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Abstract 13	
The Tara Oceans Expedition has provided large, publicly-accessible microbial metagenomic 14	
datasets from a circumnavigation of the globe. Utilizing several size fractions from the samples 15	
originating in the Mediterranean Sea, we have used current assembly and binning techniques to 16	
reconstruct 290 putative high-quality metagenome-assembled bacterial and archaeal genomes, 17	
with an estimated completion of ≥50%, and an additional 2,786 bins, with estimated completion 18	
of 0-50%. We have submitted our results, including initial taxonomic and phylogenetic 19	
assignments for the putative high-quality genomes, to open-access repositories (iMicrobe and 20	
FigShare) for the scientific community to use in ongoing research.  21	
 22	
Introduction 23	
Microorganisms are a major constituent of the biology within the world’s oceans and act as the 24	
important linchpins in all major global biogeochemical cycles1. Marine microbiology is among 25	
the disciplines at the forefront of pushing advancements in understanding how microorganisms 26	
respond to and impact the local and large-scale environments. An estimated 1029 Bacteria and 27	
Archaea2 reside in the oceans and an immense amount of poorly constrained, and ever evolving 28	
genetic diversity. 29	

The Tara Oceans Expedition (2003-2010) encompassed a major endeavor to add to the 30	
body of knowledge collected during previous global ocean surveys to sample the genetic 31	
potential of microorganisms 3. To accomplish this goal, members of Tara Oceans sampled 32	
planktonic organisms (viruses to fish larvae) at two major depths, the surface ocean and the 33	
mesopelagic. The amount of data collected was expansive and included 35,000 samples from 34	
210 ecosystems3. The Tara Oceans Expedition generated and publically released 7.2 Tbp of 35	
metagenomic data from 243 ocean samples from throughout the global ocean, specifically 36	
targeting the smallest members of the ocean biosphere, the viruses, Bacteria and Archaea, and 37	
picoeukaryotes4. Initial work on these fractions produced a large protein database, totaling > 40 38	
million nonredundant protein sequences and identified >35,000 microbial operational taxonomic 39	
units (OTUs)4.  40	

Leveraging the publically available metagenomic sequences from the “girus” (giant virus; 41	
0.22-1.6 µm), “bacteria” (0.22-1.6 µm), and “protist” (0.8-5 µm) size fractions, we have 42	
performed a new joint assembly of these samples using current sequence assemblers (Megahit5) 43	
and methods (combining assemblies from multiple sites using Minimus26). These metagenomic 44	
assemblies were binned using a strictly coverage based binning algorithm7 in to 290 high-quality 45	
(low contamination) microbial genomes, ranging from 50-100% estimated completion. 46	
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Environmentally derived genomes representing the most abundant microorganisms are 47	
imperative for a number of downstream applications, including comparative genomes, 48	
metatranscriptomics, and metaproteomics. This series of genomic data can allow for the 49	
recruitment of environmental “-omic” data and provide linkages between functions and 50	
phylogenies. This method was initially performed on the seven sites from the Mediterranean Sea 51	
containing microbial metagenomic samples (TARA007, -009, -018, -023, -025 and -030), but 52	
will continue through the various Longhurst provinces8,9  sampled during the Tara Oceans 53	
project (Figure 1). All of the assembly data is publically available, including the initial Megahit 54	
assemblies for each site from the various size fractions and depths and putative (minimal quality 55	
control) genomes within iMicrobe (http://imicrobe.us). 56	
 57	
Materials and Methods 58	
 59	
A generalized version of the following workflow is presented in Figure 2. 60	
 61	
Sequence Retrieval and Assembly 62	
All sequences for the reverse and forward reads from each sampled site and depth within the 63	
Mediterranean Sea were accessed from European Molecular Biology Laboratory (EMBL) 64	
utilizing their FTP service (Table 1). Paired-end reads from different filter sizes from each site 65	
and depth (e.g., TARA0007, girus filter fraction, sampled at the deep chlorophyll maximum) 66	
were assembled using Megahit5 (v1.0.3; parameters: --preset, meta-sensitive). To keep consistent 67	
with TARA sample nomenclature, “bacteria” or “BACT” will be used to encompass the size 68	
fraction 0.22-1.6 µm. All of the Megahit assemblies were pooled in to two tranches based on 69	
assembly size, ≤1,999bp, and ≥2,000bp. Longer assemblies (≥2kb) with ≥99% semi-global 70	
identity were combined using CD-HIT-EST (v4.6; -T 90 -M 500000 -c 0.99 -n 10). The reduced 71	
set of contiguous DNA fragments (contigs) was then cross-assembled using Minimus26 (AMOS 72	
v3.1.0; parameters: -D OVERLAP=100 MINID=95). 73	
 74	
Metagenome-assembled Genomes 75	
Sequence reads were recruited against a subset of contigs (≥7.5kb) constructed during the 76	
secondary assembly (Megahit + Minimus2) for each of the Tara samples using Bowtie210 77	
(v4.1.2; default parameters). Utilizing the SAM file output, read counts for each contig were 78	
determined using featureCounts11 (v1.5.0; default parameters). Coverage was determined for all 79	
contigs by dividing the number of recruited reads by the length of the contig (reads/bp). Due to 80	
the low coverage nature of the samples, in order to effectively delineate between contig coverage 81	
patterns, the coverage values were transformed by multiplying by five (determined through 82	
manual tuning). Transformed coverage values were then utilized to cluster contigs in to bins 83	
utilizing BinSanity (parameters: -p -3, -m 4000, -v 400, -d 0.9) 7. Bins were assessed for the 84	
presence of putative microbial genomes using CheckM12 (v1.0.3; parameters: lineage_wf). Bins 85	
were split in to three categories: (1) putative high quality genomes (≥50% complete and ≤10% 86	
cumulative redundancy [% contamination – (% redundancy × % strain heterogeneity ÷ 100)]); 87	
(2) bins with “high” contamination (≥50% complete and ≥10% cumulative redundancy); and (3) 88	
low completion bins (<50% complete). The high contamination group were additionally binned 89	
using the BinSanity refinement method (refine-contaminated-log.py; parameters: -p ‘variable’, -90	
m 2000, -v 200, -d 0.9), which utilizes affinity propagation13 to cluster contigs within a bin based 91	
on tetranucleotide frequencies and %G+C.  92	
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To determine the preference values needed to successfully bin the high contamination 93	
bins, 15 bins were assessed manually using the number of marker occurrences determined by 94	
CheckM. Bins containing approximately two genomes, three genomes, and bins with more 95	
genomes used a preference of -1000 (-p -1000), -500 (-p -500), and -100 (-p -100), respectively. 96	
The 15 manually assessed bins were used to train a decision tree within scikit-learn14 (default 97	
parameters, DecisionTreeClassifier) to assign parameters to the other bins. The resulting bins 98	
were added to one of the three categories: putative high quality genomes, high contamination 99	
bins, and low completion bins. The high contamination bins were processed for a third time with 100	
the BinSanity refinement step utilizing a preference of -100 (-p -100). These bins were given 101	
final assignments to either the putative high quality genomes (some putative genomes had >10% 102	
cumulative contamination, but have been designated) or low completion bins. Bins determined to 103	
be low completion bins were reserved for an additional round of binning (see below). 104	
 After this initial round of binning, all contigs not assigned to putative high-quality 105	
genomes were assessed using BinSanity using raw coverage values. Two additional rounds of 106	
refinement were performed (as above) with the first round of refinement using the decision tree 107	
to determine preference and the second round using a set preference of -10 (-p -10). Following 108	
this binning phase, contigs were assigned to high quality bins (e.g., Tara Mediterranean genome 109	
1, referred to as TMED1, etc.), low completion bins with at least five contigs (0-50% complete; 110	
TMEDlc1, etc. lc, low completion), or were not placed in a bin (Supplemental Table 1 & 2). 111	
 112	
Taxonomic and Phylogenetic Assignment of High Quality Genomes 113	
The bins representing the high quality genomes were assessed for taxonomy and phylogeny 114	
using multiple methods to provide a quick reference for selecting genomes of interest. Taxonomy 115	
as assigned using the putative placement provided via CheckM during the pplacer15 step of the 116	
analysis to the lowest taxonomic placement (parameters: tree_qa -o 2). This step was also 117	
performed for all low completion bins. A second taxonomic assignment was determined using a 118	
method modified from Albersten, et al. (2013)16, wherein putative coding DNA sequences 119	
(CDSs) were determined using Prodigal17 (v2.6.3; parameters: -m -o -p meta -q). The putative 120	
CDS were searched against the NCBI non-redundant (NR) database (accessed March 2016) 121	
using DIAMOND18 (v0.8.11.73; parameters: -f xml -k 5 --sensitive -e 1e-10) and the output was 122	
processed using MEGAN19 (v4; parameters: recompute toppercent = 5, recompute minsupport = 123	
1, collapse rank = species, select nodes = all) to determine the last common ancestor for the top 124	
five matches. Using a script from the Multi-Metagenome package (hmm.majority.vote.pl; 125	
https://github.com/MadsAlbertsen/multimetagenome; parameters: -n -l 4 [-l 5, -l 6, or -l 7]), each 126	
contig was assigned a consensus taxonomic identification at approximately the Phylum, Class, 127	
Order, and Family levels. A consensus for all contigs at each taxonomic level was determined. If 128	
at any level a tie was achieved between possible assignments, it has been denoted with a “T” in 129	
the genome table. 130	
 Two separate attempts were made to assign the high quality genomes a phylogenetic 131	
assignment. High quality genomes were searched for the presence of the full-length 16S rRNA 132	
gene sequence using RNAmmer20 (v1.2; parameters: -S bac -m ssu). All full-length sequences 133	
were aligned to the SILVA SSU reference database (Ref123) using the SINA web portal 134	
aligner21 (https://www.arb-silva.de/aligner/). These alignments were loaded in to ARB22 (v6.0.3), 135	
manually assessed, and added to the non-redundant 16S rRNA gene database (SSURef123 136	
NR99) using ARB Parsimony (Quick) tool (parameters: default). A selection of the nearest 137	
neighbors to the Tara genome sequences were selected and used to construct a 16S rRNA 138	
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phylogenetic tree. Genome-identified 16S rRNA sequences and SILVA reference sequences 139	
were aligned using MUSCLE23 (v3.8.31; parameters: -maxiters 8) and processed by the 140	
automated trimming program trimAL24 (v1.2rev59; parameters: -automated1). Automated 141	
trimming results were assessed manually in Geneious25 (v6.1.8) and trimmed where necessary 142	
(positions with >50% gaps) and re-aligned with MUSCLE (parameters: -maxiters 8). An 143	
approximate maximum likelihood (ML) tree with pseudo-bootstrapping was constructed using 144	
FastTree26 (v2.1.3; parameters: -nt -gtr -gamma; Figure 3). 145	
 High-quality genomes were assessed for the presence of the 16 ribosomal markers genes 146	
used in Hug, et al. (2016)27. Putative CDSs were determined using Prodigal (v2.6.3; parameters: 147	
-m -p meta) and were searched using HMMs for each marker using HMMER28 (v3.1b2; 148	
parameters: hmmsearch --cut_tc --notextw). If a genome had multiple copies of any single 149	
marker gene, neither was considered, and only genomes with ≥8 markers were used to construct 150	
a phylogenetic tree. Markers identified from the high quality genomes were combined with 151	
markers from 1,729 reference genomes that represent the major bacterial phylogenetic groups (as 152	
presented by IMG29). Archaeal reference sequences were not included; however, none of the 153	
putative archaeal environmental genomes had a sufficient number of markers for inclusion on the 154	
tree. Each marker gene was aligned using MUSCLE (parameters: -maxiters 8) and automatically 155	
trimmed using trimAL (parameters: -automated1). Automated trimming results were assessed (as 156	
above) and re-aligned with MUSCLE, as necessary. Final alignments were concatenated and 157	
used to construct an approximate ML tree with pseudo-bootstrapping with FastTree (parameters: 158	
-gtr -gamma; Figure 4). 159	
  160	
Relative Abundance of High Quality Genomes 161	
To set-up a baseline that could approximate the “microbial” community (Bacteria, Archaea and 162	
viruses) present in the various Tara metagenomes, which included filter sizes specifically 163	
targeting both protists and giruses, reads were recruited against all contigs generated from the 164	
Minimus2 and Megahit assemblies ≥2kb using Bowtie2 (default parameters). Some assumptions 165	
were made that contigs <2kb would include, low abundance bacteria and archaea, bacteria and 166	
archaea with high degrees of repeats/assembly poor regions, fragmented picoeukaryotic 167	
genomes, and problematic read sequences (low quality, sequencing artefacts, etc.). All relative 168	
abundance measures are relative to the number of reads recruited to the assemblies ≥2kb. Read 169	
counts were determined using featureCounts (as above). Length-normalized relative abundance 170	
values were determined for each high quality genome for each sample: 171	

!"#$%
&' '"(	*"+,-"
!"#$%
&' #..	*"+,-"%

× !"0(123"$	("#$%	3,	*"+,-"%	
!"0(123"$	("#$%	3,	#..	0,+32*%	 ≥ 26& ×100 172	

 173	
Available Through iMicrobe 174	
In keeping with the open-access nature of the Tara Oceans project, all of the data generated for 175	
this analysis is publically available through iMicrobe (http://data.imicrobe.us/project/view/261), 176	
including: all contigs generated using Megahit from each sample; all contigs from Minimus2 + 177	
Megahit output used for binning and community assessment, ≥2kb and ≥7.5kb; a table that 178	
details statistics, taxonomy, and phylogeny for the high quality genomes; the putative genome 179	
contigs and Prodigal-predicted nucleotide and protein putative CDS FASTA files. Additional 180	
files, such as, the ribosomal marker HMM profiles, reference genome markers, high quality 181	
genome markers, final concatenated MUSCLE alignment, FastTree Newick file, contig read 182	
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count data, relative abundance matrix for genomes from all samples, low completion bins, and 183	
contigs without a bin, as well as, additional data files, have been provided and are available 184	
through FigShare (https://dx.doi.org/10.6084/m9.figshare.3545330). Digital locations of data 185	
files and contents can be found on Supplemental Table 3. 186	
 187	
Results 188	
Assembly 189	
The initial Megahit assembly was performed on the publicly available reads for Tara stations 190	
007, 009, 018, 023, 025, 030. Starting with 147-744 million reads per sample, the Megahit 191	
assembly process generated 1.2-4.6 million assemblies with a mean N50 and longest contig of 192	
785bp and 537kb, respectively (Table 1).  In general, the assmeblies generated from the Tara 193	
samples targeting the protist size fraction (0.8-5 µm) had a shorter N50 value than the bacteria 194	
size fractions (mean: 554bp vs 892bp, respectively). Assemblies from the Megahit assembly 195	
process were pooled and separated by length. Of the 42.6 million assemblies generated during 196	
the first assembly, 1.5 million were ≥2kb in length (Table 2). Several attempts were made to 197	
assemble the shorter contigs, but publicly available overlap-consensus assemblers (Newbler [454 198	
Life Sciences], cap330, and MIRA31) failed on multiple attempts. Processing the ≥2kb assemblies 199	
from all of the samples through CD-HIT-EST reduced the total to 1.1 million contigs ≥2kb. This 200	
group of contigs was subjected to the secondary assembly through Minimus2, generating 201	
158,414 new contigs (all ≥2kb). The secondary contigs were combined with the Megahit contigs 202	
that were not assembled by Minimus2. This provided a contig dataset consisting of 660,937 203	
contigs, all ≥2kb in length (Table 2; further referred to as data-rich-contigs). 204	
 205	
Binning 206	
The set of data-rich-contigs was used to recruit the metagenomic reads from each sample using 207	
Bowtie2. The data-rich-contigs recruited 15-81% of the reads depending on the sample. In 208	
general, the protist size fraction recruited substantially fewer reads than the girus and bacteria 209	
size fractions (mean: 19.8% vs 75.0%, respectively) (Table 1). For the protist size fraction, the 210	
“missing” data for these recruitments likely results from the poor assembly of more complex and 211	
larger eukaryotic genomes. The fraction of the reads that do not recruit in the girus and bacterial 212	
size fraction samples could be accounted for by the large number of low quality assemblies (200-213	
500bp) and reads that could not be assembled due to low abundance or high complexity (Table 214	
2). Coverage was determined as total reads per base pair, based on the number of reads recruited 215	
to each contig. 216	
  Unsupervised binning was performed using both transformed and raw coverage values 217	
for a subset of 95,506 contigs from the data-rich-contigs that were ≥7.5kb (referred to further as 218	
binned-contigs) utilizing the tool BinSanity. An iterative process was performed that first used 219	
coverage to generate putative bins, and then after removing putative high-quality genomes 220	
(≥50% complete and <10% redundancy), based on estimates of redundancy through CheckM, 221	
used two passes through the BinSanity refinement process, utilizing sequence composition. 222	
Binning using the transformed coverage data generated 237 putative high-quality genomes (12 223	
putative genomes are of slightly lower quality with >10% redundancy and have been noted) 224	
containing 15,032 contigs. Contigs not in putative genomes were re-binned through the iterative 225	
use of BinSanity based on raw coverage values, generating 53 additional putative high-quality 226	
genomes encompassing 3,348 contigs. In total, 290 putative high-quality genomes were 227	
generated with 50-100% completion (mean: 69%) with a mean length and number of putative 228	
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CDS of 1.7Mbp and 1,699, respectively (iMicrobe; Supplemental Table 1). All other contigs 229	
were grouped in to bins with at least five contigs, but with estimated completion of 0-50% (2,786 230	
low completion bins; 74,358 contigs; Supplemental Table 2) or did not bin (2,732 contigs). 231	
Nearly a quarter of the low completion bins (24.7%) have an estimated completion of 0%. 232	
 233	
Taxonomy, Phylogeny, & Potential Organisms of Interest 234	
The 290 putative high-quality genomes had a taxonomy assigned to it via CheckM during the 235	
pplacer step. All of the genomes, except for 20, had an assignment to at least the Phylum level, 236	
and 83% of the genomes had an assignment to at least the Class level. Additionally, all of the 237	
genomes were assigned putative taxonomies using a consensus method of the taxonomies 238	
assigned to the putative CDS on a contig. The genomes were assigned four levels of taxonomic 239	
information, roughly equivalent to Phylum, Order, Class, and Family. Due to the nature of this 240	
method, especially at lower taxonomic levels, it is possible for a small number of assignments to 241	
greatly influence the results. Because all of these methods have inherent biases, consistency 242	
across several results should be viewed as reinforcing support for the accuracy of the genome, 243	
while inconsistent results should not be used as evidence of an incorrectly binned genome. 244	
 Attempts were made to provide phylogenetic information for as many genomes as 245	
possible. Genomes were assessed for the presence of full-length 16S rRNA genes. In total, 37 246	
16S rRNA genes were detected in 35 genomes (mean 16S rRNA gene copy number, 1.05). 16S 247	
rRNA genes can prove to be problematic during the assembly steps due the high level of 248	
conservation that can break contigs32 (Figure 3). Additionally, the conserved regions of the 16S 249	
rRNA, depending on the situation, can over- or under-recruit reads, resulting in coverage 250	
variations that can misplace contigs in to the incorrect genome. As such, several of the 16S 251	
rRNA phylogenetic placements support the taxonomic assignments, while some are 252	
contradictory. Further analysis should allow for the determination of the most parsimonious 253	
result. 254	
 Beyond the 16S rRNA gene, genomes were searched for 16 conserved, syntenic 255	
ribosomal markers. Sufficient markers (≥8) were identified in 193 of the genomes (67%) and 256	
placed on a tree with 1,729 reference sequences (Figure 4). Phylogenies were then assigned to 257	
the lowest taxonomic level that could be confidently determined. 258	
 The taxonomic and phylogenetic assignments are provided to give downstream users a 259	
guide for determining which genomes prove to be most interesting for further analysis. Highest 260	
confidence should be given to genomes with multiple lines of evidence supporting an assignment 261	
and additional confirmation should be gathered for those with multiple conflicting results. These 262	
putative results reveal a number of genomes were generated that represent multiple clades for 263	
which environmental genomic information remains limited, including: Planctomycetes, 264	
Verrucomicrobia, Marinimicrobia, Cyanobacteria, and uncultured groups within the Alpha- and 265	
Gammaproteobacteria. 266	
 267	
Relative Abundance 268	
Based on the assembly and recruitment results, the assumption was made that the data-rich-269	
contigs and their corresponding reads represent the dominant portion of the microbial (bacterial, 270	
archaeal, and viral) community and that reads that did not recruit represent eukaryotes, low 271	
quality assemblies, and/or less dominant portions of the microbial community. A length-272	
normalized relative abundance value was determined for each genome in each sample based on 273	
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the number of reads recruited to the data-rich-contigs. The relative abundance for the individual 274	
genomes was determined based on this portion of the read dataset. 275	

In general, the genomes and their underlying contigs had low coverage (<1X coverage) 276	
and low relative abundance (maximum relative abundance = 1.9% for TMED155 a putative 277	
Cyanobacteria in TARA023-PROT-SRF; Supplemental Table 1). The high-quality genomes 278	
accounted for 1.57-25.16% of the approximate microbial community as determined by the data-279	
rich-contigs (mean = 13.69%), with the ten most abundant genomes representing 0.61-10.31% 280	
(Table 1). 281	

Almost all of the contigs in the binned-contigs were low coverage, only a small subset of 282	
6,350 contigs (6.6%) had >1X coverage in at least one sample. Of these contigs, 1,962 were 283	
assigned to putative high-quality genomes, while the other contigs were placed in the low 284	
completion bins. Further, an additional 22,470 contigs (Total bp = 79,422,500bp, mean = 285	
3,535bp, and longest contig = 7,498bp) within data-rich-contigs (1.3%) had greater than >1X 286	
coverage, but were not included in the binning protocol. 287	
 288	
Concluding Statement 289	
The goal of this project was to provided preliminary putative genomes from the Tara Oceans 290	
microbial metagenomic datasets. The 290 putative high-quality genomes and 2,786 low 291	
completion bins were created using the 20 samples and six stations from the Mediterranean Sea. 292	
We will continue to generate putative high-quality genomes from additional Tara Oceans 293	
dataset, starting with the Red Sea and Arabian Sea in the near future. 294	
 We would like to take some time to highlight to interesting results created within this 295	
dataset. For new genomes from environmental organisms, this project created approximately 14 296	
new Cyanobacteria genomes within the genera Prochlorococcus and Synechococcus and 33 new 297	
SAR11 genomes. Three unconfirmed members related to the Candidate Phyla Radiation (CPR) 298	
as determined by placement of an internal node between the Parcubacteria and Microgenomates 299	
(with long-branch characteristics; TMED88) and a node basal to the CPR genomes, potentially 300	
related to the Wirthbacteria (TMED70 and TMED22), on the concatenated ribosomal marker 301	
tree. Additionally, there are putative genomes from the marine Euryarchaeota (n = 11), 302	
Verrucomicrobia (n = 17), Planctomycetes (n = 14), and Marinimicrobia (n ≈ 5). 303	

Some additional perplexing results include, TMED58 a putative Deltaproteobacteria 304	
with taxonomic assignments from the NCBI NR database to the Myoviridae. This result occurs 305	
due the presence of a few large contigs assigned to the bacteria and many small contigs assigned 306	
to the virus. However, if these two entities should be binned together remains unresolved. Lastly, 307	
the low completion bins may house distinct viral genomes. Of particular interest may be the 40 308	
bins with 0% completion (based on single-copy marker genes), but that contain >500kb of 309	
genetic material (including 3 bins with >1Mb). These large bins lacking markers may be good 310	
candidates for research in to the marine “giant viruses” and episomal DNA sources (plasmids, 311	
etc.). 312	

It should be noted, researchers using this dataset should be aware that all of the genomes 313	
generated from these samples (and additional stations, which are on-going) should be used as a 314	
resource with some skepticism towards the results being an absolute. Like all results for 315	
metagenome-assembled genomes, these genomes represent a best-guess approximation of a 316	
taxon from the environment33. Researchers are encouraged to confirm all claims through various 317	
genomic analyses and accuracy may require the removal of conflicting sequences. 318	
 319	
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Table	2.	Statistics	and	the	number	contigs/assemblies	at	various	steps	during	processing
Contig	Grouping No.	of	contigs N50* Total	sequence	(bp)
Megahit	assemblies	200-499bp 24,999,285 n.d. 9,293,098,676
Megahit	assemblies	500-1,999bp 16,103,221 n.d. 13,382,057,993
Megahit	assemblies	≥2kb 1,517,360 4,658 6,691,877,664
Megahit	assemblies	≥2kb	(post-CD-HIT-EST) 1,126,975 4,520 4,894,479,496
Minimus2	contigs 158,414 15,394 1,727,079,865
Minimus2	+	unassembled	Megahit	contigs	≥2kb	
(data-rich-contigs) 660,937 5,466 3,612,405,904
Minimus2	+	unassembled	Megahit	contigs	≥7.5kb	
(binned-contigs) 95,506 20,556 1,725,063,313
*N50	-	length	of	DNA	sequence	above	which	50%	of	the	total	is	contained
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Figure 1. Map illustrating the locations and size fractions sampled for the Tara Oceans Mediterranean Sea datasets. Girus, ‘giant virus’ size fraction (0.22-1.6 μm). Bact, ‘bacteria’ size fraction (0.22-1.6 μm). Prot, ‘protist’ size fraction (0.8-5.0 μm)
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Figure 2. Workflow used to process Tara Oceans Mediterranean Sea metagenomic datasets.
Black hash boxes, program or tool used with parameters.
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Figure 3. FastTree approximate maximum-likelihood phylogenetic tree constructed with 37 and 785 16S rRNA genes from putative high-quality genomes and references, respectively.
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Figure 4. Cladogram of a FastTree approximate maximum-likelihood phylogenetic tree constructed using 16 syntenic, single-copy marker genes for 193 high-quality genomes and 1,729 reference genomes. Leaves denoting the position of the TMED genomes have been indicated by extending beyond the edge of the tree. 

https://doi.org/10.1101/069484
http://creativecommons.org/licenses/by-nc-nd/4.0/

