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Abstract 
Structural variants (SVs) are an important source of human genetic diversity but their contribution to 
traits, disease, and gene regulation remains unclear. The Genotype-Tissue Expression (GTEx) project 

presents an unprecedented opportunity to address this question due to the availability of deep whole 
genome sequencing (WGS) and multi-tissue RNA-seq data from 147 individuals. We used 

comprehensive methods to identify 24,157 high confidence SVs, and mapped cis expression 
quantitative trait loci (eQTLs) in 13 tissues via joint analysis of SVs, single nucleotide (SNV) and short 

insertion/deletion (indel) variants. We identified 24,801 eQTLs affecting the expression of 10,101 
distinct genes. Based on haplotype structure and heritability partitioning, we estimate that SVs are the 

causal variant at 3.3-7.0% of eQTLs, which is nearly an order of magnitude higher than prior estimates 
from low coverage WGS and represents a 26- to 54-fold enrichment relative to their scarcity in the 

genome. Expression-altering SVs also have significantly larger effect sizes than SNVs and indels. We 

identified 787 putatively causal SVs predicted to directly alter gene expression, most of which (88.3%) 
are noncoding variants that show significant enrichment at enhancers and other regulatory elements. 

By evaluating linkage disequilibrium between SVs, SNVs and indels, we nominate 49 SVs as plausible 
causal variants at published genome-wide association study (GWAS) loci. Remarkably, 29.9% of the 

common SV-eQTLs are not well tagged by flanking SNVs, and we observe a notable abundance 
(relative to SNVs and indels) of rare, high impact SVs associated with aberrant expression of nearby 

genes. These results suggest that comprehensive WGS-based SV analyses will increase the power of 
both common and rare variant association studies.  
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Main Text 
Over the past decade, genome-wide association studies (GWAS) have linked thousands of common 
genetic variants to human traits and diseases. Fine-mapping causal variants at GWAS loci has proven 

difficult because the vast majority (~88%) reside in noncoding genomic regions, and in most cases the 
causal variant(s) and relevant gene(s) or functional element(s) are not known1. This has confounded 

the identification of therapeutic targets for precision medicine. To bridge the gap between molecular 
and clinical phenotypes, genome-wide eQTL scans have sought to identify genetic determinants of 

gene expression variation as markers of functional effect and a bridge connecting germline genetic 
variation to somatic cell biology2-4. These studies have successfully identified tens of thousands of 

eQTLs in a variety of human tissues.  
 

A notable limitation of most extant eQTL studies is that, due to their reliance on SNP genotyping arrays, 

it has been difficult to identify the causal variants underlying eQTL associations and to judge the relative 
contribution of different variant classes to genetically regulated expression. Of particular interest is 

structural variation (SV), a broad class of variation that includes copy number variants (CNVs), 
balanced rearrangements and mobile element insertions (MEIs). Structural variation is recognized to be 

an important source of genetic diversity – 5,000 to 10,000 SVs are detectable in a typical human 
genome using short-read DNA sequencing technologies – but little is known about the mechanisms 

through which SVs affect gene expression and phenotypic variation. Although SVs are less abundant 
than SNVs, which represent ~4 million variant sites per genome5, SVs account for a greater number of 

nucleotide sequence differences due to their size, and may therefore exhibit outsized phenotypic 
effects6,7. Indeed, SVs have been identified as causal contributors to a number of rare and common 

diseases, and are generally presumed to act through their effects on gene expression8.  

 
Despite many noteworthy examples linking SVs to gene expression and phenotypic variation in 

humans, more general and quantitative questions regarding the contribution of SVs relative to other 
variant classes remain a matter of debate. Two early studies used low-resolution microarray 

technologies to study the relationship between CNVs and gene expression, but their conclusions were 
limited to large CNVs that are now known to comprise a small fraction of SV9,10. A recent study from the 

1000 Genomes Project represents the most comprehensive analysis to date, using RNA-seq 
expression profiles from lymphoblastoid cell lines (LCLs) of 462 individuals2 and SVs identified from 

low-coverage (median 7.4X) WGS data11. This analysis identified 9,591 eQTLs, of which 54 had an SV 

as the lead marker (denoted SV-eQTLs), implying that SVs are the causal variant at 0.56% of eQTLs. 
However, the study’s shallow sequencing depth limited SV detection power and genotyping accuracy, 
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which are known to suffer in low-coverage data12. Furthermore, although gene expression is 

differentially regulated across tissues, prior SV-eQTL studies have focused solely on LCLs, and it is not 
known whether these observations extend to other cell types. 

 
Here, we utilized multi-tissue RNA-seq expression data from the GTEx project to perform the first 

comprehensive human eQTL mapping study from deep WGS (median 49.9X) data that directly 
measures the contribution of SVs, SNVs, and indels.  

 
We analyzed 147 human samples using SpeedSeq13 for alignment, data processing and per-sample 

SV breakpoint detection via LUMPY12, followed by cohort-level breakpoint merging, refinement, 
classification, and genotyping (Online Methods). We used complementary read-depth analysis with 

Genome STRiP to detect additional CNVs14. Together, these methods yielded a total of 45,968 

structural variants, including a “high confidence” set of 24,157 SVs that met strict quality filters and are 
the basis for all subsequent analyses (Table 1). Several features indicate that these calls are high 

quality: we detected consistent numbers and proportions of SVs per sample (Fig. 1a,b), African 
American samples had an average of 27% more heterozygous LUMPY deletions than other samples 

(in accordance with previous observations11), the SV minor allele frequency (MAF) distribution mirrored 
that of SNVs and indels (Fig. 1c), and the SV size distribution is similar to prior WGS-based studies 

(Fig. 1d, Supplementary Fig. 1). This comprehensive variant call set is a powerful resource for 
functional analyses due to the high resolution (median breakpoint confidence interval: 39 bp) and 

diverse variant types including deletions (50.4%), duplications (14.7%), multi-allelic CNVs (mCNVs; 
6.8%), mobile element insertions (MEIs; 8.5%), inversions (0.2%), and novel adjacencies of 

indeterminate type (hereafter denoted as “breakends”, or BNDs; 19.3%)15. 
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 Detection 
method 

# of 
variants 

Median 
resolution 

(bp) 
Median 

size (bp) 
# of 

common 
variants 

SV-only 
eQTLs Joint eQTLs 

SNV GATK 21,764,904 - 1 6,982,921 - 17,024 (0.2%) 
Indel GATK 3,030,964 - 3 834,255 - 2,245 (0.3%) 

Deletion (DEL) BP, RD 11,692 34 966 3,373 546 (16.2%) 27 (0.8%) 
RD 493 kilobase* 3,699 275 63 (22.9%) 16 (5.8%) 

Duplication (DUP) BP, RD 2,514 97 577 798 103 (12.9%) 3 (0.4%) 
RD 1,054 kilobase* 4,993 833 148 (17.8%) 70 (8.4%) 

Multi-allelic CNV 
(mCNV) RD 1,635 kilobase* 3,676 992 241 (24.2%) 100 (10.1%) 

Inversion (INV) BP 58 10 573 19 2 (10.5%) 0 (0.0%) 
Mobile element 
insertion (MEI) BP 2,053 1 21 1,610 269 (16.7%) 11 (1%) 

Other SV (BND) BP 4,658 33 - 2,220 298 (13.4%) 6 (0.7%) 

All SVs - 24,157 178 - 10,120 1,670 
(16.5%) 233 (2.3%) 

All variants - 24,820,025 - - 7,827,296 - 19,269 (0.2%) 
 
Table 1. Summary of variant types and discovery methods. SNVs and indels were detected using the Genome 
Analysis Toolkit (GATK) and SVs were detected by breakpoint evidence (BP), read-depth evidence (RD), or both. 
A subset of common variants were tested for cis-eQTLs, and were required to be on the autosomes or X 
chromosome and present in a minimum of 10 of the individuals with RNA-seq in at least one tissue. The SV-only 
eQTL mapping excluded SNVs and indels for greater sensitivity, while the joint eQTL mapping included all variant 
types. *Resolution refers to the positional certainty at each breakpoint, with read-depth variants having 
approximate breakpoint precision on the kilobase scale. 
 
We mapped cis eQTLs using 10,120 common SVs and whole transcriptome RNA-seq data from 13 

tissues. We defined a cis window to include SVs within 1 Mb of each gene, and applied a permutation-
based eQTL mapping approach using FastQTL, revealing 5,153 SV-eQTLs associated with expression 

differences at 2,102 distinct genes (hereafter referred to as “eGenes”) and 1,670 distinct SVs 
(Benjamini-Hochberg false discovery rate (FDR): 10%)16 (Supplementary Table 1).  

 
SVs altered exons at 11.0% of eQTLs, providing a testable framework for their causal effects. Loss of 

function variants such as deletions or exon-disrupting MEIs are expected to decrease gene expression, 
exon duplications should increase gene expression, and neutral markers that tag a nearby causal 

variant through linkage disequilibrium (LD) should show bidirectional effects. Indeed, 513/568 (90.3%) 

of exon-altering eQTLs showed patterns of expression consistent with the SV class (Fig. 2a). This 
finding establishes strong evidence of a causal role for SVs at a subset of eGenes. In contrast, the 

remaining 4,585 eQTLs (89.0%) generally exhibited bidirectional expression effects (Fig. 2a). This may 
reflect a complex regulatory landscape of both enhancing and repressing DNA elements, or loci at 

which the SV is merely in LD with the true causal variant. 
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Figure 1. Structural variation call set. Number of SVs detected in sample by breakpoint evidence (with supporting 
read-depth evidence for deletions and duplications) (a), and by read-depth evidence alone (b) in 147 deep (30-
50X) human whole genomes. Starred (*) samples exhibited abnormal read-depth profiles, and were excluded from 
rare variant analyses. (c) The minor allele frequency distribution of SVs mirrored that of high quality SNVs and 
indels detected by GATK. (d) Heat scatter plot showing the relationship between SV length and minor allele 
frequency, with a peak at ~300 bp due to Alu SINE insertions. 
 
To assess the relative contribution of SV, we expanded our eQTL analysis to include 6,982,921 SNVs 

and 822,241 indels detected by the Genome Analysis Toolkit (GATK) 17. We performed joint eQTL 
mapping with the complete set of genetic variants, nominating a most likely causal variant for each 

eQTL identified. This produced 23,441 joint eQTLs affecting 9,547 distinct eGenes including 790 SV-
eQTLs (3.4%), 20,208 SNV-eQTLs (86.2%), and 2,443 indel-eQTLs (10.4%). The observation that SVs 

are the lead marker at 3.4% of eQTLs provides an initial estimate of their contribution to gene 
expression variation. This is ~6-fold larger than a similar estimate from the 1000 Genomes Project, 

where merely 0.56% of eQTLs identified in LCLs had an SV as the lead marker11. These disparate 

results are not due to differences among tissues – we find that SVs are the lead marker at 2.8% of 
eQTLs identified in whole blood – and are unlikely to stem from trivial methodological differences given 

the similarity of eQTL mapping methods used in the two studies, and the fact that we recapitulated 31 
of 47 (66.0%) previously identified LCL SV-eQTLs at eGenes also expressed in available tissues. We 
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suspect that the key difference between these studies is the greater sensitivity and accuracy afforded 

by deep WGS data, which underscores the power and novelty of our study. 
 

 
Figure 2. eQTL effect size distributions and heritability partitioning with linear mixed models. (a) Effect size 
distributions for coding and noncoding variants of each type, with the number of eQTLs of each type above each 
distribution. The top panels (SV-only eQTLs) show the 5,153 eQTLs that were discovered by the SV-only 
analysis, while the bottom two panels show the 23,441 eQTLs discovered by the joint analysis. Multi-allelic CNVs 
are included in the “Dup” category for this plot. (b,c) Heat scatter plots showing the heritability of each eQTL 
apportioned to the most significant SV in the cis window (x-axis) and the additive effect from the top 1,000 most 
significant SNVs and indels in the cis window (y-axis) for (b) SV-only and (c) joint eQTL mapping analyses. Gray 
lines mark the median of values for each axis. 
 

We next applied fine-mapping approaches to infer the probability that each locus contained a causal SV 
in the eGene’s cis window. At each of the 23,441 joint eQTLs, we identified the 100 SNVs and indels in 

the 1 Mb cis window that were most significantly associated with the eGene’s expression by their 

FastQTL nominal p-value, as well as the single most significant SV. We then used the CAVIAR 
software package to apportion a causal likelihood and a relative ranking to each of these 101 markers 

based on the magnitude and direction of association as well as the pairwise LD structure across the 
region18. This approach aims to disentangle each variant’s causal contribution from its association due 
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 8 

to LD with nearby causal markers. At 3.3% of eQTLs overall (2.2-4.3% among tissues), the SV was 

identified among the 101 candidates as the highest probability causal variant underlying the eQTL 
association.  

 
As an orthogonal estimate of contribution of SV, we applied a linear mixed model to partition the 

heritability of each eGene’s expression into a fixed effect from the SV, and a random effect representing 
the cumulative heritability of the 1,000 most significant SNPs and indels in the cis region (Fig 2b,c, 
Supplementary Fig. 2). This method mirrors that of several prior studies that have examined relative 
contributions of distinct variant classes on a quantitative trait19-21. Heritability partitioning revealed that 

SVs account for 8.5% of total gene expression heritability when summing their effects across all eQTLs, 
although we note that this includes numerous loci where the SV has a very small effect. More 

importantly, at the 22,289 eQTLs that showed appreciable overall genetic heritability (>0.05), the SV 

contributed more heritability than the additive effect of the other 1,000 variants in 7.0% of cases, 
suggesting that the SV was the causal variant.  

 
Taken together, the three independent analyses presented above – FastQTL-based eQTL mapping, 

CAVIAR-based fine mapping and GCTA-based heritability estimation – indicate that SVs are the causal 
variant at 3.4%, 3.3% and 7.0% of eQTLs, respectively. These are likely to be underestimates because 

the genotyping error rate for SVs is higher than for SNVs and indels, giving the latter a relative 
advantage to “win” causal variant prediction tests in regions of strong LD. Although the absolute 

contribution of SVs to heritable expression variation is small compared to SNVs and indels, on a per-
variant basis, an SV is 26- to 54-times more likely to modulate expression than an SNV or an indel. 

Moreover, SVs showed a 1.2-fold larger median effect size on gene expression than SNVs and indels 

(p-value: < 1 x 10-15, Mann-Whitney U test), and deletions showed a 1.4-fold larger median effect size, 
with direction of effect predominantly correlating with SV type (Fig. 2a). This result is unlikely to stem 

from differences in statistical power given the observed allele frequency distributions of each variant 
class, and the fact that SVs have consistently greater effect sizes across matched allele frequency bins 

(Fig 1c, Supplementary Fig. 3). Together, these results demonstrate that SVs play an important and 
outsized role in defining the landscape of genetically regulated gene expression. 

 
We next sought to examine the genomic context of SV-eQTLs for clues into their molecular 

mechanisms. We hypothesized that causal SVs would be enriched in functional elements such as gene 

bodies, enhancers and repressors. To maximize the number of causal variants in this analysis, we first 
created an aggregate eQTL set containing the union of all eQTLs identified by either the SV-only or 
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joint eQTL mapping (24,594 eQTLs affecting 10,094 distinct eGenes). We then derived a composite 

“causality score” that incorporates the aforementioned CAVIAR and GCTA estimates of SV causality at 
each eQTL by multiplying the CAVIAR posterior causal probability with the SV’s cis heritability fraction 

(ℎ!"! /ℎ!"#! ) (Supplementary Fig. 4). At each eGene we selected the SV within 1 Mb that had the 
strongest association to the eGene’s expression, and allocated these 4,485 distinct SVs into seven bins 

according to their composite score quantile, with the least causal bin comprising the bottom half of 
composite scores, and the most causal bin comprising the 95th percentile. Different SV classes were 

represented in roughly consistent proportions across the lower causality bins, but the most causal bin of 
SVs had higher concentrations of multi-allelic CNVs and duplications (Fig. 3a). 

 

 
Figure 3. Feature enrichment of SV-eQTLs. Fold enrichment and 95% confidence intervals (based on 100 
random shuffled sets of the positions of SVs in each bin) for the overlap between the most significant SV and 
various annotated genomic features at the union of eQTLs discovered by SV-only or joint eQTL mapping. (a) 
Composition of each causality score bin by SV type. (b) Enrichment for an SV in each bin of causality to touch 
exons of the affected eGene (c-f) For the remaining plots in blue, SVs that overlapped with an exon of their 
affected eGene were excluded, yet the remaining SVs still showed significant enrichment in enhancers (c), in the 
10 kb regions upstream (d) and downstream of transcriptions start sites (TSS) (e), and regions predicted to be 
highly occupied by transcription factors (FunSeq HOT regions) (f). 
 

We examined the overlap between SVs and annotated genomic features to assess enrichment in 

various functional elements. SVs in the 95th percentile of causality showed a 35.5-fold enrichment for 
altering eGene exons, amounting to 18.3% (71/389) of the most causal SVs, compared to 0.3% of SVs 

in the least causal bin representing the lower half of causality scores (Fig. 3b). Recapitulating the trend 
from SV-alone eQTL mapping (Fig. 2a), the expression effect direction was highly correlated with SV 

type (74/84 showing the expected direction), strongly suggesting that this set of exon-altering SVs are 
the causal variant at their respective eQTLs. Importantly, this analysis also demonstrates that our 
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causality score effectively distinguishes neutral from causal SVs: no significant enrichment of exon-

altering SVs is observed in bins beneath the 80th percentile of scores, and enrichment rises 
precipitously from the 80th to the 95th percentile.  

 
However, the vast majority of SVs – including 81.7% of those in the 95th percentile of predicted 

causality – do not alter eGene dosage or structure, and thus are likely to act through regulatory 
mechanisms. We analyzed these 4,363 non-coding SVs for enrichment in other functional elements of 

the genome with potential regulatory consequences. We found that several functional elements were 
stratified by causality score and significantly enriched in the most causal bins, including the regions 

within 1 kb of enhancers, the regions 10 kb upstream or downstream of gene transcripts, and regions 
predicted by FunSeq to be highly occupied by transcription factors22-24 (Fig. 3c-f, Supplementary Fig. 
5). In all cases, regulatory element enrichment was most pronounced in the top causality score bin – 

providing further evidence of the effectiveness of our scoring method – yet more moderate enrichments 
were also observed in lower bins. This demonstrates that SVs with strong causality predictions are 

more likely to affect known regulatory elements, strongly suggesting that many are bona fide causal 
variants that alter gene expression through regulatory effects. Given the extreme paucity of causal 

regulatory variants discovered in the human genome to date, the set of 695 promising candidates from 
the top 10% of causality scores will prove invaluable for future studies. 

 
A major bottleneck for interpreting GWAS results is identifying causal variants and determining the 

genes and molecular mechanisms contributing to disease. Bridging this gap is a driving motivation for 
eQTL studies. Approximately 88% of GWAS loci are in noncoding regions of the genome1, suggesting 

that they act through effects on gene regulation. Indeed, ~6% of GWAS loci were found to be in strong 

LD (R2≥0.8) with eQTLs in a recent GTEx study using SNP arrays3 (7.7% with the WGS data described 
here), and the true number of disease-associated eQTLs is believed to be higher25. Thus, the SV-

eQTLs identified here provide an unparalleled resource to assess the contribution of SV to common 
disease. 

 
To investigate the contribution of SVs to trait-associated loci, we first identified 4,874 SNPs from the 

GWAS catalog that were non-redundant on a per-locus and per-disease basis, were genotyped in the 
GTEx samples, and that had convincing evidence for disease association (p<5x10-8) 26. Of these, 842 

were in LD (R2≥0.5) with a lead marker from our joint SV/SNP/indel eQTL analysis, suggesting that the 

GWAS hit and the eQTL are produced by the same underlying causal variant. An SV was the candidate 
causal variant at 3.2%, 3.3% and 14.3% of the 842 GWAS-associated eQTLs, depending on whether 
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causality is judged based on FastQTL, CAVIAR or GCTA (as in the prior causal SV analysis). 

Combined with the eQTL fine mapping results presented above, this suggests that SVs underlie a 
similar fraction GWAS-associated eQTLs as they do eQTL results on the whole, indicating that our 

results are directly relevant to common disease biology.   
 

We next screened for SVs that were likely to explain prior GWAS results. We identified 49 SVs in LD 
(R2≥0.5) with GWAS loci that were predicted to be the causal variant for an eQTL (Supplementary 
Table 2). Here, we define causal SVs as those in the top 10% of composite causality scores, a set that 
shows significant enrichment with functional annotations (Fig. 3). Ultimately, experimental validation will 

be required to definitively establish the causal relationship between any given variant and GWAS result. 
However, there are a number of promising candidates among these 49 loci. In one case, a 294 bp 

deletion is associated with decreased expression of the DAB2IP gene in thyroid tissue – apparently by 

disrupting an intronic enhancer – and is linked to a risk allele for abdominal aortic aneurysm27 (R2=0.57; 
Fig 4a). In another case, a 1,468 bp deletion in intron 10 of the PADI4 gene is linked (R2=0.70) to a risk 

allele for rheumatoid arthritis28 (Fig. 4b). Multiple studies have reported significant association between 
haplotypes of the PADI4 gene and rheumatoid arthritis29,30, and high levels of PADI4 mRNA have been 

detected in pathological synovial tissues, yet none have implicated this deletion, which flanks an 
annotated enhancer and is predicted to be the causal variant for increased PADI4 expression in lung. A 

third example relates an SVA retroelement insertion to a GWAS risk allele for melanoma and 
esophageal cancer (R2=0.85) 31,32 (Fig. 4c). The variant is a polymorphic SVA insertion that defines the 

boundaries of alternative splice isoforms of CASP8. The insertion allele is associated with reduced 
expression of CASP8, which encodes a protease with a critical role in the regulation of proliferation and 

apoptotic cell death (Fig. 4d). Finally, we recapitulate several SVs previously recognized as clinically 

associated markers, such as a ~32 kb deletion conferring risk for psoriasis33 (Fig. 4d) and a ~37 kb 
deletion linked to circulating liver enzyme levels (gamma-glutamyl transferase) 34 (Supplementary Fig. 
6). 
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Figure 4. Candidate SV-eQTLs at GWAS loci. Genomic position and haplotype block are shown on the x-axis, 
and each variant’s association with the indicated eGene is shown on the y-axis. The rectangular points represent 
the predicted causal SV, with the colors representing its linkage (R2) to each marker in the window. The labeled 
diamond shows the reported risk allele for the specified GWAS phenotype (a) A 294 bp deletion that intersects an 
enhancer in intron 1 of DAB2IP was linked to a risk allele for abdominal aortic aneurysm (rs7025486), and is also 
predicted to be a causal eQTL for DAB2IP. (b) A 1,468 bp deletion associated with increased expression of 
PADI4 is linked to a known risk allele for rheumatoid arthritis (rs2301888). (c) A polymorphic mobile element 
insertion defining exon boundaries of CASP8 reduces the gene’s expression and is linked with a risk allele for 
melanoma (rs13016963). (d) A large 32,197 bp deletion of the LCE3C and LCE3B genes that was previously 
identified as a risk factor for psoriasis was recapitulated by our study. 
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However, GWAS based on SNP array genotypes can only inform eQTLs that are well tagged by a SNP 
on the genotyping array. Notably 30.3% of common SVs, as well as 29.9% of those in the top 10% of 

causality scores, lacked a SNP marker on the Illumina Omni 2.5 array in linkage disequilibrium 
(R2≥0.5), indicating that a substantial portion of SV-eQTLs are untested in typical disease association 

studies. In comparison, only 10.1% of SNP and 17.2% of indel joint eQTLs are not well tagged. 
 

We next sought to assess the role of rare SVs on gene expression variation. In contrast to common 
variant eQTLs, which are caused by ancient mutations that have been subjected to natural selection, 

most rare variants arose recently and are more likely to have larger effect sizes and deleterious 
consequences. Rare variants are difficult to study via traditional eQTL approaches because any given 

variant is observed too infrequently within a set of samples to establish a statistical relationship with 

gene expression35. However, the effect of rare variants on gene expression can be assessed indirectly 
via bulk outlier enrichment analyses36. We thus identified 5,047 gene expression outliers (median: 30 

per person; range: 10-298) in which an individual exhibited aberrant transcript dosage compared to the 
data set as a whole (Online Methods). Next, we identified 5,660,254 rare variants (4,691 SVs, 

4,830,727 SNVs, and 824,836 indels) that were positively genotyped in at most two individuals. To 
reduce the effects of population stratification, we limited this analysis to the 117 Caucasian individuals 

with RNA-seq data in at least 5 tissues.  
 

Rare variants were significantly enriched by 1.2-fold (95% CI: 1.2-1.3) within the gene body and the 5 
kb flanking sequence of expression outliers (Fig. 5a, Supplementary Table 3). This enrichment is 

most pronounced for SVs (16.1-fold, 95% CI: 11.5-25.4), in which 355/5,047 (7.0%) of gene expression 

outliers harbored a rare SV compared to the null expectation of 22/5,047 (0.4%) in 1,000 random 
permutations of the sample expression values. Notably, expression-altering SVs were significantly 

larger than rare SVs on the whole (p-value: < 1 x 10-15, Mann-Whitney U test), and duplications were 
disproportionately represented (Fig. 5b,c). In several cases a single large SV caused multiple gene 

expression outliers: a 21.3 Mb duplication event was associated with 161 outliers within the region, and 
two large duplications (4.1 Mb and 2.5 Mb) were associated with 11 and 30 outliers, respectively. 

However, the enrichment of rare SVs around outlier genes is not driven by a handful of large events, 
since the majority of outlier-associated SVs (56/99) were only associated with a single gene 

(Supplementary Fig. 7). Moreover, on a per-variant basis, 99/4,691 (2.1%) of the rare SVs had an 

expression outlier within 5 kb compared to 10/4,691 (0.2%) in the permutation set, representing a 9.9-
fold enrichment (95% CI: 5.8-19.8) (Fig. 5b). These findings demonstrate that rare SVs are a common 
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cause of aberrantly expressed genes, contributing a median of approximately 1 gene expression outlier 

per person. We expect this to be a large underestimate given the strict definition of expression outliers 
used in this study – rare variants are likely to contribute to more modest changes in expression as well. 

 

 
Figure 5. Gene expression outliers are associated with rare SVs. (a) Fold enrichment of rare variants within 5 kb 
of expression outliers (red) and fold enrichment of outliers within 5 kb of rare variants (blue) between the observed 
set of 5,047 outliers and 1,000 random permutations of their sample names. (b) Effect size distributions for each 
SV type within 5 kb of an outlier in the same individual, with “coding” SVs defined as those that overlap with exons 
of the outlier gene and “noncoding” defined by the remainder. (c) Size distribution histograms by minor allele 
frequency (MAF) for common (MAF>0.01), rare (MAF≤0.01), and rare SVs within 5 kb of an expression outlier in 
the same individual, excluding balanced rearrangements. A peak at ~300 bp in the topmost plot results from 
common Alu SINE insertions. 
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Our data show that rare SVs alter gene expression through diverse mechanisms. Of the 99 rare SVs 

predicted to causally alter gene expression (permutation-based FDR: 0.2%), 79 (79.8%) are CNVs that 
change dosage of the aberrantly expressed gene (Supplementary Table 4). Most gene expression 

changes occur in the expected direction relative to the dosage alteration (Fig. 5c), but we observed 4 
deletions and 2 duplications with expression effects in the opposite direction; all involve partial gene 

alterations, which suggests complex regulatory effects rather than simple dosage compensation. The 
next most common class (11, 11.1%) are non-coding CNVs that appear to act through regulatory 

effects and – as in the case of the SV-eQTLs (Fig 2a) – show bidirectional effects on transcription. 
Remarkably, we identified a number of atypical SVs with strong yet unpredicted effects on gene 

expression. These include a 3.6 Mb inversion that alters the expression of 3 genes found at or near the 
breakpoints (one with increased and two with decreased expression), a 391 bp intronic inversion that 

causes increased expression, a complex 3-breakpoint balanced rearrangement that causes decreased 

gene expression, and 9 complex CNVs involving a combination of multiple copy number variable 
segments and/or adjacent balanced rearrangements, including one highly complex 6-breakpoint event 

that resembles chromothripsis (Supplementary Table 5). These results are consistent with prior 
studies describing the prevalence of complex SVs in “normal” human genomes, and reveal for the first 

time the diversity of gene expression effects caused by rare complex SVs.   
 

We compared the relative contribution of rare SVs, SNVs and indels to expression outliers. Although 
the overall enrichment of SNVs and indels at gene expression outliers is mild due to the high 

background prevalence of rare variants in these classes, enrichment increases dramatically when 
analyses are restricted to high impact mutations (as judged by CADD37; Supplementary Fig. 8). 

Overall, we observed a net excess of 443 outliers within 5 kb of a rare variant in the same individual 

compared to the expected number from permutation tests, or 8.8% (443/5,047) of total outliers. 
Moreover, by partitioning excess outliers among SVs, SNVs and indels, we estimate that 69.9% of gene 

expression outliers with a genetic basis are likely explained by structural variation, whereas merely 
15.9% and 14.4% are due to SNVs and indels, respectively (Online Methods, Supplementary Fig. 9). 

We note that this approximation assumes similar proportions of causal variants for each variant type, so 
may under-estimate the contribution of SNVs and indels.  It also only captures the effects of rare 

variants within 5 kb of the outlier gene and depends on our definition of expression outliers. While the 
strength of the SV effect is due in part to 8 very large CNVs (> 1 Mb), GTEx individuals should be 

representative of the general population in terms of the prevalence of large CNVs, and the relative 

contribution of SVs remains noteworthy even when individuals with megabase-scale CNVs are 
excluded from the analysis (SV: 37.9%, SNV: 38.0%, indel: 24.1%). These results indicate that rare 
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structural variants are a major cause of gene expression outliers in the human population, and suggest 

that thorough ascertainment of SV will significantly increase the power of rare variant association 
studies, and the efficacy of WGS-based disease diagnosis. 

 
As human genetics moves deeper into the era of whole genome sequencing, it has become possible to 

include all forms of genetic variation in cohort studies and clinical practices. Our results demonstrate 
that comprehensive analysis of structural variation will be a critical aspect of these efforts.  

 
Competing financial interests 
AB owns stock in Google Inc. The authors declare no other competing financial interests. 
 

Online methods 

SV call set generation 

We acquired 148 deep whole genome BAM files from the GTEx V6 data release (dbGaP accession 
phs000424.v6.p1). We excluded one sample (GTEX-WHWD-0002) due to an abnormal insert size 

distribution, which confounds SV detection. We realigned the remaining 147 whole genomes to GRCh 
build 37 plus a contig for Epstein-Barr virus using SpeedSeq v0.0.3 (BWA-MEM v0.7.10-r789) 

according to published practices13,38. We ran LUMPY v0.2.9 on each sample using the default 

parameters in the LUMPY Express script, using the published list of excluded genomic regions from 
SpeedSeq as well as the -P option to output probability curves for each breakpoint12. We merged the 

147 VCF files using the l_sort.py and l_merge.py scripts included in LUMPY with the “--product” option 
and 20 bp of slop, simultaneously combining variants with overlapping breakpoint intervals while 

refining their spatial precision based on the probability curves to create a cohort-level VCF. We pruned 
remaining variants with nearly overlapping breakpoint intervals by selecting the single variant with the 

highest allele frequency among the overlapping set. Next, we genotyped each sample with SVTyper 
(https://github.com/hall-lab/svtyper), which performs breakpoint sequencing of paired-end and split-read 

discordants13. We define the term “allele balance” as the ratio of non-reference to total reads at each 
breakpoint. Allele balance serves a proxy for genotype that is tolerant to inefficiencies in aligning the 

alternate allele for SVs, and is used for most analyses in this paper. We then used CNVnator to 

annotate the copy number of each spanning variant (putative deletions, duplications, and inversions). 
 

We applied several filters to the LUMPY call set to flag low quality SVs. Since 68 samples were 
sequenced on the Illumina HiSeq 2000 platform and 79 on the Illumina HiSeq X Ten platform, we 

flagged variants whose linear correlation (R2) between genotype and sequencing platform exceeded 
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0.1. We further flagged deletions lacking split-read support that were smaller than 418 bp, which was 

measured to be the empirical minimum deletion size at which all insert size libraries were able to 
discriminate between concordant and discordant reads with 95% certainty. We determined that three 

samples (GTEX-NPJ8-0004, GTEX-T2IS-0002, GTEX-OIZI-1026) had abnormal read-depth profiles 
and we therefore flagged SVs private to any of those samples, effectively excluding them from rare 

variant analyses. Finally, we flagged variants with a mean sample quality (MSQ, a measure of genotype 
quality among positively genotyped samples that is independent of allele frequency) of less than 20 as 

low quality. 
 

Next, we reclassified variant types, requiring that deletions and duplications showed correlation 
between read-depth and the allele balance at the breakpoint. For common SVs (at least 10 samples 

with non-reference genotypes) we fit a linear regression and required a slope of at least 1.0 in the 

appropriate direction (positive for duplications, negative for deletions) and R2 ≥ 0.2. For the remaining 
low frequency SVs we required that > 50% of positively genotyped samples must be > 2 MAD (median 

absolute deviation) (in the correct direction for deletion/duplication) and > 0.5 absolute copies from the 
median of reference genotyped samples. For low frequency SVs on the sex chromosomes, we limited 

the above criteria to the gender with more individuals to avoid gender confounders. We identified 
mobile elements insertions (MEIs) in the reference genome as SVs with breakpoint orientations 

indicative of deletions that had > 0.9 reciprocal overlap with an annotated SINE, LINE, or SVA element 
with sequence divergence of less than 200 milliDiv, based on RepeatMasker annotations. Due to 

limitations of our pipeline, we were only able to detect MEIs inserted into the reference genome based 
on their absence in other genotyped samples. 

 

We ran Genome STRiP 2.0 according to the best practices workflow for deeply sequenced genomes, 
using a window size of 1000 bp, window overlap of 500 bp, reference gap length of 1000 bp, boundary 

precision of 100 bp, and minimum refined length of 500 bp. We flagged CNVs for platform bias and the 
three samples with abnormal coverage profiles as described above. For rare SVs detected by Genome 

STRiP (private or doubletons in our call set) we merged fragmented variants with identical genotypes 
within 10 Mb of each other whose combined footprint encompassed at least 10% of their span. 

 
We then unified the LUMPY and Genome STRiP call sets while collapsing redundancies. Because 

LUMPY variants are substantially more precise and have well-defined confidence intervals, we retained 

LUMPY calls when an SV was detected by both algorithms with a reciprocal overlap of > 0.5 and a 
matching variant type (mCNVs were allowed to merge with either LUMPY duplications or LUMPY 
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deletions). To ensure that SVs would be merged even when the Genome STRiP call was fragmented, 

which occurs fairly often with GTEx WGS data, we also merged calls where > 0.9 of a Genome STRiP 
CNV was contained in a LUMPY SV of the same type (or mCNV) and their correlation between LUMPY 

allele balance and copy number had R2 > 0.25. This last step ensures that the merged variants have a 
high degree of co-occurrence among samples, and are not simply independent variants that inhabit the 

same genomic interval. 
 

We measured allele frequency for LUMPY SVs as the ratio of non-reference to total alleles in the 
population. For Genome STRiP variants we defined allele frequency as the fraction of samples that 

deviate from the mode copy number value in the population. 
 

We defined a high confidence call set from the variants that had not been flagged by the 

aforementioned filters. In general, high confidence SVs had to be supported by multiple independent 
evidence types. Since LUMPY deletions and duplications were identified by paired-end and/or split-read 

evidence and had also met requisite read-depth support from reclassification they were automatically 
considered high confidence. Similarly, MEIs were considered high confidence based on support from 

reference genome repeat annotations. LUMPY inversions and BNDs (unclassified breakends) were 
required to have a minimum variant quality score of 100. Inversions were further required to show 

evidence from both sides of the event, and at least 10% of supporting reads derived from each of split-
read and paired-end evidence types. LUMPY BND variants were required to have at least 25% of 

supporting reads derived from each of split-read and paired-end evidence types. Genome STRiP 
variants that were merged as described above and those with GSCNQUAL score >= 10 were 

considered high confidence. This set of 24,157 variants served as the basis for all analyses in this 

paper. 
 

Common eQTL mapping 

We mapped cis-eQTLs to scan for significant associations between common variant genotypes and 

gene expression in all tissues for which there were ≥ 70 individuals with both WGS data and RNA-seq 
data. These include the following 12 tissues: whole blood, skeletal muscle, lung, tibial artery, aortic 

artery, adipose (subcutaneous), thyroid, esophagus mucosa, esophagus muscularis, skin (sun-
exposed), tibial nerve, muscle (skeletal), as well as transformed fibroblasts. For convenience, we refer 

to the transformed fibroblasts as a tissue type throughout this study. RNA-seq data from each tissue 

was aligned with Tophat v1.4 using GENCODE v19 gene annotations by taking the union of exons for 
gene level quantification, and RPKM values were calculated with RNA-SeQC39-41. Reads were required 
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to align exclusively within exons or span them (without aligning to intronic regions), align in proper 

pairs, contain a maximum of six non-reference bases, and map uniquely to the gene. Samples were 
quantile normalized within each tissue followed by inverse quantile normalization of each gene to 

control outliers. 
 

We selected common genetic markers for which there were at least 10 samples with minor allele 
genotypes in our cohort. For Genome STRiP CNVs, we defined the reference genotype as the mode 

copy number observed in our data set. We performed two independent cis-eQTL mapping runs. The 
first, an “SV-only” eQTL analysis, used only common SV markers as genotype input for improved 

sensitivity under a reduced multiple-testing burden. The second, a “joint” eQTL analysis, included the 
10,120 common SVs as well as 6,982,921 SNVs and 834,255 indels detected by the Genome Analysis 

Toolkit HaplotypeCaller v3.1-144-g00f68a317, allowing a fair comparison of the relative contribution of 

different variant types. 
 

We mapped cis-eQTLs with FastQTL v2.184 using a cis window of 1 Mb on either side of the 
transcription start site (TSS) of autosomal and X chromosome genes with a permutation analysis to 

identify the most significant marker for each gene42. We customized the FastQTL software to include an 
SV for genotype-expression associations when the span of a deletion, duplication, mCNV, or MEI fell 

within the cis window for a particular gene, or when the breakpoints of an inversion or uncharacterized 
breakend (BND) fell within the cis window. For each tissue, we applied a set of covariates including 

three genotyping principal components, gender, genotyping platform (HiSeq 2000 or HiSeq X Ten), and 
a variable number of PEER (probabilistic estimation of expression residuals) factors determined by 

number of samples per tissue, N (N < 150: 15 PEERs, 150 ≤ N ≤ 50: 30 PEERs, N ≥ 250: 35 PEERs) 
43. Note that PEER factor sample sizes include RNA-seq data from individuals lacking WGS, providing 
more samples for PEER correction than the 147 individuals in the remainder of this study. We 

performed gene level multiple-testing correction for each of the SV-only and joint analyses using 
Benjamini-Hochberg at a 10% false discovery rate (FDR). 

 
Fine mapping of causal variants at eQTLs 

We used CAVIAR to untangle linkage disequilibrium to predict a causal variant for each eQTL18. 
CAVIAR assesses summary statistics in conjunction with LD across an associated locus to rank the 

causal probability of each variant in a region. Thus, we ran FastQTL once again on the 24,780 eQTLs 

that had previously met FDR thresholds in either the SV-only or joint cis-eQTL mapping analyses to 
generate the nominal t-statistic for every common variant in the cis window. For each eQTL, we 
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selected the most significant SV as well as the 100 most significant SNVs or indels (based on nominal 

p-value) in the cis window and estimated their pairwise LD using linear regression. For SVs, we used 
allele balance rather than discrete genotype for computing LD. We ran CAVIAR at each of these eQTLs 

using the t-statistics and signed R values of LD among the 101 variants with a causal set size of 1. 
 

As an alternate estimate of the causal role of structural variation, at each eQTL discovered by either the 
SV-only or joint analyses, we applied a linear mixed model (LMM) to partition the heritability of each 

eGene’s expression into a fixed effect from the SV, and a random effect representing the cumulative 
heritability of the 1,000 most significant SNPs and indels in the cis region. This method mirrors that of 

several other studies that have examined relative contributions of distinct variant classes on a 
quantitative trait in n individuals19-21. We first corrected for the same covariates as in the cis-eQTL 

mapping analyses above by linear regression residualization, and then applied a linear model of the 

form 
 

!! = !!,!!! + !! + !!,! 

 

where !! is a vector of the normalized expression values, !!,! is the effect of allele dosage of SV ! on 

gene !, !! is a n-length vector of genotypes at SV !, !! is a n-length vector of random effects drawn 

from the genetic relatedness matrix (GRM) with !!~MVN 0,!!!! !! , and ! is a random error term 

drawn from !(0, !!!,!,!! ) representing unexplained variance. We defined the n x n dimensional GRM (!!) 

with entries !!,! =
(!!"!!!)(!!"!!!)!

(!!"!!!)!
! (!!"!!!)!

!
 for the 1,000 SNV and indel variants (!!) that are most 

significantly associated with the expression of eGene !. 
 

Solving this equation with GCTA produces an estimate of variance where var !! ≈ ℎ!"! . 

 

var !! = !!,!! var !! + !!!! !! + !!!,!! !!! 

 

!!! = ℎ!"! + ℎ!! + !!! 
 

ℎ!"#! = ℎ!"! + ℎ!! 
 

Heritability estimates for a small number of eQTLs could not be calculated due to non-positive definite 
matrices likely arising from small sample sizes (808/23,441 of joint eQTLs and 930/24780 of eQTLs 
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detected by either SV-only or joint mapping). These loci were excluded from the heritability analysis and 

composite causality scores described below. To estimate the fraction of cis heritability attributable to 

SVs across all eQTLs in our data set, we counted the number of eQTLs where ℎ!"! > ℎ!! as a fraction of 

joint eQTLs at which the overall heritability (ℎ!"#! ) was at least 0.05. 
 
We combined the CAVIAR and heritability estimates of causality into a single composite score for each 

eQTL by taking the product of the CAVIAR causal probability and the fraction of heritability attributed to 

the SV (ℎ!!! !/!ℎ!"! + ℎ!!). To bound the heritability fraction between 0 and 1, we set the minimum ℎ!"!  and 

ℎ!! to 10-6 and the maximum to 1 before taking the quotient. For SVs that were associated with multiple 

eQTLs, including those that were independently ascertained in multiple tissues, we selected the eQTL 
(tissue, gene pair) in which the SV had the highest causality score, resulting in a set of 4,485 distinct 

SVs. 
 

Though we calculated causality scores (CAVIAR, heritability, composite) for all eQTLs detected by the 
SV-only or joint analyses, we restricted estimates comparing the relative contributions and effect sizes 

of SVs, SNVs, and indels to only those 23,441 detected by the joint analysis to eliminate confounding 
differences in statistical power between the eQTL mapping runs. 

 

Feature enrichment 
We performed intersections between SVs across the range of composite causality score quantiles and 

various annotated genomic features (Fig. 3, Supplementary Fig. 1). We first allocated SVs into 7 bins 
by the quantile of their composite causality score and then counted the number that intersected with 

each feature, allowing 1 kb of flanking distance except for the following: exon-altering plot, no flanking 
distance; proximity to TSS, 10 kb of directional flanking distance;  GENCODE genes, no flanking 

distance; GENCODE exons, no flanking distance; and topologically associated domain boundaries, 5 
kb of flanking distance. SVs involved in multiple eQTLs were considered to touch an eGene if they 

overlapped the exons of genes at any of those eQTLs. SVs from each causality bin were shuffled with 

BEDTools into non-gapped regions of the genome within 1 Mb of a gene transcription start site44. We 
calculated the fold enrichment of observed feature intersections compared to the median of 100 random 

shuffled sets of the elements of each bin to control for each bin’s composition of variant types and size 
distributions. The 95% confidence intervals were derived from the empirical distributions of feature 

intersections from the of the shuffled set for each bin. 
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Enhancer positions were defined as those in the Dragon ENhancers database (DENdb) with a minimum 

support of 224 (Fig. 3b). Positions 10 kb upstream and downstream of the TSS were defined from 
GENCODE v19 gene positions (Fig. 3c,d), and FunSeq 2.1.0 regions were downloaded from the 

author’s website (http://archive.gersteinlab.org/funseq2.1.0_data) 23. Topologically associated domain 
boundaries from human embryonic stem cell lines were downloaded from 

http://compbio.med.harvard.edu/modencode/webpage/hic/hESC_domains_hg19.bed45. All other 
regions were defined by the ENCODE project and downloaded from the UCSC genome browser22,46. 

 
eQTL linkage to GWAS hits 

We defined a set of phenotype-associated SNPs from the GWAS catalog v1.0.1 (downloaded 2016-02-
04) 26. We selected for results with a p-value better than 5 x 10-8 and tested in Europeans. When 

multiple markers within a 100 kb window met this criteria in a single study and a single phenotype, we 

selected the most significant marker in the window to reduce redundancy, resulting in a set of 4,951 
SNPs, of which 4,874 were genotyped in our cohort of 147 samples. We calculated LD between these 

GWAS hits and variants in our cohort using a linear regression to approximate R2, using allele balance 
rather than discrete genotypes for SVs detected with LUMPY. 

 
Rare variant association with expression outliers 

We began by defining gene expression outliers in each of 544 individuals with RNA-seq data across the 
44 tissues available from the GTEx project. Since quantile normalization of expression values (as 

applied in cis-eQTL mapping) can reduce the signal from true expression outliers, we derived PEER-
corrected expression values without quantile normalization to define expression outliers. For each 

tissue, we filtered for genes on the autosomes or the X chromosome in which at least 10 individuals 

had an RPKM (reads per kilobase of transcript per million mapped reads) > 0.1 and raw read counts > 
6. Next we took the log2(RPKM + 2) transformation of the data, followed by Z-transformation across 

each gene. We then removed PEER factors by linear regression residualization (using the same 
number of factors per tissue as described above, see Common eQTL mapping) followed by a final Z-

transformation. 
 

We then subsampled the 544 individuals above to select the 117 who were of Caucasian ancestry 
(since this was the largest subpopulation in our cohort) and had available WGS sequence data. Among 

these 117 individuals, we identified (sample, gene) pairs at which an individual’s absolute median Z-

score of a gene’s expression was at least 2, and there were at least 5 tissues with available expression 
data for the gene. This amounted to 5,047 gene expression outliers (median: 30 per person, range: 10-
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298). Next, we identified rare variants that were present in at most two individuals in our cohort of 147 

individuals and positively genotyped in at least one of the 117 Caucasian individuals, amounting to 
5,660,256 rare variants (4,691 SVs, 4,830,727 SNVs, and 824,836 indels). 

 
We counted the number of rare SVs, SNVs, and indels that co-occurred in the outlier individual that 

resided within the outlier transcript or 5 kb of flanking sequence. To define the frequency that this 
occurs by chance, we performed 1,000 random permutations of the outlier individual names in our set 

to determine the number of rare variants of each type that co-occur with an outlier in a random 
individual. Notably, we retained the relative number of outliers per individual in each permutation so that 

individuals with many outliers were still over-represented in the permuted sets. 
 

We performed two reciprocal measures of enrichments. The “outlier-centric” approach tested for a 

significant difference in the number of outliers that had a rare variant within 5 kb (Fig. 5a, red points). 
However, for SVs in particular, a single large variant may be in proximity to many outliers, and we 

controlled for this phenomenon with the “variant-centric” approach to test for a significant difference in 
the number of rare variants that had an outlier gene within 5 kb (Fig. 5a, blue points). 

 
To judge the enrichment across thresholds of variant functional impact, we computed a predicted 

impact score with CADD v1.2 for all variants in our data set37. For SVs, we used the highest-scoring 
base across the affected interval and the confidence intervals around the SV breakpoints. We then 

computed to the percentile of these impact scores for SVs, SNVs, and indels separately across the full 
set of allele frequencies. We show the fold-enrichment for the outlier-centric (Supplementary Fig. 7a-
c) and variant-centric (Supplementary Fig. 5d-f) approaches across the range of impact score 

percentiles for each variant class. 
 

To estimate the relative contribution of each variant type to expression outliers, we first defined the 
fraction of outliers with a likely genetic basis. Across 1,000 shuffled permutations of the data, we 

observed a median of 1,974 outliers (95% CI: 1,914-2,036) with a rare variant of any type in the outlier 
individual. We identified 2,417 outliers with a rare variant, representing a net excess of 443 over the 

expected value (95% CI: 381-503). Thus, of the 5,047 total outliers in our data set, an estimated 8.8% 
(95% CI: 7.5-10.0%) of outliers have a genetic basis.  

 

We then apportioned these 8.8% of genetically determined outliers amongst SVs, SNVs, and indels 
according to the net excess of observed outliers within 5 kb of each variant types (Supplementary Fig. 
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8). For outliers that were within 5 kb of multiple variant types (overlaps on the Venn diagram), we 

allocated the net excess percentage based on the relative strength of their overall fold-enrichment. To 
achieve this, we first estimated the fraction of expression outliers with a genetic basis within each 

variant type (! = {!", !"#, !"#$%}) as !! = !!!
! !, where ! is the number of observed outliers with 5 kb of 

a rare variant of type ! and ! is the median from the permuted sets (!!" = 0.94;!!"# = 0.12;!!"#$% =
0.19 in our data set).. Then, for each overlapping region of the Venn diagram, we multiplied the net 

excess by !!
!!!∈!

 for each of the variant types in each Venn diagram area !. 

 
To identify complex variants, we clustered high-confidence rare SVs with breakpoint evidence located 

no more than 100 kb away from each other and present in the same individual(s). Rare SVs with only 
read-depth support were not included in this clustering because of their imprecise boundaries. We 

joined separate clusters if they contained two sides of the same uncharacterized BND. Clusters 
containing SVs that were previously found to be associated with outlier gene expression were 

reclassified as a complex deletion, complex duplication, or balanced complex rearrangement by manual 

curation. During this manual curation, rare SVs with only read-depth support and present in the 
appropriate sample(s) were added to the rare variant cluster if they overlapped other variants included 

in the cluster. Upon manual inspection, one outlier-associated SV (LUMPY_BND_195398) with inverted 
breakpoint orientation was visually determined to have amplified read-depth over the interval and thus 

reclassified as a complex duplication. 
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