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Genetic association mapping produces statistical links between phenotypes and genomic18

regions, but identifying the causal variants themselves remains difficult. Complete knowledge of19
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all genetic variants, as provided by whole genome sequence (WGS), will help, but is currently20

financially prohibitive for well powered GWAS studies. To explore the advantages of WGS in a21

well powered setting, we performed eQTL mapping using WGS and RNA-seq, and showed that22

the lead eQTL variants called using WGS are more likely to be causal. We derived properties of23

the causal variant from simulation studies, and used these to propose a method for implicating24

likely causal SNPs. This method predicts that 25% - 70% of the causal variants lie in open25

chromatin regions, depending on tissue and experiment. Finally, we identify a set of high26

confidence causal variants and show that they are more enriched in GWAS associations than27

other eQTL. Of these, we find 65 associations with GWAS traits and show examples where the28

gene implicated by expression has been functionally validated as relevant for complex traits.29

Genome-wide associations studies (GWAS) have uncovered 1,000s of genetic associations30

between regions of the genome and complex traits (Welter et al., 2014), but moving from the31

association to identifying the mechanism behind it has proven complicated (Spain and Barrett,32

2015). A first step would be to identify the exact variant behind the association, as exact33

localisation would allow exploration as to which transcription factor binding sites and regulatory34

elements are affected. This, however, is complicated by the fact that most loci tested in GWAS35

studies are not directly measured, but instead imperfectly imputed (Marchini and Howie, 2010).36

Whole-genome sequence (WGS) data does directly ascertain all genotype calls, but despite falling37

costs it is still very expensive on the sample sizes of modern GWAS studies (Supplementary38

Table S1). In contrast, studies looking at genetic variants and gene expression (eQTL studies)39

have discovered 1,000s of associations using few hundreds of samples, a scale at which collecting40

whole genome sequence data is feasible (Lappalainen et al., 2013).41

In this work we describe analysis combining for the first time two previously published42

datasets derived from individuals in the TwinsUK cohort: RNA-seq from four tissues (Brown43

et al., 2014; Buil et al., 2015) and WGS from the UK10K project (UK10K Consortium et al.,44
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2015). We explore the properties of causal variants using simulations, leading us to propose45

the CaVEMaN method (Causal Variant Evidence Mapping using Non-parametric resampling),46

which estimates the probability that a particular variant is causal. Application of this method47

allows us to produce a robust set of likely causal SNPs; this could be an important resource for48

developing methods to call personalised regulatory variants from whole-genome sequence and49

sequence annotations.50

In whole genome sequence every variant is directly measured, the degree to which this in-51

creases power to map eQTLs by removing noise from imputation errors is currently unknown.52

For a simple comparison, we mapped independent eQTLs within 1Mb of the transcription start53

site for protein coding genes and lincRNAs in four tissues (fat, lymphoblastoid cell lines (LCLs),54

skin and whole blood) using individuals for which expression, sequence and genotype array data55

were all available (N from 242 (whole blood) to 506 (LCLs)). Using an eQTL mapping strategy56

based on stepwise linear regression, we identify 27,659 independent autosomal eQTLs affect-57

ing 11,865 genes using whole genome sequence (8,690,715 variants), and 26,351 affecting 11,64258

genes using genotypes called from arrays and imputed into the 1000 Genomes Project Phase59

1 reference panel (6,263,243 variants) (Figure 1, an analysis of all individuals with expression60

and WGS data (N from 246-523) and including the X chromosome found 28,141 eQTLs affect-61

ing 12,243 genes). This means just a 3.7% increase in discovered eQTLs using WGS; balanced62

against at least a ten-fold increase in cost of collecting the data, it does not seem a worthwhile63

exercise yet.64

We frequently observe that the lead eQTL variant (LEV, by which we refer to the variant65

most associated with the trait) differs between the two datasets. As genotypic uncertainty66

should be reduced for WGS, due to lack of imputation biases, we expect the WGS LEVs to be67

the causal variant more frequently than LEVs from genotype arrays. To test this hypothesis, we68

looked for enrichment of WGS-derived LEVs relative to array-genotype-derived in biochemically69
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Figure 1: Number of autosomal eQTLs discovered in each tissue when genotype information is

provided by arrays imputed into a reference panel and by whole genome sequencing. There is a

modest (3.7%) increase in the number of eQTL discovered with WGS.
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active regions of the genome. Indeed, for 30 out of 31 experiments carried out by the Roadmap70

Epigenomics consortium (Roadmap Epigenomics Consortium et al., 2015) in relevant tissues,71

we see significant enrichment of sequence LEVs compared to genotype LEVs falling in DNase172

hypersensitivity sites (DHS) (Odds ratio, 1.17-1.40, Figure 2). From this we infer that the LEVs73

called with sequence are more likely the causal variant.74

To better understand properties of causal variants we simulated expression datasets where the75

causal variant is known, with properties matched to those of the LEVs from the original eQTL76

mapping with sequence genotypes (considering effect size, distance to the transcription start77

site and minor allele frequency). Repeating the eQTL mapping on these simulated datasets, we78

found that in 45% of cases the causal variant was the LEV. This number was consistent across79

tissues, despite sample size and power to map eQTLs being much reduced for whole blood80

(Supplementary Figure S1). This number is also similar to that obtained from the analysis of81

the Geuvadis data (55%), which used a different methodology based on difference in P values82

and enrichment in DHS. We also see a rapid decline when looking at lower ranked candidate83

variants, with the 10th most associated SNP being only causal in 1% of cases.84

Our simulations show that across all genes, the LEV is a strong candidate for the causal85

variant. However, when considering specific LEVs, causality for that variant will depend on the86

linkage disequilibrium structure around the true causal variant and phenotypic uncertainty for87

the expression of the gene of interest. For these reasons we developed the CaVEMaN method,88

which uses bootstrap methods (Visscher et al., 1996; Lebreton and Visscher, 1998) to estimate the89

probability that the LEV is the causal variant (see Supplementary Methods for methodological90

details).91

We have applied the CaVEMaN method to all four tissues and the Geuvadis LCL RNA-92

seq data (N = 445, results in Supplementary File 1). The distributions of probabilities that93

LEVs are causal are similar across tissues and studies (Figure 3). For 7.5% of the eQTLs the94
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Figure 2: Odds ratio and P value for enrichment of lead eQTL variant called from sequence

being located in DNase hypersensitivity sites (Roadmap Epigenomics Consortium et al., 2015)

relative to LEVs called from array derived genotypes. A total of 31 experiments related to the

tissue from which RNA-seq was collected were analysed, the code given relates to the Roadmap

Epigenomics code, Supplementary Table S2 lists the original experiment. All but enrichment of

skin eQTL in DHS assyed in NHDF-Ad Adult Dermal Fibroblast Primary Cells were Bonferroni

significant (P< 0.05).
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LEV has P > 0.8 of being the causal variant, we refer to these as High Confidence Causal95

Variants (HCCVs). For comparison, we applied the Caviar method (Hormozdiari et al., 2014)96

to the largest dataset (TwinsUK LCLs), restricting the analysis to all genes with only one eQTL97

to remove differences related to inferring presence of multiple eQTLs. Caviar, along with with98

equivalent Bayesian methods (Chen et al., 2015; Benner et al., 2016; Servin and Stephens, 2007),99

have previously been suggested as fine-mapping methods for estimating credible sets of SNPs100

with a given probability of containing the causal variant. There was good agreement on the101

causal probabilities of the LEV (spearman ρ = 0.856, P < 10−216, Supplementary Figure S3),102

but the Caviar method produced more conservative estimates of the causal probabilities (median103

probability 0.12 vs 0.29).104

To understand more about the relationship between causal regulatory variation and active105

genomic regions found by ChIP-seq in single individuals, we integrated our causal probabilities106

with DHSs from the Roadmap Epigenomics consortium. Figure 4 shows a simple linear relation-107

ship between the causal probability of the LEV and the probability that the LEV is located in108

a DHS. We can exploit the linear relationship to estimate the proportion of regulatory variants109

with causal probability 1 that lie within DHS identified by particular experiments. Figure 5110

shows that for all tissues except blood, only a minority of regulatory variants lie within DHS111

called by specific experiments. Blood eQTL, discovered in a smaller sample size than the other112

tissues, are more likely to have larger effect sizes and thus affect promoter activity, this is a113

possible explanation for the observed greater enrichment. It would be interesting to see whether114

when CaVEMaN is applied to larger eQTL datasets, with the power to discover eQTLs with115

more subtle effects, the proportion of causal regulatory variants in DHSs will be even lower, im-116

plying a limited utility of these regulatory annotations for interpretation of enhancer and weaker117

regulatory variants.118

It is widely known that associations with whole organism traits, as discovered by GWAS, are119
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Figure 3: Distribution of the CaVEMaN estimated causal probabilities for all lead eQTLs, broken

down by tissue.
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Figure 4: Probability of falling into a DHS is proportion to the CaVEMaN estimated causal

probability. The complete line represents the median result across experiments, where there are

more than one experiment for a given tissue, the dotted lines give the maximum and minimum

across tissues. A full list of experiments can be found in Supplementary Table S2.
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Figure 5: Estimated proportion of functional variants falling into regions identified by single

ChIP-seq experiments.
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enriched in eQTL (Manolio et al., 2009); by defining a set of eQTL where the causal variant is120

known we can pinpoint variants which could show greater enrichment (a shared GWAS-eQTL121

signal would not be diluted by linkage). In addition, by providing both a mediating gene and122

a variant causative for the expression signal, it is possible these results can provide a more123

mechanistic understanding of the GWAS signal. By using publicly available GWAS summary124

statistics from 16 studies (see Supplementary materials), we extracted P values for association125

for all of the LEVs and saw greater enrichment of small P values for HCCVs compared to all126

other eQTLs (π1 = 16.2 compared with π1 = 14.0, estimated using qvalue (Storey et al., 2015)).127

Greater enrichment was also observed when considering the proportion of shared signals between128

GWAS associations with P < 5× 10−8 listed in the NHGRI catalogue and eQTL falling in the129

same recombination hotspot (16.0% of proximal HCCVs and GWAS associations were shared,130

compared to 2.49% for all other eQTLs, estimated using the Regulatory Concordance method,131

RTC, (Nica et al., 2010; Ongen et al., 2016a)). Considering all HCCVs with a Bonferroni132

significant GWAS association (P < 3 × 10−6), we found associations between 53 eQTL and 65133

GWAS traits (Figure 6, Supplementary File 2).134

Given these examples of variants with highly confident causal effects on expression and135

statistical associations with GWAS traits, functional evidence connecting the expression of the136

gene with the trait would also implicate a causal link between variant and trait. For example,137

a HCCV (rs10274367) associated with GPER in is also associated with levels of high-density138

lipoprotein (HDL) cholesterol. Female knock-out mice for the gene also show a decrease in139

HDL levels (Sharma et al., 2013). We also found rs1805081 to be both a HCCV for NPC1,140

as well as the lead associated variant with BMI in a large GWAS study (Meyre et al., 2009).141

Heterozygous mouse models (Npc1+/-), where the gene is expressed at half normal levels, observe142

large weight gain on high fat diets but not on low fat diets (Jelinek et al., 2010, 2011), and it143

has also been observed that higher levels of NPC1 in human adipose tissue normalise after144
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bariatric surgery and behavioural modification (Bambace et al., 2013). In this example, the145

expression of NPC1 is modified by rs1805081 and hypothesised to be a response to changes in146

BMI. Expression changes in NPC1 then seem to be part of a compensatory mechanism to modify147

the weight gain due to dietiary excesses and the result of diet-by-genotype interactions. Finally,148

rs4702 is a HCCV affecting expression of the FURIN gene in our analysis and was the lead149

variant in the GWAS study of schizophrenia (Schizophrenia Working Group of the Psychiatric150

Genomics, 2014). Following up this association, altering the expression of FURIN was seen to151

produce neuro-anatomical deficits in zebrafish and abnormal neural migration in human induced152

pluripotent stem cells (Fromer et al., 2016).153

In summary, we have produced a method to estimate the probability that the lead eQTL154

variant is the causal variant. We have used this method to estimate the effectiveness of ChIP-seq155

experiments from a single individual in predicting regions which harbour regulatory variation,156

and also to suggest variants which may be causal for GWAS associations. This method could also157

be applied to GWAS studies, to learn candidate causal variants for whole organism traits. It is158

clear that pinpointing the causal variant in such studies will not only facilitate the integration of159

these association signals with mechanistic regulatory interactions and likely upstream regulators,160

but will also allow the development of interpretation methods from genome sequence alone once161

a large number of representative causal variants have been discovered.162
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Supplementary materials177

TwinsUK data178

Expression179

RPKM expression quantifications used in this paper have been previously analysed (Brown et al.,180

2014; Buil et al., 2015). In short, eight hundred and fifty-six female twins were recruited from181

the TwinsUK Adult twin registry and punch biopsies (8 mm) were taken from a photo-protected182

area adjacent and inferior to the umbilicus. Subcutaneous adipose tissue was separated from skin183

tissue, and both samples were weighed and immediately stored in liquid nitrogen. Peripheral184

blood samples were also collected, and the European Collection of Cell Cultures agency generated185

LCLs by transforming the B-lymphocyte component using the Epstein-Barr virus. The Illumina186

TruSeq sample preparation kit (Illumina, San Diego, CA) was used to prepare samples according187

to manufacturer’s instructions, which were then sequenced on a HiSeq2000 machine. The 49-188

bp sequenced paired-end reads were mapped to the GRCh37 reference genome (Lander et al.,189

2001) with bwa v0.5.9 (Li and Durbin, 2009). Genes were quantified using the GENCODE v10190

annotation (Harrow et al., 2012), and genes defined as protein coding or long non-coding RNA191

(linc RNA) with less than 10% zero read count were kept. RPKM values were scaled and centred192

to have mean 0, variance 1 and the first 25 principal components were removed from the whole193

blood expression and 50 from the other tissues (choice of number of PCs was made a priori194

based on sample size). Family structure was removed by taking the residuals of an lme4 model195

(Bates et al., 2014) in which family and zygosity were modelled using random effects. Finally,196

to remove outlier effects, expression quantifications for each gene were mapped onto a normal197

distribution with mean 0 and variance 1.198
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Genotyping and genome sequencing.199

Genotypes called from arrays200

A combination of the HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo Illumina arrays201

were used to genotype samples. This data was then pre-phased using IMPUTE2 (Howie et al.,202

2012) and then imputed using the 1000 Genomes Project Phase 1 reference panel (data freeze 10203

November 2010, (Abecasis et al., 2012)). For analysis the genotypes were filtered, leaving SNPs204

with minor allele frequency > 0.01 and IMPUTE info value > 0.8. This data has previously205

been analysed (Brown et al., 2014; Buil et al., 2015).206

Genotypes called from sequencing207

The vcf files, produced by the UK10K consortium (UK10K Consortium et al., 2015), were208

downloaded from the European Genome-phenome Archive. When one monozygotic twin in209

the sample had been sequenced, the same sequence data was used for the genetically identical210

sibling. Of the 856 individuals with expression, 552 has available sequence data. For multiallelic211

variants, dosage was calculated as 2 number of copies of the most common allele. Variants were212

filtered if the major allele had a frequency > 0.99.213

Ethics statement214

The St. Thomas’ Research Ethics Committee (REC) approved on 20 September 2007 the pro-215

tocol for the dissemination of data, including DNA, with REC reference number RE04/015.216

On 12 March 2008, the St Thomas’ REC confirmed that this approval extended to expression217

data. Volunteers gave informed consent and signed an approved consent form before the biopsy218

procedure. Volunteers were supplied with an appropriate detailed information sheet regarding219

the research project and biopsy procedure by post before attending for the biopsy. Consent to220

link the RNA-seq data with the whole genome sequence data was approved by the TwinsUK221
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Resource Executive Committee (TREC) on 22nd April 2015.222

Geuvadis data223

BAM files for the RNA-seq were downloaded from EBI ArrayExpress, accession code E-GEUV-224

3. These files were mapped to the GRCh37 reference genome (Lander et al., 2001) using GEM225

version 1.7.1 (Marco-Sola et al., 2012), and protein coding and linc RNAs were quantified using226

the GENCODE v19 annotation (Harrow et al., 2012). Population group was regressed out of227

RPKM values as fixed effects in a linear model, values were then centred and scaled to mean228

0, variance 1, and 50 principal components were removed. Genotype vcf files from phase 3 of229

the 1000 Genomes project (1000 Genomes Project Consortium et al. 2015) were downloaded230

from the 1000 Genomes website. In non-pseudo autosomal regions of the X chromosome, male231

dosage was calculated as twice the number of copies of the alternate allele (hence treating it as232

homozygous with two copies). A minor allele frequency cut off of 0.01 was applied.233

eQTL mapping234

eQTLs were mapped using fastQTL (Ongen et al., 2016b). To discover multiple independent235

eQTLs a stepwise regression procedure was applied. Firstly, for each tissue, fastQTL was run236

with 10,000 permutations to discover a set of eGenes (FDR < 0.01). Then, the maximum237

beta-adjusted P value (correcting for multiple testing across the SNPs) over these genes was238

taken as the gene-level threshold. The next stage proceeded iteratively for each gene. At each239

iteration a cis scan of the window was performed, using 10,000 permutations and correcting for240

all previously discovered SNPs. If the beta adjusted P value for the LEV was not significant241

at the gene-level threshold, the forward stage was complete and the procedure moved on to the242

backward step. If this P value was significant, the LEV was added to the list of discovered243

eQTLs as an independent signal and the forward step proceeded to the next iteration.244
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Once the forward stage was complete for a given gene, a list of associated SNPs was produced245

which we refer to as forward signals. The backwards stage consisted of testing each forward signal246

separately, controlling for all other discovered signals. To do this, for each forward signal we ran247

a cis scan over all variants in the window using fastQTL, fitting all other discovered signals as248

covariates. If no SNP is significant at the gene-level threshold the signal being tested is dropped,249

otherwise the LEV from the scan was chosen as the variant that represented the signal best in250

the full model.251

Enrichment analysis252

Bed files listing DNase hypersensitivity sites, produced by the Roadmap Epigenomics consortium253

(Roadmap Epigenomics Consortium et al. 2015), were downloaded from the NCBI ftp site).254

Experiments were linked to tissues from which RNA-seq was available using Table S2. Over each255

ChIP-seq RNA-seq combination, the odds ratio for enrichment was calculated from the number256

of LEVs called using sequence and the number of LEVs called using array-based genotypes falling257

within regions called in the experiment and the total numbers of eQTLs. A Fishers Exact test258

was performed to test the hypothesis that equal proportions of sequence and genotype LEVs259

were falling in these regions.260

Simulations261

For all discovered, independent eQTLs, the LEV for association was identified and its minor262

allele frequency and distance to the transcription start site calculated. In addition, beta and263

sigma coefficients from a regression of expression on the LEV were also estimated. Then a264

matched SNP was chosen, with a distance to transcription start site of a protein coding or linc265

RNA gene within 1 kb of the original, and minor allele frequency within 0.025. Then, simulated266

expression was produced by multiplying SNP genotype by beta and adding a random normally267
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distributed term with a standard error of sigma. Five simulated datasets were produced for each268

TwinsUK tissue, eQTL mapping was applied to each looking only for primary eQTLs, and the269

rank of the nominal P value for association was collected.270

CaVEMaN271

Firstly, we used the simulations to estimate the probability the causal variant would be the ith272

ranked SNP in an eQTL mapping by calculating the proportion of times this occurred across all273

tissues and simulations (this quantity is denoted pi, Supplementary Figure S1). As CaVEMaN274

focuses on the top 10 ranked variants from an eQTL analysis, pi, i from 1 to 10, were normalised275

to sum to 1.276

CaVEMaN is based on the premise that there is exactly one genetic signal in the cis window277

of the gene. For the cases where multiple eQTLs have been discovered for a given gene, we278

created new single signal expression phenotypes. For each eQTL this was made by regressing279

out all other eQTLs discovered for the gene, preserving only one genetic signal.280

This new matrix of expression data was sampled with replacement 10,000 times to create281

10,000 new datasets of the same size. A cis eQTL mapping was run on each of these 10,000282

datasets, and the proportion of times a given SNP was ranked i, I from 1 to 10 was calculated283

(denoted Fi, this is an estimate of the probability that SNP would be the rank i most associated284

SNP). The CaVEMaN score was then defined as
∑10

i piFi.285

Finally, we further exploited the simulations to calibrate the CaVEMaN score of the LEV.286

CaVEMaN was run on all simulated data. Then, across all simulated datasets (removing blood287

as this was an outlier resulting in less conservative estimates of causal probabilities) we divided288

the CaVEMaN scores of the LEVs into twenty quantiles. Within each quantile, we calculated289

the proportion of times the lead SNP was the causal SNP and then drew a monotonically290

increasing smooth spline from the origin, through the 20 quantiles, to the point (1, 1) using291
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the gsl interpolate functions with the steffen method (gsl-2.1, Supplementary Figure S2). This292

function provides our mapping of CaVEMaN score of the lead SNP onto causal probabilities,293

and we applied this function to the CaVEMaN scores of the LEV to estimate their causal294

probabilities.295

Code for correcting the expression datasets for multiple eQTLs, running the CaVEMaN296

method and converting the CaVEMaN score to a causal probability can be found here:297

https://github.com/funpopgen/CaVEMaN.298

Caviar299

For genes with an eQTL in LCLs, we applied Caviar (Hormozdiari et al., 2014) to produce300

another estimate of causal variant probability for comparison. As Caviar is limited in the301

number of SNPs it can analyse, we first extracted all variants with P < 0.01, up to the first 50.302

The Z scores for these variants were produced, with the correlation matrix of these SNPs, and303

Caviar was run with the default settings.304

GWAS analysis305

We have downloaded the GWAS summary statistics for 16 different GWAS traits: autism (Robin-306

son et al., 2016), birth weight (Horikoshi et al., 2016), body mass index (analysing all ancestries)307

(Locke et al., 2015), coronary artery disease (Nikpay et al., 2015), Crohns disease (Liu et al.,308

2015), diabetes (Fuchsberger et al., 2016), fasting glucose (Manning et al., 2012), fasting insulin309

(Manning et al., 2012), height (Wood et al., 2014), high-density lipoprotein (Global Lipids Ge-310

netics Consortium et al., 2013), irritable bowel disease (Liu et al., 2015), low-density lipoprotein311

(Global Lipids Genetics Consortium et al., 2013), schizophrenia (Schizophrenia Working Group312

of the Psychiatric Genomics, 2014), total cholesterol (Global Lipids Genetics Consortium et al.,313

2013), triglycerides (Global Lipids Genetics Consortium et al., 2013), and ulcerative colitis (Liu314
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Study Trait Sample size Associations Estimated Cost∗

GIANT BMI 339,224 97 $339,224,000

PGC Schizophrenia 150,064 128 $150,064,000

MAGIC Glycemic traits 133,010 53 $133,010,000

TwinsUK expression LCL expression 814 9,555 $814,000

Table S1: Estimated costs of collecting whole genome sequence data at GWAS scale relative to

expression (WGS is generously priced at $1,000 a genome). Twins UK expression refers to the

study published in Buil et al. (2015).

et al., 2015). For all LEVs, the P value for each trait was extracted (if available) and the315

qvalue package (Storey et al., 2015) was used to estimate π1 = 1 − π0, the proportion of of316

alternate hypotheses (i.e., association between variant and GWAS trait). Finally, Bonferroni317

significant GWAS associations for HCCVs were reported, controlling for multiple testing across318

all phenotypes and variants.319

In addition, we downloaded the NHGRI-EBI Catalog of reported genome-wide significant320

associations from the EBI website on the 27th September 2016 and removed all with P > 5×10−8321

and where the variant was not listed in dbSNP build 148 (Sherry et al., 2001), leaving 11,636322

reported associations. RTC, as implemented in QTLtools (Delaneau et al., 2016), was applied323

with the default settings to look for sharing of these GWAS variants with the discovered eQTLs.324

As the RTC statistic is uniformly distributed under the null hypothesis of two separate causal325

loci, independently located within the hotspot, 1 - RTC can be interpreted as a P value for a326

shared causal variant. The qvalue package (Storey et al., 2015) was then used to estimate π1,327

the proportion of GWAS/eQTLs signals in the same recombination interval which were caused328

by the same underlying variants.329

330
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Figure S1: Based on 5 simulations per tissue, the x axis shows the rank of the causal variant,

and the y axis the proportion of times this outcome occurred. We notice that, as the whole

blood experiment was smaller than the other experiments, sample size does not seem to affect

the distribution.
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Figure S2: The CaVEMaN score is calibrated using the simulations to estimate the probability

that the LEV is causal. The estimated calibration functions are consistent across tissues, with

the exception of blood which is less conservative than the other tissues.
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Figure S3: CaVEMaN scores compared to Caviar probabilities for genes with only one eQTL.
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Roadmap Epigenomics experiment RNA-seq tissue Roadmap Epigenomics code

Primary mononuclear cells from peripheral blood Whole blood E062

Primary T cells from peripheral blood Whole blood E034

Primary T cells effector/memory enriched from peripheral blood Whole blood E045

Primary T cells from cord blood Whole blood E033

Primary T regulatory cells from peripheral blood Whole blood E044

Primary T helper cells from peripheral blood Whole blood E043

Primary T helper naive cells from peripheral blood Whole blood E039

Primary T helper cells PMA-I stimulated Whole blood E041

Primary T helper 17 cells PMA-I stimulated Whole blood E042

Primary T helper memory cells from peripheral blood 1 Whole blood E040

Primary T helper memory cells from peripheral blood 2 Whole blood E037

Primary T CD8+ memory cells from peripheral blood Whole blood E048

Primary T helper naive cells from peripheral blood Whole blood E038

Primary T CD8+ naive cells from peripheral blood Whole blood E047

Primary monocytes from peripheral blood Whole blood E029

Primary B cells from peripheral blood Whole blood E032

Primary Natural Killer cells from peripheral blood Whole blood E046

Primary neutrophils from peripheral blood Whole blood E030

Monocytes-CD14+ RO01746 Primary Cells Whole blood E124

GM12878 Lymphoblastoid Cells TwinsUK-LCLs E116

GM12878 Lymphoblastoid Cells Geuvadis-LCLs E116

Foreskin Fibroblast Primary Cells skin01 Skin E055

Foreskin Fibroblast Primary Cells skin02 Skin E056

Foreskin Melanocyte Primary Cells skin01 Skin E059

Foreskin Melanocyte Primary Cells skin03 Skin E061

Foreskin Keratinocyte Primary Cells skin02 Skin E057

Foreskin Keratinocyte Primary Cells skin03 Skin E058

NHDF-Ad Adult Dermal Fibroblast Primary Cells Skin E126

NHEK-Epidermal Keratinocyte Primary Cells Skin E127

Adipose Derived Mesenchymal Stem Cell Cultured Cells Subcutaneous adipose E025

Mesenchymal Stem Cell Derived Adipocyte Cultured Cells Subcutaneous adipose E023

Adipose Nuclei Subcutaneous adipose E063

Table S2: Relevant Roadmap Epigenomics consortium DNAse Hypersensitivity site experiments

with code for each analysed RNA-seq experiments. Experiment E116 was used to analyse both

TwinsUK and Geuvadis LCLs, all other experiments were specific to one tissue.
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