Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals

Lucas Theis1,2*, Philipp Berens5*,1,2,3,4,5, Emmanouil Froudarakis4, Jacob Reimer4, Miroslav Román Rosón1,5, Tom Baden1,3,5, Thomas Euler1,3,5, Andreas Tolias3,4,6, Matthias Bethge1,2,3$

1 Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
2 Institute of Theoretical Physics, University of Tübingen, Tübingen, Germany
3 Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
4 Department of Neuroscience, Baylor College of Medicine, Houston, USA
5 Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
6 Department of Computational and Applied Mathematics, Rice University, Houston, USA

* These authors contributed equally to this work.

$ To whom correspondence should be addressed:
Philipp Berens, philipp.berens@uni-tuebingen.de
Matthias Bethge, matthias.bethge@uni-tuebingen.de

Summary

A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the measured noisy calcium fluorescence traces. We systematically evaluate a range of spike inference algorithms on a large benchmark dataset (>100,000 spikes) recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCaMP6). We introduce a new algorithm based on supervised learning in flexible probabilistic models and show that it outperforms all previously published techniques. Importantly, it even performs better than other algorithms when applied to entirely new datasets for which no simultaneously recorded data is available. Future data acquired in new experimental conditions can easily be used to further improve its spike prediction accuracy and generalization performance. Finally, we show that comparing algorithms on artificial data is not informative about performance on real data, suggesting that benchmark datasets such as the one we provide may greatly facilitate future algorithmic developments.
Introduction

Over the past two decades, two-photon imaging has become one of the most widely used techniques for studying information processing in neural populations in vivo (Denk et al., 1990; Kerr and Denk, 2008). Typically, a calcium indicator such as the synthetic dye Oregon green BAPTA-1 (OGB-1) (Stosiek et al., 2003) or the genetically encoded GCaMP6 (Chen et al., 2013) is used to image a large fraction of cells in a neural tissue. Individual action potentials lead to a fast rise in fluorescence, followed by a slow decay with a time constant of several hundred milliseconds (Chen et al., 2013; Kerr et al., 2005). Commonly, neural population activity from dozens or hundreds of cells is imaged using relatively slow scanning speeds (<15 Hz), but novel fast scanning methods (Cotton et al., 2013; Grewe et al., 2010; Valmianski et al., 2010) (up to several 100 Hz) have opened additional opportunities for studying neural population activity at increased temporal resolution.

A fundamental challenge has been to infer the timing of action potentials from the measured noisy calcium fluorescence traces. To solve this problem of spike inference, several different approaches have been proposed, including template-matching (Greenberg et al., 2008; Grewe et al., 2010; Oñativia et al., 2013) and deconvolution (Park et al., 2013; Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009, 2010; Yaksi and Friedrich, 2006). These methods have in common that they assume a forward generative model of calcium signal generation which is then inverted to infer spike times. These forward models incorporate strong a-priori assumptions about the shape of the calcium fluorescence signal induced by a single spike and the statistics of the noise. Alternatively, simple supervised learning techniques have been used to learn the relationship between calcium signals and spikes from data (Sasaki et al., 2008).

However, it is currently not known which approach is most successful at inferring spikes under experimental conditions, as a detailed quantitative comparison of different algorithms on large datasets of in vitro and in vivo population imaging data has been lacking. Rather, most published algorithms have only been evaluated on relatively small experimental datasets using different performance measures. In addition, the question of how well we can reconstruct the spikes of neurons given calcium measurements has been studied theoretically or using simulated datasets (Lütcke et al., 2013; Wilt et al., 2013). While such studies offer the advantage that many model parameters are under the control of the investigator, they do not answer the question of how well we can reconstruct spikes from actual measurements.

Here, we pursue two goals: (1) we introduce a new data-driven approach based on supervised learning in flexible probabilistic models to infer spikes from calcium fluorescence traces and (2) we systematically evaluate a range of spike inference algorithms ('benchmarking') on a large dataset including simultaneous measurements of spikes and calcium signals in primary visual cortex and the retina of mice using OGB-1 and GCaMP6 as calcium indicators collected in anesthetized and awake animals. We show that our new method outperforms all previously published techniques, setting the current standard for spike inference from calcium signals.
Results

A flexible probabilistic model for spike inference

Here we introduce a new algorithm for spike inference from calcium data. We propose to model the probabilistic relationship between a segment of the fluorescence trace x_t and the number of spikes k_t in a small time bin, assuming they are Poisson distributed with rate $\lambda(x_t)$:

$$p(k_t | x_t) = \frac{\lambda(x_t)^k}{k!} e^{-\lambda(x_t)}.$$

Instead of relying on a specific forward model, we parameterize the firing rate $\lambda(x_t)$ using a recently introduced extension of generalized linear models, the factored spike-triggered mixture (STM) model (Theis et al., 2013) (Fig. 1a; see Methods):

$$\lambda_{\text{STM}}(x_t) = \sum_{k=1}^{K} \exp\left(\sum_{m=1}^{M} \beta_{km} (u_{m}^T x_t)^2 + w_{k} x_t + b_{k} \right).$$

We train this model on simultaneous recordings of spikes and calcium traces to learn a set of K linear features w_k and M quadratic features u_m (‘supervised learning’), which are predictive of the occurrence of spikes in the fluorescence trace. Importantly, this model is sufficiently flexible to capture non-linear relationships between fluorescence traces and spikes, but at the same time is sufficiently restricted to avoid overfitting when little data is available. Below we will evaluate whether this model is too simple or already more complex than necessary by comparing its performance to that of multi-layer neural networks and simple LNP-type models.

Fig. 1: Spike inference from calcium measurements

In contrast to many methods that result in a single most likely spike train (a ‘point estimate’) using a probabilistic model in this way provides us with an estimate of the expected firing rate, $\lambda(x_t)$, and a distribution over spike counts, as fully Bayesian methods do (Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009). An advantage of access to a distribution over spike trains is that it allows us, for example, to estimate the uncertainty in the predictions. Example spikes trains consistent with the calcium measurements can be easily generated from our model without spending considerable computational resources. While generating a ‘most likely spike train’ is also possible, its interpretation is less clear, as the result depends on the parametrization.

Benchmarking spike inference algorithms on experimental data

To quantitatively evaluate different spike inference approaches including our model, we acquired a large benchmark dataset with a total of 90 traces of 73 neurons, in which we simultaneously recorded calcium signals and spikes (Fig. 1b; in total >100,000 spikes). These cells were recorded with different scanning methods, different calcium indicators, in different brain states and at different sampling rates (see Table 1 and Methods). We used four datasets for our main analysis Dataset 1 consisted of 16 neurons recorded in-vivo in V1 of anesthetized mice using fast 3D AOD-based imaging (Cotton et al., 2013) at ~320 Hz with OGB-1 as indicator. Dataset 2 consisted of 31 neurons recorded in-vivo in anesthetized mouse V1 using raster scanning at ~12 Hz with OGB-1 as indicator. Dataset 3 consisted of...
19 segments recorded from 11 neurons in-vivo in anesthetized mouse V1 using the genetic
calcium indicator GCaMP6s with a resonance scanner at ~59 Hz. Finally, dataset 4 consisted
of 9 retinal ganglion cells recorded ex-vivo at ~8 Hz using raster scanning with OGB-1 as
indicator (Briggman and Euler, 2011). In addition, we collected a small dataset of 6 cells from
V1 of awake mice using again the genetic calcium indicator GCaMP6s (Reimer et al., 2014)
to demonstrate the performance during awake imaging (see below). We resampled the
calcium traces from all datasets to a common resolution of 100 Hz. Importantly, all of our
datasets were acquired at a zoom factor commonly used in population imaging such that the
signal quality should match well that commonly encountered in these preparations (see
Table 1).

We compared the performance of our algorithm (STM) to that of algorithms representative of
the different approaches (see Table 2 and Methods), including simple deconvolution (YF06,
Yaksi and Friedrich, 2006), MAP (VP10, known as ‘fast-oopsi’, Vogelstein et al., 2010) and
Bayesian inference (PP14, Pnevmatikakis et al., 2014; VP09, Vogelstein et al., 2009) in
generative models, template-matching by finite rate of innovation (OD13, Oñativia et al.,
2013) and supervised learning using a support vector machine (SI08, Sasaki et al., 2008). To
provide a baseline level of performance, we evaluated how closely the calcium trace followed
the spike train without any further processing (raw).

We focus on two measures of spike reconstruction performance to provide a quantitative
evaluation of the different techniques: (i) the correlation between the original and the
reconstructed spike train and (ii) the information gained about the spike train based on the
calcium signal (see Methods). For completeness, we computed (iii) the area under the ROC
curve (AUC), which has also been used in the literature. The AUC score is a less sensitive
measure of spike reconstruction performance, as e.g. an algorithm could consistently
overestimate high rates compared to low rates and yet yield the same AUC (for a more
technical discussion, see Methods).

To provide a fair comparison between the different algorithms, we evaluated their
performance using leave-one-out cross-validation: we estimated the parameters of the
algorithms on all but one cell from a dataset and tested them on the one remaining cell,
repeating this procedure for each cell in the dataset (see Methods). For the algorithms based
on generative models, we selected the hyperparameters during cross-validation (VP10,
VP09) or using a sampling based approach (PP14; see Methods).

Supervised learning sets benchmark

We found that the spike density function predicted by our algorithm matched the true spike
train closely, for cells from each dataset including both indicators OGB-1 and GCaMP6 (Fig.
1c-f). The other tested algorithms generally showed worse prediction performance: For
example, YF06 typically resulted in very noisy estimates of the spike density function (Fig.
1c-f) and both VP10 and PP14 frequently missed single spikes (Fig. 1d-f, marked by
asterisk) and had difficulties modeling the dynamics of the GCaMP6 indicator (Fig. 1e).

Figure 2: Quantitative evaluation of spike inference performance

A quantitative comparison revealed that our STM method reconstructed the true spike trains
better than all its competitors, yielding a consistently higher correlation and information gain
for all four datasets (Fig. 2a, b; evaluated at 25 Hz; for statistics, see figure). The median
improvement in correlation across all recordings achieved by the STM over its two closest
For SI08 – the other supervised learning approach based on SVMs – and 0.1 (0.08-0.13) for PP14 – the Bayesian inference in a generative model – yielding a median improvement of 33% and 32%, respectively. Similarly, the STM explained 6.8 (5.0-7.7; SI08) and 9.6 (8.1-12.1; PP14) percent points more marginal entropy (measured by the relative information gain).

When evaluated with respect to AUC, the performance of these two algorithms was about as good as that of the STM model (Suppl. Fig. 1), yielding a median difference in AUC of -0.01 (-0.02-0.01) and 0.01 (-0.01-0.02). This is because the AUC is the least sensitive of the three measures, as discussed above. As a side remark, note that AUC is closely related to the cost function optimized by SI08, which is based on a support vector machine. To show that the features extracted by our STM algorithm are more informative about the spike rate than those used by SI08, one can use a SVM on top of these features and obtain on 3 out of 4 datasets higher performance than SI08 (Suppl. Fig. 1).

The timing accuracy of our method was also superior to that of the other algorithms. To test this, we evaluated the performance of all algorithms for a wide range of sampling rates between 2 and 100 Hz, corresponding to time bins between 10 and several hundreds of milliseconds (Fig. 3). The STM performed better than the other algorithms for most sampling rates, but its performance advantage was particularly large for high sampling rates (Fig. 3; also Suppl. Fig. 2) Concretely, if the desired average correlation between inferred and true spike rates was 0.4, our method can achieve that with time bins of ~17 ms, whereas competing methods required ~29 and ~58 ms (PP14 and SI08, respectively; evaluated on dataset 1, Fig. 3a). Interestingly, VP10 (‘fast-oopsi’) performed similar to our method for low sampling rates, but its performance deteriorated consistently on all datasets to the performance level of VF06 with increasing sampling rates (Fig. 3).

The performance of the STM model could not be further improved using a more flexible multilayer neural network for modeling the non-linear rate function \(\lambda_t \) (Fig. 4 and Suppl. Fig. 3). To test this, we replaced the STM model by a neural network with two hidden layer, but found that this change resulted in only marginal performance improvement (Fig. 4). In addition, we tested whether a much simpler linear-nonlinear model would suffice to model \(\lambda_t \). We found that the STM model performed significantly better than the simple LNP model (Fig. 4 and Suppl. Fig. 3). Therefore, the choice of the STM for \(\lambda_t \) seems to provide a good compromise between flexibility of the model structure and generalization performance.

Importantly, already a small training set of less than 10 cells was sufficient to achieve good performance for the STM model (Fig. 5a and b and Suppl. Fig. 4a). We tested the prediction performance of the STM with training sets of various sizes and found that it saturated between 5 and 10 cells for all datasets, arguing that a few simultaneously recorded cells may suffice to directly adapt the algorithms to new datasets acquired in other laboratories or with new imaging methods. Finally, the superior performance of the STM was largely independent of the firing rate of the neuron within the limited range of firing rate in our sample of cells (Fig. 5c and d and Suppl. Fig. 4b).
Generalization of performance to new datasets

We tested how well our algorithm performs if no simultaneous spike-calcium recordings are available for a new preparation, scanning method or calcium indicator or if a researcher wants to apply our algorithm without collecting simultaneous spike-calcium recordings for training. Remarkably, the STM model was able to generalize to new data sets that were recorded under different conditions than the data used for training. To test this, we trained the algorithms on three of the datasets and evaluated it on the remaining one (Fig. 6a) – that is, we applied the algorithm to an entirely new set of cells not seen at all during training. The STM algorithm still showed better performance compared to all other algorithms (Fig. 6b-c and Suppl. Fig. 5), including superior performance on the GCamp6-dataset when trained solely on the three OGB-datasets (Fig. 6b-c).

Figure 6: Spike inference without training data

Next, we tested whether the algorithm’s performance would also transfer to recordings in awake animals (Reimer et al., 2014). Brain movements and brain state fluctuations may induce additional variability in the recordings which may render spike inference under these conditions more difficult. We found that the STM trained on all neurons recorded in anesthetized animals or ex-vivo retina (n=75 traces from 70 cells) data outperforms all other algorithms also on awake data (n=15 traces from 6 cells; Fig. 6d-f). Finally, we tested the different algorithms on three data sets acquired focusing on individual cells (in contrast to our population imaging dataset; n=29 cells; data publicly available from Svoboda lab, see Methods). Similarly to above, our algorithm was trained two of these datasets and tested on the third. In addition, we included all cells from datasets 1-4 in to the training set, as there are only comparably few spikes in the Svoboda lab datasets. Focusing on individual cells makes the data less noisy, resulting on overall higher correlation and AUC values (Suppl. Fig. 6). The STM algorithm performed well and on a par with VP10 regarding all three measures used for evaluation (Suppl. Fig. 6).

Taken together, this analysis indicates that good performance can be expected for our algorithm when it is directly applied on novel datasets without further training (see Discussion). A pre-trained version of our algorithm is available for download (see Methods).

Comparisons on artificial data

Surprisingly, the performance of the algorithms on simulated data was not predictive of the performance of the algorithms on the real datasets (Fig. 7). To test this, we simulated data from a simple biophysical model of calcium fluorescence generation (Fig. 7a, see Methods, Vogelstein et al., 2009). We then applied the same cross-validation procedure as before to evaluate the performance of the algorithms (Fig. 7b). Not surprisingly, we found that all algorithms based on this or a similar generative model (PP13, VP10, YF06) performed remarkably well. Interestingly, even the algorithms that performed worse than the baseline model for the real data (OD13, VP09) showed good performance on the artificial data. The STM model was among the top-performing algorithms, in contrast to the other supervised learning algorithm (SI08). A direct comparison of the performance on the simulated dataset and the experimental data clearly illustrates that the former is not a good predictor of the latter (Fig. 7c).

Figure 7: Evaluating algorithms on artificial data
Discussion

We introduced a new algorithm for inferring spikes from calcium traces based on supervised training of a flexible probabilistic model. We showed that this model performs better than all previously published algorithms for this problem, for a wide range of recording conditions including OGB-1 and GCamp6 as calcium indicators, anesthetized and awake imaging, different scanning techniques, neural tissues, and with respect to different metrics. Importantly, once trained, inferring spike rates using our algorithm is very fast, so even very large datasets can be processed rapidly. Interestingly, two of the three best algorithms rely on supervised learning to infer the relationship between calcium signal and spikes, suggesting that a data-driven approach offers distinct advantages over approaches based on forward models of the relationship between the two signals.

The superior performance of our algorithm carried over to new datasets not seen during training, promising good spike inference performance even when applied to a new dataset where no simultaneous recordings are available. To use the algorithm ‘out of the box’, we provide it for download pre-trained with all experimental data used in this paper. In particular, its performance carried over to data recorded in awake animals, where brain movements or brain state fluctuations may render spike inference more difficult. This result may not be surprising, given that motion artefacts along the X- and Y-axis can be very well compensated by motion correction algorithms (Greenberg et al., 2008) and motion in the Z-axis is only on the order of 1-2 µm in good preparations (Reimer et al., 2014).

The fact that our algorithm can be used without extra training data is crucial, as this is often considered an important advantage of algorithms based on generative models. Note that for entirely new experimental conditions (e.g. a new calcium indicator), the performance of neither class of algorithms is guaranteed, however, and both need to be evaluated on a dataset with simultaneous recordings. For unsupervised methods, if such an evaluation reveals poor performance, e.g. because the assumed generative model does not match the structure of the dataset at hand (as seen e.g. with the GCamp6 data; Fig. 1e and 2), the only way to improve the algorithm would be to adapt the generative model and modify the inference procedures accordingly. In contrast, any simultaneous data collected in the future can be readily used to retrain our supervised algorithm and further improve its spike prediction and generalization performance. In fact, our choice of the spike triggered mixture model for estimating spikes from calcium traces is motivated by its ability to automatically switch between different sub-models whenever the statistics of the data changes (Theis et al., 2013).

Our evaluation shows that the correlation between inferred and real spike rates obtained at a temporal resolution of 25 Hz (or in bins of 40 ms) is at best 0.4-0.6, depending on the dataset with substantial variability between cells (Fig. 5c-d). It will be an interesting question whether new indicators (Chen et al., 2013; Inoue et al., 2014; St-Pierre et al., 2014; Thetstrup et al., 2014) or scanning techniques on and better inference algorithms will bring these values closer to 1, or whether these low correlations reflect a general limitation of population imaging approaches. Factors contributing to this limitation may include technical aspects of the imaging procedure such as neuropil contamination or activity-induced changes in blood vessel diameter and biophysical issues connected to the intracellular calcium dynamics. Our evaluation further shows that good spike inference performance on model data by no means guarantees good performance on real population imaging data (Fig. 6c). We believe theoretical model based studies (Lütcke et al., 2013; Wilt et al., 2013) will remain useful to
systematically explore how performance depends on model parameters, such as noise level or violations of the generative model, but will need to be followed up by systematic quantitative benchmark comparisons on datasets such as provided here.

Our proposed method is solely concerned with the problem of spike inference, and does not infer the regions of interests (ROIs) from observed data. Rather, we assume that these are obtained by the experimenter through other semi-automatic or automatic techniques. Recently, several methods have been proposed to jointly infer ROIs and spikes (Diego and Hamprecht, 2014; Maruyama et al., 2014; Pnevmatikakis et al., 2014). These methods have the benefit that they exploit the full spatio-temporal structure of the problem of spike inference in calcium imaging and offer an unbiased approach for ROI placement. Since ROIs can also be placed using supervised learning (Valmianski et al., 2010), it should be feasible to develop supervised paradigms for simultaneous ROI placement and spike inference or combinations of unsupervised and supervised methods.

We presented the first quantitative benchmarking approach to evaluating spike inference algorithms on a large dataset of population imaging data. We believe that such a benchmarking approach which is already used successfully in machine learning and related fields to drive new algorithmic developments can also be an important catalyst for improvements on various computational problems in neuroscience, from systems identification to neuron reconstruction.
Methods

Datasets

Primary visual cortex (V1) – OGB-1

We recorded calcium traces from neural populations in layer 2/3 of anesthetized wild type mice (male C57CL/6J, age: p40–p60) using a custom-built two-photon microscope using previously described methods (Cotton et al., 2013; Froudarakis et al., 2014). Briefly, the temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the experiment using a homeothermic blanket system (Harvard Instruments). While recording we either provided no visual stimulation, moving gratings, or natural and phase scrambled movies as previously described (Froudarakis et al., 2014). A ~1 mm craniotomy was performed over the primary visual cortex of the mouse. The details of surgical techniques and anesthesia protocol have been described elsewhere (Cotton et al., 2013). We then used bolus-loaded Oregon green BAPTA-1 (OGB-1, Invitrogen) as calcium indicator and the injections were performed by using a continuous-pulse low pressure protocol with a glass micropipette to inject ~300 μm below the surface of the cortex. The cortical window was sealed using a glass coverslip. After allowing 1h for the dye uptake we recorded calcium traces using a custom-built two-photon microscope equipped with a Chameleon Ti:sapphire laser (Coherent) tuned at 800 nm and a 20×, 1.0 NA Olympus objective. Scanning was controlled by either a set of galvametric mirrors (Galvo) or a custom-built acousto-optic deflector system (AODs) (Cotton et al., 2013). The average power output of the objective was kept < 50 mW for galvametric scanning and 120 mW for AODs. Calcium activity was typically sampled at ~12 Hz with the galvametric mirrors and at ~320 Hz with the AODs. The field of view was typically 200x200x100μm and 250x250μm for AODs and galvametric imaging, respectively, imaging dozens to hundreds of neurons simultaneously(Cotton et al., 2013). To perform simultaneous loose-patch and two-photon calcium imaging recordings, we used glass pipettes with 5–7 MΩ resistance filled with Alexa Fluor 594 (Invitrogen) for targeted two-photon-guided loose cell patching of single cells. Spike times were extracted by thresholding. All procedures performed on mice were conducted in accordance with the ethical guidelines of the National Institutes of Health and were approved by the Baylor College of Medicine IACUC.

Primary visual cortex (V1) – GCaMP6

We recorded calcium traces from neural populations in layer 2/3 of (1) isoflurane-anesthetized and (2) awake wild type mice (male C57CL/6J, age: 2-8 months; N=2 and N=1 mice for anesthetized and awake, respectively) using a resonant scanning microscope (ThorLabs). Surgical procedures were similar to those described in Reimer et al (2014). Briefly, mice were initially injected with approximately 1 μL of AAV1.Syn.GCamp6s.WPRE.SV40 (University of Pennsylvania Vector Core) through a burr hole. The injection was performed with the pipette at a steep (~60 deg) angle, in order to infect cells in the cortex lateral to the injection site under an untouched region of the skull. The mice were allowed to recover and were returned to their cages. Typically three to five weeks later (4 months for the awake experiment), a 3 mm circular craniotomy was performed above the injection site and the craniotomy was sealed with a circular 3 mm coverslip with a ~0.5 μm hole to allow pipette access to infected cells. For anesthetized experiments, the temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the experiment using a homeothermic blanket system (Harvard Instruments). During awake experiments, the mouse was placed on a treadmill with its head restrained beneath the
microscope objective (Reimer et al., 2014). Recordings were of spontaneous activity without
visual stimulation, and injected current was manually adjusted to maintain a moderate level
of firing. Calcium traces were recorded using a Chameleon Ti-sapphire laser (Coherent)
tuned at 920 nm and a 16×, .85 NA Nikon objective. The average power output of the
objective was kept < 40 mW. To perform simultaneous loose-patch and two-photon calcium
imaging recordings, we used glass pipettes with 7–10 MΩ resistance filled with ACSF and
Alexa Fluor 594 (Invitrogen) as described above. For awake data, imaging data was motion
corrected in the X-Y plane with post-hoc raster correction and sub-pixel motion correction
prior to extracting calcium traces. Motion along the Z-axis could not be corrected, but could be measured via correlation with a surrounding stack and in good preparations was typically
small (running: mean 1.2 µm, s.d. 0.6µm; quiet: mean 0.88 µm, s.d. 0.46 µm; data from
(Reimer et al., 2014)). Calcium traces were extracted after manually segmenting patched
cells and spike times were extracted by thresholding after excluding any periods where the
patch was deemed unstable or of low quality. All procedures performed on mice were
conducted in accordance with the ethical guidelines of the National Institutes of Health and
were approved by the Baylor College of Medicine IACUC.

Retina

Imaging experiments were performed as described previously (Briggman and Euler, 2011).
In short, the retina was enucleated and dissected from dark-adapted wild-type mice (both
genders, C57BL/6J, p21-42), flattened, mounted onto an Anodisc (13, 0.1 mm pores,
Whatman) with ganglion cells facing up, and electroporated with Oregon green BAPTA-1
(OGB-1, Invitrogen). The tissue was placed under the microscope, where it was constantly
perfused with tempered (36°C) carboxygenated (95% O₂, 5% CO₂) artificial cerebral spinal
fluid (ACSF). Cells were left to recover for at least 1 hour before recordings were performed.
We used a MOM-type two-photon microscope equipped with a mode-locked Ti:Sapphire
laser (MaiTai-HP DeepSee, Newport Spectra-Physics) tuned to 927 nm (Euler et al., 2009).
OGB-1 Fluorescence was detected at 520 BP 30 nm (AHF) under a 20x objective (W Plan-
Apochromat, 1.0 NA, Zeiss). Data were acquired with custom software (ScanM by M. Müller
and T. Euler running under IgorPro 6.3, Wavemetrics), taking 64 x 64 pixel images at 7.8 Hz.
Light stimuli were presented through the objective from a DLP projector (K11, Acer), fitted
with band-pass-filtered LEDs (amber, z 578 BP 10; and blue/UV, HC 405 BP 10,
AHF/Croma), synchronized with the microscope’s scanner. Stimulator intensity (as
photoisomerization rate, 10^11 R*/s/cone) was calibrated as described to range from 0.1 (LEDs
off) to ~1.3 (Euler et al., 2009). Mostly due to two-photon excitation of photopigments, an
additional, steady illumination component of ~10^14 R*/s/cone was present during the
recordings. The field of view was 100x100µm, imaging 50-100 cells in the ganglion cell layer
simultaneously (Briggman and Euler, 2011). For juxtacellular spike recordings, OGB-1
labeled somata were targeted with a 5 MΩ glass-pipette under dim IR illumination to
establish a loose (<1GΩ) seal. Signals were amplified using an Axopatch 200A amplifier
(Molecular Devices) in I=0 mode and digitized at 10 kHz on a Digidata 1440A (Molecular
Devices). Imaging and spike data were aligned offline using a trigger signal recorded in both
acquisition systems, and spike times were extracted by thresholding. All procedures were
performed in accordance with the law on animal protection (Tierschutzgesetz) issued by the
German Federal Government and were approved by the institutional animal welfare
committee of the University of Tübingen.

Dataset from Svoboda lab

We used a publicly available dataset provided by the GENIE project, Svoboda lab, at Janelia
farm on crcns.org (Akerboom et al., 2012; Chen et al., 2013; Svoboda, 2014). This dataset
contains 9 cells recorded with GCaMP5, 11 cells recorded with GCaMP6f and 9 cells recorded with GCaMP6s. The total number of spikes was 2735, 4536 and 2123, respectively, and therefore much lower than for our datasets. Typically, these cells were recorded focusing on a single cell rather than recording from an entire population with lower zoom as in our dataset. For a detailed description of the data, see (Akerboom et al., 2012; Chen et al., 2013).

Preprocessing

We normalized the sampling rate of all fluorescence traces and spike trains to 100 Hz, resampling to time bins of 10 ms. This allowed us to apply models across datasets independent of which dataset was used for training. We removed linear trends from the fluorescence traces by fitting a robust linear regression with Gaussian scale mixture residuals. That is, for each fluorescence trace F_t, we found parameters a, b, π_k, σ_k with maximal likelihood under the model

$$F_t = at + b + \epsilon_t, \quad \epsilon_t \sim \sum_{k=1...K} \pi_k \mathcal{N}(\cdot; 0, \sigma_k^2).$$

and computed $\tilde{F}_t = F_t - at - b$. We used three different noise components ($K = 3$).

Afterwards, we normalized the traces such that the 5th percentile of each trace’s fluorescence distribution is at zero, and the 80th percentile is at 1. Normalizing by percentiles instead of the minimum and maximum is more robust to outliers and less dependent on the firing rate of the neuron producing the fluorescence.

Supervised learning in flexible probabilistic models for spike inference

We predict the number of spikes k_t falling in the t-th time bin of a neuron’s spike train based on 1000 ms windows of the fluorescence trace centered around t (preprocessed fluorescence snippets x_t). To reduce the risk of overfitting and to speed up the training phase of the algorithm, we reduced the dimensionality of the fluorescence windows via PCA, keeping enough principal components to explain at least 95% of the variance (which resulted in 8 to 20 dimensions, depending on the dataset). Keeping 99% of the variance and slightly regularizing the model’s parameters gave similar results but was slower. Only for the Svoboda dataset we found it was necessary to keep 99% of the variance to achieve optimal results.

We assume that the spike counts k_t given the preprocessed fluorescence snippets x_t can be modeled using a Poisson distribution,

$$p(k_t | x_t) = \frac{\lambda(x_t)^k}{k!} e^{-\lambda(x_t)}.$$

We tested three models for the firing rate $\lambda(x_t)$ function:

1. A spike-triggered mixture (STM) model (Theis et al., 2013) with exponential nonlinearity,

$$\lambda_{STM}(x_t) = \sum_{k=1}^{K} \exp\left(\sum_{m=1}^{M} \beta_{km}(u_m^Tx_t)^2 + w_k^Tx_t + b_k\right),$$
where w_k are linear filters, u_m are quadratic filters weighted by β_{km} for each of K components, and b_k is an offset for each component. We used three components and two quadratic features ($K = 3, M = 2$). The performance of the algorithm was not particularly sensitive to the choice of these parameters (we evaluated $K = 1, \ldots, 4$ and $M = 1, \ldots, 4$ in a grid search using one dataset).

(2) As a simpler alternative, we use the linear-nonlinear-Poisson (LNP) neuron with exponential nonlinearity,

$$\lambda_{\text{LNP}}(x_t) = \exp(w^T x_t + b),$$

where w is a linear filter and b is an offset.

(3) As a more flexible alternative, we used a multi-layer neural network (ML-NN) with two hidden layers,

$$\lambda_{\text{ML-NN}}(x_t) = \exp(w_3^T g(W_2 g(W_1 x_t + b_1) + b_2) + b_3),$$

where $g(y) = \max(0, y)$ is a point-wise rectifying nonlinearity and W_1 and W_2 are matrices. We tested MLPs with 10 and 5 hidden units, and 5 and 3 hidden units for the first and second hidden layer, respectively. Again, the performance of the algorithm was not particularly sensitive to these parameters.

Parameters of all models were optimized by maximizing the average log-likelihood for a given training set,

$$\frac{1}{N} \sum_{n=1}^{N} \log p(k_t | x_t),$$

using limited-memory BFGS (Byrd et al., 1995), a standard quasi-Newton method. To increase robustness against potential local optima in the likelihood of the STM and the ML-NN, we trained four models with randomly initialized parameters and geometrically averaged their predictions. The geometric average of several Poisson distributions again yields a Poisson distribution whose rate parameter is the geometric average of the rate parameters of the individual Poisson distributions.

Other algorithms

SI08

This approach is based on applying a support-vector machine (SVM) on two PCA features of preprocessed segments of calcium traces. We re-implemented the features following closely the procedures described in (Sasaki et al., 2008). As the prediction signal, we used the distance of the input features to the SVM’s separating hyperplane, setting negative predictions to zero. We cross-validated the regularization parameter of the SVM but found that it had little impact on performance.

PP14

The algorithm performs Bayesian inference in a generative model, using maximum a posteriori (MAP) estimates for spike inference and MCMC on a portion of the calcium trace for estimating hyperparameters. We used a Matlab implementation provided by the authors.
of (Pnevmatikakis et al., 2014). We also tried selecting the hyperparameters through cross-validation, which did not substantially change the overall results.

VP10

The fast-oopsi or non-negative deconvolution technique constrains the inferred spike rates to be positive (Vogelstein et al., 2010), performing approximate inference in a generative model. We used the implementation provided by the author. We adjusted the hyperparameters using cross-validation by performing a search over a grid of 54 parameter sets controlling the degree of assumed observation noise and the expected number of spikes (Fig. 2a-b). In Fig. 5b-c the hyperparameters were instead directly inferred from the calcium traces by the algorithm.

YF06

The deconvolution algorithm (Yaksi and Friedrich, 2006) removes noise by local smoothing and the inverse filter resulting from the calcium transient. We used a Matlab implementation provided by the authors. Using the cross-validation procedure outlined above, we automatically tuned the algorithm by testing 66 different parameter sets. The parameters controlled the cutoff frequency of a low-pass filter, a time constant of the filter used for deconvolution, and whether or not an iterative smoothing procedure was applied to the fluorescence traces.

OD13

This algorithm performs a template-matching based approach by using the finite rate of innovation-theory as described in (Oñativia et al., 2013). We used the implementation provided on the author’s homepage. We adjusted the exponential time constant parameter using cross-validation.

VP09

This algorithm performs Bayesian inference in a generative model as described in (Vogelstein et al., 2009). We used the implementation provided by the author. Since this algorithm is based on the same generative model as fast-oopsi but is much slower, we used the hyperparameters inferred by cross-validating fast-oopsi in Fig. 2a-b and the hyperparameters automatically inferred by the algorithm in Fig. 5b-c.

Performance evaluation

We evaluated the performance of the algorithms on spike trains binned at 40 ms resolution, i.e., a sampling rate of 25 Hz. For Fig. 3 and Suppl. Fig. 2, we changed the bin width between 10 ms (i.e. 100 Hz) and 500 ms (i.e. 2 Hz). We used cross-validation to evaluate the performance of our framework, i.e. we estimated the parameters of our model on a training set, typically consisting of all but one cell for each dataset, and evaluated its performance on the remaining cell. This procedure was iterated such that each cell was held out as a test cell once. Results obtained using the different training and test sets were subsequently averaged.

Correlation

We computed the linear correlation coefficient between the true binned spike train and the inferred one. This is a widely used measure with a simple and intuitive interpretation, taking

1 https://github.com/jovo/fast-oopsi
2 http://www.commsp.ee.ic.ac.uk/~pld/software/ica_transient.zip
3 https://github.com/jovo/smc-oopsi
the overall shape of the spike density function into account. However, the correlation coefficient is invariant under affine transformations, which means that predictions optimized for this measure cannot be directly interpreted as spike counts or firing rates. In further contrast to information gain, it also does not take the uncertainty of the predictions into account. That is, a method which predicts the spike count to be 5 with absolute certainty will be treated the same as a method which experts the spike count to be somewhere between 0 and 10 assigning equal probability to each possible outcome.

Information gain

The information gain provides a model based estimate of the amount of information about the spike train extracted from the calcium trace. Unlike AUC and correlation, it takes into account the uncertainty of the prediction. Assuming an average firing rate of λ and a predicted firing rate of λ_t at time t, the expected information gain (in bits per bin) can be estimated as

$$I_g = \frac{1}{T} \sum_t k_t \log_2 \frac{\lambda_t}{\lambda} + \frac{1}{T} \sum_t \lambda_t$$

assuming Poisson statistics and independence of spike counts in different bins. The estimated information gain is bounded from above by the (unknown) amount of information about the spike train contained in the calcium trace, as well as by the marginal entropy of the spike train, which can be estimated using

$$H_m = \frac{1}{T} \sum_t \log(k_t!) - \lambda \log \lambda + \lambda.$$

We computed a relative information gain by dividing the information gain averaged over all cells by the average estimated entropy,

$$\frac{\sum_n I_g^{(n)}}{\sum_n H_m^{(n)}}.$$

where $I_g^{(n)}$ is the information gain measured for the n-th cell in the dataset.

This can be interpreted as the fraction of entropy in the data explained away by the model (measured in percent points). Since only our method was optimized to yield Poisson firing rates, we allowed all methods a single monotonically increasing nonlinear function, which we optimized to maximize the average information gain over all cells. That is, we evaluated

$$\frac{1}{T} \sum_t k_t \log_2 \frac{f(\lambda_t)}{\lambda} + \frac{1}{T} \sum_t f(\lambda_t),$$

where f is a piecewise linear monotonically increasing function optimized to maximize the information gain averaged over all cells (using an SLSQP implementation in SciPy).

AUC

The AUC score can be computed as the probability that a randomly picked prediction for a bin containing a spike is larger than a randomly picked prediction for a bin containing no spike (Fawcett, 2006). While this is a commonly used score for evaluating spike inference.
procedures (Vogelstein et al., 2010), it is not sensitive to changes in the relative height of different parts of the spike density function, as it is invariant under arbitrary strictly monotonically increasing transformations. For example, if predicted rates were squared, high rates would be over proportionally boosted compared to low rates, while yielding equivalent AUC scores.

Statistical analysis
We used generalized Loftus & Masson standard errors of the means for repeated measure designs (Franz and Loftus, 2012) and report the mean ± 2 SEM. To assess statistical significance, we compare the performance of the STM model to the performance of its next best competitor, performing a one-sided Wilcoxon signed rank test and report significance or the respective p-value above a line spanning the respective columns. If the STM is not the best model, we perform the comparison between the best model and the STM, coding the comparison in the color of the model. We fitted a Gaussian Process model with a Gaussian kernel in Fig. 5c and d using the implementation provided by scikit-learn. The kernel width is chosen automatically via maximum-likelihood estimate (Pedregosa et al., 2011).

Generation of artificial data
We simulated data by sampling from the generative model used by Vogelstein et al. (2010). That is, we first generated spike counts by independently sampling each bin of a spike train from a Poisson distribution, then convolving the spike train with an exponential kernel to arrive at an artificial calcium concentration, and finally adding Poisson noise to generate a Fluorescence signal x_t.

$$
k_t \sim \text{Poisson}(\lambda),
$$
$$
C_t = \gamma C_t + k_t,
$$
$$
x_t \sim \text{Poisson}(a C_t + b).
$$

The firing rate λ for each cell was randomly chosen to be between 0 and 400 spikes per second. The parameters γ, a, and b were fixed to 0.98, 100 and 1, respectively, and data was generated at a sampling rate of 100 Hz.

Code and data sharing
All analysis was done in Python. We provide a Python implementation of our algorithm online (www.bethgelab.org/code/spikeinference). The package includes a pre-trained version of our algorithm, which is readily usable even without simultaneous recordings and has been trained on our entire dataset. The pre-trained algorithm has been trained on all five datasets presented in this paper as well as the publicly available data from the Svoboda lab. To accommodate the wider range of data, we made the model slightly more flexible allowing 6 linear and 4 quadratic components as well as accounting for 99% of the variance in the dimensionality reduction step.

4 Please note that we are also preparing a Matlab implementation which will be released at a later point in time.

5 Please note that we are also preparing a Matlab implementation which will be released at a later point in time.
Acknowledgements

We would like to thank J. Vogelstein, R. Friedrich, E. Pnevmatikakis and P. Dragotti for making the code for their algorithms available.

This work was supported by the German Federal Ministry of Education and Research (BMBF) through the Bernstein Center for Computational Neuroscience (FKZ 01GQ1002 to T.E., M.B. and A.S.T.); the Deutsche Forschungsgemeinschaft (DFG) through grant BE3848-1 to M.B., BE 5601/1-1 to PB and BA 5283/1-1 to T.B.; the Werner Reichardt Centre for Integrative Neuroscience Tübingen (EXC307); grants NEI R01-EY018847, NEI P30-EY002520-33, and the NIH-Pioneer award DP1-OD008301 to A.S.T.; the McKnight Scholar Award to A.S.T.

Author contributions

PB, MB and LT designed the project. LT analyzed the data. MF, JR and AST acquired V1 data. MR, TB and TE acquired retinal data. PB wrote the paper with input from all authors. PB and MB supervised the project.
Table 1: Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Area</th>
<th>n</th>
<th>Indicator</th>
<th>Scan frequency</th>
<th>Scanning method</th>
<th>#spikes</th>
<th>sp/s</th>
<th>Field of view</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V1</td>
<td>16</td>
<td>OGB-1</td>
<td>322.5 ± 53.2</td>
<td>3D AOD</td>
<td>19,876</td>
<td>1.86</td>
<td>200x200 x100 µm³</td>
</tr>
<tr>
<td>2</td>
<td>V1</td>
<td>31</td>
<td>OGB-1</td>
<td>11.8 ± 0.9</td>
<td>2D galvo scan</td>
<td>32,385</td>
<td>2.47</td>
<td>250x250 µm²</td>
</tr>
<tr>
<td>3</td>
<td>V1</td>
<td>19</td>
<td>GCamp6s</td>
<td>59.1</td>
<td>2D resonant</td>
<td>23,974</td>
<td>2.58</td>
<td>265x265 µm²</td>
</tr>
<tr>
<td>4</td>
<td>Retina</td>
<td>9</td>
<td>OGB-1</td>
<td>7.8</td>
<td>2D galvo scan</td>
<td>12,488</td>
<td>4.36</td>
<td>100x100 µm²</td>
</tr>
<tr>
<td>5</td>
<td>V1</td>
<td>15</td>
<td>GCamp6s</td>
<td>59.1</td>
<td>2D resonant</td>
<td>12,413</td>
<td>4.87</td>
<td>265x265 µm²</td>
</tr>
</tbody>
</table>

* For this dataset, 19 recordings were performed on 11 neurons

** For this dataset, 15 recordings were performed on 6 neurons

Table 2: Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Approach</th>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM</td>
<td>Supervised</td>
<td>STM</td>
<td>This paper</td>
</tr>
<tr>
<td>SI08</td>
<td>Supervised</td>
<td>PCA+SVM</td>
<td>(Sasaki et al., 2008)</td>
</tr>
<tr>
<td>PP14</td>
<td>Generative</td>
<td>MCMC sampling</td>
<td>(Pnevmatikakis et al., 2014)</td>
</tr>
<tr>
<td>OD13</td>
<td>Template matching</td>
<td>Finite rate innovation</td>
<td>(Oñativia et al., 2013)</td>
</tr>
<tr>
<td>VP10</td>
<td>Generative</td>
<td>MAP estimation</td>
<td>(Vogelstein et al., 2010)</td>
</tr>
<tr>
<td>VP09</td>
<td>Generative</td>
<td>SMC sampling</td>
<td>(Vogelstein et al., 2009)</td>
</tr>
<tr>
<td>YF06</td>
<td>Generative</td>
<td>Deconvolution</td>
<td>(Yaksi and Friedrich, 2006)</td>
</tr>
</tbody>
</table>
References

Figure captions

Figure 1: Spike inference from calcium measurements

a) Schematic of the probabilistic STM model.

c) Example cell recorded from V1 using AOD scanner and OGB-1 as indicator. From top to bottom: Calcium fluorescence trace, spikes, spike rate in bins of 0.04 s (corresponding to sampling rate of 25 Hz; grey), inferred spike rate using the STM model (black), SI08, PP14, VP14 and YF06. All traces were scaled independently for clarity. On the right, correlation between the inferred and the original spike rate is shown.

d) Example cell recorded from V1 using galvanometric scanners and OGB-1 as indicator. For legend, see c).

e) Example cell recorded from V1 using resonance scanner and GCaMP6s as indicator. Note the different indicator dynamics. For legend, see c).

f) Example cell recorded from the retina using galvanometric scanners and OGB-1 as indicator. For legend, see c).
Figure 2: Quantitative evaluation of spike inference performance

a) Correlation (mean ± 2 SEM for repeated measure designs) between the true spike rate and the inferred spike rate for different algorithms (see legend for color code) evaluated on the four different datasets (with n=16, 31, 19 and 9, respectively). Markers above bars show the result of a Wilcoxon sign rank test between the STM model and its closest competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins of 0.04 s (corresponding to sampling rate of 25 Hz).

b) Information gained about the true spike train by observing the calcium trace, evaluated for different algorithms.
Figure 3: Timing accuracy of spike rate inference

Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred spike rate as a function of sampling rate (i.e. temporal resolution) for all four datasets (a-d) with n=16, 31, 19 and 9, respectively. See legend for color code.
Figure 4: Evaluating model complexity

a) Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred spike rate comparing the STM model (black) with a flexible multilayer neural network (dark grey) and a simple LNP model (light grey) evaluated on the four different datasets (with n=16, 31, 19 and 9, respectively). Markers above bars show the result of a Wilcoxon signed rank test between the STM model and the LNP model (see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins of 40 ms (corresponding to sampling rate of 25 Hz).

b) Information gained about the true spike train by observing the calcium trace performing the same model comparison described in a).
Figure 5: Dependence on training set size and firing rate

a) Mean correlation for STM model on the four different datasets as a function of training set size.

b) Mean relative information gain for STM model on the four different datasets as a function of training set size.

c) Correlation as a function of average firing rate of a cell. Dots mark correlation of STM model for individual traces. Solid lines indicate mean of a Gaussian process fit to correlation values for each of the indicated algorithms. Shaded areas are 95%-CI.

d) As in c. for relative information gain.
Figure 6: Spike inference without training data

a) Schematic illustrating the setup: The algorithms are trained on all cells from three datasets (here: all but the GCaMP dataset) and evaluated on the remaining dataset (here: the GCaMP dataset), testing how well it generalizes to settings it has not seen during training.

b) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate and the inferred spike density function for a subset of the algorithms (see legend for color code) evaluated on each of the four different datasets (with n=16, 31, 19 and 9, respectively), trained on the remaining three. Markers above bars show the result of a Wilcoxon sign rank test between the STM model and its closest competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins of 40 ms (corresponding to sampling rate of 25 Hz).

c) Information gained about the true spike train by observing the calcium trace performing the generalization analysis described in a).

d) Example recording as in Fig. 1 but for data recorded in an awake animal using GCaMP6 as indicator. Algorithms were trained on anesthetized data and tested on awake data.

e) Photograph and illustration of a mouse sitting on a Styrofoam ball during a combined imaging/electrophysiology experiment.

f) Performance comparison as in b and c for awake data (n=15) when algorithms were trained on anesthetized data.
Figure 7: Evaluating algorithms on artificial data

a) Example trace sampled from a generative model, true spikes and binned rate as well as reconstructed spike rate from four different algorithms (conventions as in Fig. 1). Numbers on the right denote correlations between true and inferred spike trains.

b) Correlation (mean ± 2 SEM for repeated measure designs) and information gain computed on a simulated dataset with 20 traces. For algorithms see legend.

c) Scatter plot comparing performance on simulated data with that on real data (averaged over cells from all datasets), suggesting little predictive value of performance on simulated data.