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Supplemental Figures and Methods 
 

 
Supplemental Figure 1.  FISH and Hi-C data reproduced from Rao et al., 2014. Top: Hi-C maps 
for the probed regions, numbers indicating the corrected Hi-C counts at indicated loop and control 
loci. Bottom: CDFs for FISH, loop loci in blue, equal genomic separation control loci in red. 
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Supplemental Figure 2.  a. Average contact map, as in main Fig 2. Arrows show position of 
probes for increasing distance away from the dynamic loop, and for increasing offset from the loop 
at a fixed distance. b. CDFs for loci pairs at increasing genomic separations. Note that these loci-
pairs are chosen to be away from the dynamic loop.  c. Relationship between average spatial 
distance and contact frequency (distance < 3 monomers) for these loci. d. CDFs for loci pairs at 
increasing offsets from the bases of the dynamic loop, but the same genomic separation. e. 
Relationship between average spatial distance and contact frequency (distance < 3 monomers) for 
these loci. Note that average spatial distance clearly increases as contact frequency decreases in 
the first case, but not in the second. Indeed, as d and e show, contact frequency can increase 
many-fold without large changes in the average distance 
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Supplemental Figure 3. a. Simulated PDFs and CDFs for increasing number of sampled 
conformations the two loci at the base of a simulated dynamic loop. b. probability of observing the 
incorrect relationship between median distances (green) or contact probabilities (orange) for two 
loci separated by either 30 or 40 monomers. These curves illustrate how many more cells are 
needed to reliably estimate contact frequency than median spatial distance. Strikingly, the 2-fold 
difference in contact frequency is much more difficult to reliably detect than a 1.17-fold difference in 
average distance with a limited number of cells. 
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Supplemental Figure 4. a. The effect of localization uncertainty or size of simulated FISH probes 
on measured PDF and CDF. Subplots show the indicated PDF or CDF pairs for the loop region or 
the control region at the same monomer separation calculated over 39665 conformations. Probe 
localization uncertainty is simulated by adding Gaussian noise with the indicated width to each 
simulated set of probe distances. Probe size is simulated by considering the distance to the 
centroid of a labeled region of the indicated size. Note that even a 2-monomer uncertainty in 
localization can drastically diminish the visibility of a peak, much more so than measuring centroid-
to-centroid distances of a pair of 7-monomer regions instead of two 1-monomer probes. We also 
note that (Giorgetti et al., 2014) found a 35nm uncertainty led to best agreement between their 
polymer models and FISH data, which would correspond to a 3.5 monomer localization uncertainty 
in the scenario we present. Also note that the control distribution changes very little for any of these 
perturbations. b. Illustration of localization uncertainty (left) or size (right) for FISH probes; size of a 
probe imposes a centroid-to-centroid measurement, averaged over the positions of all monomers 
labeled by the probe.  c. Illustration of capture radius for 3C. d. The log2(ratio) of contact frequency 
for the 50 monomer loop considered in the main text divided by the non-loop control at the same 
distance, as a function of capture distance (in simulated 3C). Note that this decreases to zero after 
around 3 monomers. 
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Methods 
Polymer Simulations 
As previously (Doyle et al., 2014; Naumova et al., 2013), we modeled chromatin as a fiber of 
monomers. Unless noted, each spherical monomer had a diameter of 10 nm and represented 
500bp, or approximately three nucleosomes. Adjacent monomers were connected by harmonic 
bonds with a potential U = 25*(r – 1)2 (here and below, energy is in units of kT). The stiffness of the 
fiber was modeled by a three point interaction term, with the potential U = k*(1-cos(α)), where α is 
an angle between neighboring bonds, and k is a parameter controlling stiffness, here set to 2kT. To 
model the dynamic loop considered in the present work, we used a Lennard-Jones (LJ) potential U 
= 4εij * (1/r12 - 1/r6) where εij was set to 4kT for the monomers at the base of the dynamic loop (i,j), 
and was set to negligibly small otherwise (ε = 0.1kT). 
 
Polymer models were simulated with OpenMM (Eastman et al., 2013), a high-performance GPU-
assisted molecular dynamics software (https://simtk.org/home/openmm). We used an in-house 
openmm-polymer library (publicly available http://bitbucket.org/mirnylab/openmm-polymer). We 
initialized our simulations as a system of 8 compact rings (see (Imakaev et al., 2015a)), and used 
periodic boundary conditions to achieve a density of 0.10. We then simulated 50 runs of this system 
using Langevin Dynamics, for 10e8 time steps. For the fiber lengths considered here, polymer 
simulations reached equilibrium in less than 1e7 time steps; this was confirmed by observing that 
monomer displacement saturates after about 5e6 blocks. Conformations have been stored every 
1e5 time steps and an equilibrium ensemble of 900 conformations obtained after the initial 
equilibration was used for our analysis. An Andersen thermostat was used to keep the kinetic 
energy of the system from diverging using a time step that ensured conservation of kinetic energy. 
 
To obtain simulated contact maps, we first found all contacts within each polymer conformation, 
and then aggregated these contacts for all pairs of monomers. A contact was defined as two 
monomers being at a distance less than Rc=3 monomer diameters. To obtain simulated FISH 
distributions, we calculated a list of spatial distances for a chosen set of loci, and built a histogram 
of distances starting at 0 in bins of 0.1 monomers. To display PDFs this histogram was then 
smoothed with a moving average window with a size of 0.7 monomers. 
 
Experimental data 
FISH CDFs were obtained digitized coordinates from published data (Rao, 2014) using 
webplotdigitizer http://arohatgi.info/WebPlotDigitizer/app/ in the automatic mode with dx=.01 and x-
step-with-interpolation. Published Hi-C data (Rao, 2014) was re-processed, filtered, and iteratively 
corrected using hiclib http://mirnylab.bitbucket.org/hiclib/  (Imakaev et al., 2012). 
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