Efficient Assembly and Verification of ZFNs and TALENs for Modifying Porcine ApoE gene

College of Animal Science and Technology, Shaan'xi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, YangLing, Shaan’xi, P. R.

China, 712100

Xu H R: xuhuarong2000@163.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 18359295187

Li T: lituo0105@126.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 13281719805

Guo Y: 249898138@qq.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 15191419282

Li H F: 734376331@qq.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 18092165474

Wang L: wangling619@163.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 15929501559

Zhang Z Y: zzhang888@gmail.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaan’xi, phone 15091199929

Corresponding author: Wang X, wxwza@126.com, College of Animal Science and Technology, Northwest A&F University, YangLing, Shaanxi, phone 15029576399
Assembling ZFNs and TALENs for Modifying Porcine ApoE gene

Key words: ZFNs; TALENs; gene knockout; ApoE gene; yeast-two-hybrid

Corresponding author: Wang X, TaiCheng Road 3, College of Animal Science & Technology, Northwest A&F University, YangLing, Shaan'xi, P. R. China, phone 15029576399, wxwza@126.com.

Abstract: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are powerful tools for genome engineering. These synthetic nucleases are assembled with programmable, sequence-specific DNA-binding domain and a non-specific FokI cleavage domain. Apolipoprotein E (ApoE) gene polymorphism is associated with cardiovascular outcomes, including ischaemic stroke and coronary heart disease (CHD). So the objective of this study is to create mutations of ApoE gene by ZFNs and TALENs technology. Here, we used the Context-dependent assembly (CoDA) method to design and screen ZFNs specifically targeting with ApoE gene. The targeted cleavage capacity of these ZFNs was validated in yeast system and HEK 293T cells. Meanwhile, an efficient assembled TALENs to target ApoE gene in HEK 293T cells was as a control. The results showed that both ZFNs and TALENs worked on ApoE gene with similar high-efficiency cleavage capability. The result would provide efficient methods for genome editing, so as to get disease model for gene therapy for the further study.

Introduction

Synthetic zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are widely used in genomic integration, and formed by fusing
programmable specific DNA binding module to the non-specific nuclease domain of FokI endonuclease (Cathomen and Joung 2008). The construct of ZFNs and TALENs can create a double-strand break (DSB) to either stimulate intracellular DNA repair by homologous recombination (HR) with donor DNA or induce gene mutation by non-homologous end joining (NHEJ) when without a donor DNA (Jeggo 1998; van Gent et al. 2001). ZFNs and TALENs-mediated genome engineering has been used in many organisms, including cultured cells, as well as in live animals and plants (Kim and Kim 2014). Apolipoprotein E (ApoE) is an important component of plasma apolipoprotein, comprised by 299 amino acids. ApoE gene has three alleles, named E2 and E3 and E4. Due to mutation in 112th of ApoE4, Cys at this site was substituted for Arg. This mutation in ApoE4 has significant influence on coronary heart disease, cerebral infarction and senile dementia etc. diseases (Scarmeas et al. 2002).

Considering together, we sought to create mutations in ApoE4 gene by using efficient genome editing methods of ZFNs and TALENs. Therefore, taking porcine ApoE gene as the target site, two specific ZFNs were generated by utilizing CoDA assembly method and one TALENs was assembled by our simple method in this study, which would provide efficient methods for genome editing and lay foundations for producing ApoE gene defected cell lines, so as to establish ApoE gene defected disease model for gene therapy for further study.

Material and Methods

Zinc Finger Targeter Selection
The two ZFNs targeting porcine *ApoE* gene was designed by the ZiFiT website (http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx), which allows users to copy and paste their sequences of interest and returns the available CoDA ZFN sites as well as the DNA sequences that will encode a particular array.

Oligonucleotide Design and Synthesis

For this study, oligos were designed based on the target sequence, and were synthesized by Biosune Lt. Company (Shanghai). The primer pairs used for plasmids construction, detection and sequencing in this work are presented in Table 1.

Overlapping PCR to Obtain the ZFP Fragments

The ZFP fragments of *ApoE* (ApoE-ZFPs) were amplified by PCR and the products were purified using the Gel Extraction Kit (Vigorous, Beijing). The total reaction volumes were as follows: 10 × PCR Buffer 5.0 μL, dNTPs 4.0 μL, forward and reverse primer 1.0 μL, pfu (5 U/μL) 0.5 μL, DNA 1 μL, adjusting ddH2O to 50 μL. The reaction protocol was: 95° for 5 min, 5 cycles of: 94° for 30 sec, 52° for 30 sec, and 72° for 30 sec, then add corresponding primers, followed by 30 cycles of: 94° for 30 sec, 52° for 30 sec, 72° for 30 sec and 72° extension for 5 min.

Construction of ZFN Expression and Reporter Vectors for Yeast-two-hybrid System

The left fragment of ZFP (LZFP) was digested by *Xba*I and *Bam*HI (NEB), while the right fragment of ZFP (RZFP) was digested by *Not*I and *Bam*HI. Then the LZFP and RZFP were cloned into *Xba*I-*Bam*HI site of JMB440-FokI backbone and *Not*I-*Bam*HI site of JMB405-FokI vector, respectively. Plasmid DNA was isolated with the
E.Z.N.A. Plasmid Mini Kit (OMEGA) and sequenced to confirm whether the left and right finger inserted into the colonies or not. These vectors were named as LZFN-JMB440 and RZFN-JMB405. For the corresponding reporter vector, the oligonucleotides of Ap-BS1, Ap-BS2 (Table 1) were annealed directly to obtain the double strand DNA with NotI-BamHI site and cloned into JMB52 vector, named as ZFBS1-JMB52 and ZFBS2-JMB52.

Screening Specific ZFNs in Yeast-two-hybrid System

To test whether ZFNs work or not, we co-transform the plasmids of LZFN-JMB440, RZFN-JMB405 and reporter vectors ZFBS-JMB52 into yeast AH109 (Figure 1). The transformed products were cultured in SD solid medium (-His-Ade-Trp-Leu). As control, we transformed reporter plasmid only and cultured in SD solid medium (-His-Ade+Trp+Leu). After 3-day’s culture at 30°, reporter plasmids were recovered from plates (-His-Ade-Trp-Leu) and control plates, respectively. The specific fragments were amplified by primer FADH1 and gal4ADR. The primer sequences were listed in Table 1.

Engineering ZFNs Eukaryotic Expression and Reporter Plasmid for Mammalian Cells

The aforementioned LZFP and RZFP were cloned into PST1374-L vector. The plasmids (PST1374-ZFN, PST1374-ZFNR) were extracted and sequenced. The protocol of constructing reporter vector for mammalian system (Figure 2) was the same as that for yeast-two-hybrid assay. The oligonucleotides of BS1 and BS2 were
annealed, then inserted into psdRED backbone. The principle of this reporter verification system was the same as Hyojinkim described (2011).

Validate Activity of ZFNs in mammalian cells

HEK 293T cells were maintained in DMEM contained 10% fetal bovine serum and seeded into 6-well plates before transfection. A mixed plasmids comprising ZFN-L-pst1374 construct, ZFN-R-pst1374 construct and BS-psdRED vector were co-transfected in 3.2 × 10^5 cells per well using lipofectamine2000 following the manufacturer’s instruction (Invitrogen). As control, cells were transfected with BS-psdRED vector only. After cultivating for 36 h at 37°, the fluorescence was observed by fluorescence microscope system and then DNA was extracted 12 h later and detected by PCR.

TALE Targeter Selection and Synthesis

TAL Effector Nucleotide Targeter 2.0 was used to find porcine ApoE gene targeter (https://tale-nt.cac.cornell.edu/node/add/talen). We chose one target site for assembling TALENs based on our construction protocol of TALE (Zhang et al., 2013). The primers used for plasmids construction, detection and sequencing were synthesized by Shanghai Biosune Company. The entire primer information was presented in Table 1.

Construction of TALENs Eukaryotic Expression Vectors

Three tetramer plasmids chosen for construction of TALENs were amplified with primers Tet-Fv\Tet-R1, Tet-F2\Tet-R2 and Tet-F3\Tet-Rv, respectively. Primer sequences were presented in Table 3. Typically, the PCR reaction was: 20 ng
plasmids, 1 uL of each forward and reverse primer (5 uM), 0.5 uL Taq DNA polymerase (5 U/uL), 5 uL of 10 x Taq polymerase buffer, 5 uL of 10 mM dNTP, finally add ddH2O to 50 μL. PCR protocol was 94° for 5 min; 94° for 30 sec, 57° for 30 sec, 72° for 30 sec, 35 cycles; 72° for 5 min. The amplified tetramer was 465 bp, and purified from gels with PCR production purification kit. The three tetramers (50 ng each) and pST-TALEN-Backbone (150 ng) were added into a 10 uL volume of cut/ligation reaction mix with 1 uL of BsmBI (10 U/uL), 1 uL of T4 DNA ligase (400 U/uL), 1 uL of 10 x T4 DNA ligase buffer and ddH2O. The cut/ligation reaction was done in a thermocycler with 42° for 5 min, 16° for 5 min, 30 cycles. Then transformation was carried out with DH5α using 5 uL cut/ligation reaction mix. The transformation mix was plated on LB solid medium containing 100 μg/mL ampicillin and incubated at 37° for 12 h. The plasmids were obtained with Plasmid Mini Kit, then verified by XbaI/BamHI digestion, then the verified plasmids were sequenced with primers Seq-F and Seq-R. The completely right plasmid was named by pST-ApoE-TALEN.

Engineering TALENs Reporter Plasmid for Mammalian Cells

For the corresponding reporter vector, the oligonucleotides of Ap-BS (Table 1) were annealed directly to obtain the double strand DNA with NotI-BamHI site and cloned into psdRED backbone vector. The principle of this reporter verification system was the same as Hyojinkim described (2011).

Validate Activity of TALENs in Mammalian Cells
HEK 293T cells were cultured with DMEM contained 10% fetal bovine serum and seeded into 6-well plates before transfection. The transfection was the same as above described.

Results

Three Zinc Finger Sequence Acquired and Oligonucleotide Design

Two pairs of ZFNs target sites were chosen from porcine ApoE gene near the mutation site by utilizing CoDA platform.

BS1: 5’-GGCGGCGCGAggccGTCGGCGCC-3’;

BS2: 5’-GACCACCGAaggcTGGGAGCC-3’.

In CoDA database, specific three zinc finger proteins were screened, which recognized 9 bp of left and right, respectively, following the method as described by Jeffry D Sander et al (2010) (Table 1). After ZFP amino acid being translated, the primers were designed to amplify the segment of ZFP (Table 2).

Engineering ZFNs Activity Assaying

A 270 bp fragment of ZFP was got by overlap PCR (Fig. 3A). The selected ZFPs were successfully cloned into a ZFN expression vector. Candidate ZFN constructs were assayed for specific cleavage activity in yeast-two-hybrid (Y2H) system as previously described (Fig. 3B). The Y2H reporter assay revealed that these two ZFNs constructs both have high efficiency for reporter gene modification in yeast (>90%). Based on this result, the cleavage activities of our selected ZFNs were carried out in mammalian cells. The capabilities were assayed by repairing the reporter gene via homologous recombination. For both two ZFNs target sites, eukaryotic expression
plasmids and corresponding reporter vectors were constructed (Fig. 3C), then
transfected into HEK 293T cells. After transfection about 48 h, the results showed
that these two pairs of ZFNs exhibited a substantially higher mutation frequency
(~10%-20%) (Figure 4).

Engineering TALENs and Assaying the Activity

Left and Right TALE Tetramers Chosen for *ApoE* Gene

The TALENs target binding site designed by online tools TAL Effector Nucleotide
Targeter 2.0 was as follows:

\[
5\'-\text{GGGCGCCGAC}t\text{ggaggacgtgcgcaaccGCTTGGTGC}TCT\text{-3'}. \]

The tetramers for the construction of left and right TALE were in table 3.

The tetramers were assembled by our simple and efficient method (Fig. 5A), then the
specific TALENs was constructed and detected (Fig. 5B). The TALENs were
co-transfected with reporter vector into HEK 293 cells. After 48 h, green light spots
were obtained in the working group (Figure 6), while the control group without
TALENs only showed in red light.

Discussion

Until now, as a new genome modification tool, ZFN has been used widely in a variety
of research fields, especially in gene therapy and clinical application. Here, we rapidly
assembled ZFN arrays into a plasmid vector containing heterodimeric FokI nuclease
domains using CoDA method at a comparatively low cost and time-consuming
experimental selection. The activity of ZFNs was tested in yeast system preliminary
(Figure 1) and then in HEK 293T cells (Figure 2). The results indicated that repair
efficiency of our assembled ZFNs was as high as 95% in yeast, and about 20% in HEK 293T cells. These results fully explained CoDA method is an inexpensive, rapid assembly procedure to screen zinc finger protein.

Late-onset Alzheimer's disease (LOAD) risk is strongly influenced by genetic factors such as the presence of apolipoprotein E ε4 allele (referred to here as APOE4), as well as non-genetic determinants including ageing. These data implicate an APOE4 associated molecular pathway that promotes LOAD (Rhinn et al. 2013). Recently one meta-analysis suggests that at least one ApoE ε4 allele has higher risk suffering AD than controls in Chinese population (Liu et al. 2014).

How to reveal ApoE gene function to obtain functionally and clinically relevant information means a lot for curing a series of human diseases, such as AD. A major issue for AD research is lack of animal models that accurately replicates the human disease, thus making it difficult to investigate potential risk factors for AD such as head injury (Bates et al. 2014). Currently, the main animal model for ApoE gene study is mice (de Castro et al. 2014; Klein et al. 2014).

While due to the high similarities in anatomy, genetics and pathophysiology with humans, pig has been a top choice as human health and disease model (Walters et al. 2012). Human late-onset diseases such as Parkinson’s disease (LRRK2, SNCA) and Alzheimer’s disease (TUBD1, BLMH, CEP192, PLAU) may also occur in pigs (Groenen et al. 2012). In this study, we successively constructed both ZFNs and TALENs to target pig ApoE gene in eukaryotic cells. Efficient and convenient tools to
knockout ApoE gene can provide technical support to produce biomedical model for human disease.

Since there are a variety of methods for study the function of genes, such as gene knockout, gene silencing, gene overexpression etc. Targeted gene knockdown by RNAi has provided a rapid, inexpensive, and high-throughput alternative to homologous recombination (McManus and Sharp 2002). However, knockdown by RNAi has unpredictable off-target effects, and provides only temporary inhibition of gene function. These restrictions impede researchers to associate phenotype with genotype directly and limit the practical application of RNAi technology (Gaj et al. 2013). ZFNs and TALENs are relatively mature technologies. These synthetic nucleases contain programmable DNA-binding domains and non-specific DNA cutting domains. This combination of simplicity and flexibility has catapulted ZFNs and TALENs to the forefront of genetic engineering (Gaj et al. 2013).

We used both ZFNs and TALENs to target ApoE gene, and their activities were detected in yeast and HEK 293 cells through red-green light report system. The results showed that ZFNs worked better than TALENs. Two pairs of ZFNs were constructed with CoDA methods. At first we detected their activities in JM109 cells. It’s easy to find out whether they can work or not with gald4 report system in the yeast (Wang et al. 2013). Then we co-transfect ZFNs expression vectors and report vectors into HEK 239 cells to detect if they could work in mammalian cells. The green spots were obtained in the treatment group, while the control group only showed red light.
without ZFNs transfection. ZFP is the core part of ZFNs which can decide whether
ZFNs work or not. How to obtain specific zinc finger protein and detect its
DNA-binding activity is the key of ZFN technology. By now mainstream methods of
assemble ZFP are module assembly, OPEN and CoDA. Module assembly is simple
and convenient, but it doesn’t consider the module context effect, so this method has
low efficiency (Ramirez et al. 2008). Based on bacterial two-hybrid method, Joung’s
group designed OPEN method for assembling ZFP (Maeder et al. 2008). This method
based on a large ZFP library to fix module context effect. Although with OPEN
method researchers have obtained high activity ZFP and improved the gene targeting
efficiency, this solution is too complex to popularize. Joung’s team obviously realized
this issue. In 2011, they created the CoDA protocol. Now with the OPEN ZFP
information foundation, this protocol is feasible for most common organization.
Through designating the middle ZF2 which characterizes universality, ZF1 and ZF3
are easy to be obtained. Although we tried both OPEN and CoDA methods to
assemble ZFNs for targeting ApoE gene, the former solution took a long time to carry
out. Meanwhile ZFNs’ efficiencies obtained with OPEN method were similar to these
obtained with CoDA method.

Move over ZFNs? TALEN technology now has been brought into biotechnology. So
far most of reports claimed that with TALENs it is easier to mutate or reform the
target gene. We built two pairs of TALENs for targeting ApoE gene at the same time
to test which kind of tools work better. Only considering the time for assembling
ZFNs and TALENs, it is true that TALENs prevail ZFNs. We assembled TALENs
only within one week (Zhang et al. 2013), while the assembling of ZFNs took about one and a half month. With the same red-green light system, we co-transformed TALENs’ expression vectors and report vectors into HEK 293 cells. About 24 hours later, we could detect the green light in the treatment group. 48 hours later, the pictures obtained with fluorescence inverse microscope showed that about 10% cells with green light spot. Three tetramers were used to assemble each side twelve monomers of TALENs for targeting ApoE gene. The binding sites were selected with the online tool: TAL Effector-Nucleotide Targeter 2.0 (Doyle et al. 2012).

The contiguous repeat of DNA-binding modules of TALENs affects the efficiency of targeting gene. TALE-repeats vary in numbers from 15.5 to 19.5 among most of naturally occurring TALE (Boch and Bonas 2010). Theoretically, the larger TALENs with more tetramers should have higher efficiency. But the fact is not like that. RVD composition as well as the size of the repeat array affects target specificity (Morbitzer et al. 2011). The in silico analysis revealed that TALE-repeats longer than 12 bp reached a plateau in TALEN-pair–binding specificity in the euchromatic regions of the genome (Katsuyama et al. 2013), so we chose 12 bp TALE-repeat in this study.

Assembling TALENs is much easier than ZFNs, but efficiency of targeting gene is not so remarkable. Typically TALENs protein size is bigger than ZFNs and TAL effectors are naturally occurring proteins from the plant pathogenic bacteria genus Xanthomonas. The Cys2-His2 zinc-finger domain represents the most common DNA-binding motif in eukaryotes and the second most frequently encoded protein.
domain in the human genome (Gaj et al. 2013). In consideration of immunogenicity, ZFNs which are ubiquitous in nature may not be an issue. But TALENs may have some problems in gene therapy. Clearly, how to deliver programmable nucleases to cells safely and effectively also affects the targeting efficiency.

Currently genetically engineered pig models are being used for analysis of gene function in various human diseases, development of new therapeutic strategies as well as production of biopharmaceutical products (Walters et al. 2012). We built both ZFNs and TALENs to target porcine ApoE gene and detected activities in HEK 239 cells with red-green light system. The preliminary application results show that this approach is effective and feasible.

Acknowledgments
This research is supported by Scientific and Technological Project in Shaanxi province (No. 2014K02-07-01).

Literature Cited

Klein, R. C., S. K. Acheson, B. E. Mace, P. M. Sullivan and S. D. Moore, 2014
Altered neurotransmission in the lateral amygdala in aged human apoE4
targeted replacement mice. Neurobiology of Aging 35: 2046-2052.

Liu, M., C. Bian, J. Zhang and F. Wen, 2014 Apolipoprotein E gene polymorphism

Maeder, M. L., S. Thibodeau-Beganny, A. Osiak, D. A. Wright, R. M. Anthony et al.,
2008 Rapid "open-source" engineering of customized zinc-finger nucleases for
highly efficient gene modification. Mol Cell 31: 294-301.

Maeder, M. L., S. Thibodeau-Beganny, J. D. Sander, D. F. Voytas and J. K. Joung,
2009 Oligomerized pool engineering (OPEN): an 'open-source' protocol for

McManus, M. T., and P. A. Sharp, 2002 Gene silencing in mammals by small

Morbitzer, R., J. Elsaesser, J. Hausner and T. Lahaye, 2011 Assembly of custom
TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:
5790-5799.

Ramirez, C. L., J. E. Foley, D. A. Wright, F. Muller-Lerch, S. H. Rahman et al., 2008
Unexpected failure rates for modular assembly of engineered zinc fingers. Nat
Methods 5: 374-375.

Rhinn, H., R. Fujita, L. Qiang, R. Cheng, J. H. Lee et al., 2013 Integrative genomics
Scarmeas, N., J. Brandt, M. Albert, D. P. Devanand, K. Marder et al., 2002

Walters, E. M., E. Wolf, J. J. Whyte, J. Mao, S. Renner et al., 2012 Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 5: 55.

Zhang, Z., D. Li, H. Xu, Y. Xin, T. Zhang et al., 2013 A simple and efficient method for assembling TALE protein based on plasmid library. PLoS One 8: e66459
Figure 1. Diagram describing yeast-based ZFNs screening and validation system. ZFNs and reporter co-transform into yeasts. If ZFNs do not work, no colonies can survive with selective medium. With this validation system, we can screen the working ZFNs and with control we can obtain a sketchy efficiency of ZFNs by counting colonies number.

Figure 2. Red-Green light report system. In HEK 293 cells, ZFNs and TALENs cut target sequences to induce EGFP repair. In the green field we can obtain green spots if they work. In the same way, we obtain efficiencies by counting green/red spots.
Figure 3. Assembling ZFNs. A, The PCR products of ZFPs; B, The PCR products of Gal4BD gene. We detected 1100 bp stripes to identify whether ZFNs work. No.9 is negative control, No.10 is positive control; C, The digestion analysis results of ZFNs eukaryotic expression vectors (M: DL2000 DNA Marker)

Figure 4. Fluorescence results treated by ZFNs in HEK 293T cells. ZFN1 and ZFN2 respectively co-transfect into HEK 293 cells with reporter. If ZFNs work, we can obtain green spots (white triangles) about 48 h later. In the
same way, we can obtain ZFNs efficiency through counting green (sometimes a bit saffron) spots and red spots. ZFN1 is over 20%, while ZFN2 is about 10%.

Figure 5. Assembling TALENs. A, Amplified tetramers 1-6 by PCR; B, Restriction detection of pST1374-TALEN-ApoE

Figure 6. Fluorescence results treated by TALENs in HEK 293T cells. Under green field, we observed green spots (white triangles) about 48 h later and estimated TALENs efficiency is about 15%.

```plaintext
pST-ApoE-TALEN-Left: GGGC GCCG ACAT
```
pST-ApoE-TALEN-Right: ACAG CACC AAGC