, we were able to complete a large-scale 
NAM association analysis with 115 traits using over 1000 
cluster nodes in a few weeks, rather than 2.5 years on a typical 
8-core desktop. The data are unpublished, so results are not 
presented here. Going forward, the NAM strategy for storing 
genotypes might be adopted for other species other than maize, 
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and they could be easily hosted by the iPlant platform given 
their much smaller size.  

VI. DISCUSSION 

Association mapping with NAM data is straight forward 
given that their population structure is controlled by design. On 
the contrary, population structure within the SAP data needs to 
be estimated and corrected to effectively eliminate false 
positives. Looking at TASSEL outputs only, Fig. 5 shows that 
the false positive rate is significantly reduced after correcting 
for structure, and further reduced after correcting for kinship 
(finer scale of population structure). However, the tradeoff is 
that such corrections increase the chance of false negatives. For 
example, in Fig. 5, the larger value shown on the y axis 
indicates more significant association. Again, using the 
TASSEL outputs as an example, the most significant 
association decreases from 9 to 5 in value after correction for 
structure effect, and further reduces to 1.6 after kinship 
correction. This has created another problem that the true 
association might not be detected if the threshold is not set 
appropriately. In the worst case scenario, when the trait of 
interest completely overlaps with the population structure, the 
true association will be erased by correction of structure 
effects. Therefore, it is always better to test multiple models 
and assumptions. This is also one of the rationales why we 
have constructed an automated workflow for simultaneously 
testing different models. It has also been suggested that the 
combination of traditional linkage analysis [32] and further 
haplotype analysis [33] can increase the power of GWA 
mapping to distinguish true from false associations. 

On the other hand, the stepwise regression adopted by the 
MLMM approach is simply a greedy forward-backward search 
strategy. The ideal solution will be evaluating all combinations 
of SNPs, which is usually impossible for the dense SNPs 
available today since the number of combinations increases 
with the number of SNPs exponentially. An alternative solution 
or improvement will be reducing the search space by restricting 
the combination tests to SNPs close to (or linked to) genes 
involved in the related pathways. For new genomes, this will 
be related to iPlant’s genome assembly efforts to construct 
reference genomes, and annotation efforts to identify true 
genes. We have also developed in-house applications for de 
novo gene prediction based on the modified wavelet transform 
[34], and examination of exon sizes and their evolution [35, 36] 
that can improve annotation accuracy. 

Again, iPlant’s mission is beyond GWA. In this work, we 
aim to provide a “GWAS view” of iPlant CI for handling 
complicated analysis workflows. In fact, the iPlant CI 
development in the first five-year grant period has been 
focused on developing an open system for application 
integration, leveraging high performance computation, and 
large scale un-relational data management. As demonstrated 
here, these goals have been extremely successfully 
accomplished. However, much more sophisticated data 
modeling is key to extend or combine GWA to or with iPlant’s 
broad efforts in NGS analysis, pathway integration, assembly, 
and annotation. Therefore, one of iPlant’s main goals for the 
second five-year grant period is to extend the data store to 
provide published data sets bringing data closer to computation 

for user. This will include supporting storage and accessing of 
variations (SNPs, indels, structural variations, etc.) in VCF 
(Variant Call Format) [37]. The extended data store will also 
facilitate data transfer between iPlant and public data 
repository (e.g. pathway database), provide quality control 
(QC), support image based phenotyping [21, 38], and enhance 
visualization. 

On the technical side, the GWA related applications we 
integrated into iPlant CI for executing on high performance 
clusters are developed with a wide variety of programming 
languages, including C++, Java, R, Perl, Matlab, python, and 
even shell scripts. This reduces the efforts in rewriting 
applications for integration into an application package, and 
demonstrates that the iPlant platform is flexible for end users to 
plug in their own or favorite applications to utilize the high 
performance computing clusters. However, the challenges for 
building an open system are usually much bigger than building 
a closed system. Such CI challenges, in some sense, have also 
been complicating the scientific developments in the last few 
years. We believe that the further development of the iPlant 
platform will make it continuously maturing in both stability 
and functionality.  
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