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Abstract

Phylodynamic models are widely used in infectious disease epidemiology to infer the dynamics
and structure of pathogen populations. However, these models generally assume that individual
hosts contact one another at random, ignoring the fact that many pathogens spread through
highly structured contact networks. We present a new framework for phylodynamics on local
contact networks based on pairwise epidemiological models that track the status of pairs of
nodes in the network rather than just individuals. Shifting our focus from individuals to pairs
leads naturally to coalescent models that describe how lineages move through networks and the
rate at which lineages coalesce. These pairwise coalescent models not only consider how network
structure directly shapes pathogen phylogenies, but also how the relationship between
phylogenies and contact networks changes depending on epidemic dynamics and the fraction of
infected hosts sampled. By considering pathogen phylogenies in a probabilistic framework, these
coalescent models can also be used to estimate the statistical properties of contact networks
directly from phylogenies using likelihood-based inference. We use this framework to explore
how much information phylogenies retain about the underlying structure of contact networks
and to infer the structure of a sexual contact network underlying a large HIV-1 sub-epidemic in
Switzerland.

Introduction 1

From the viewpoint of an infectious pathogen, host populations are highly structured by the 2

physical contacts necessary for disease transmission to occur. For pathogens whose transmission 3

does not require intimate or sustained physical contact, random mixing models assuming 4

contacts form instantaneously between individuals may offer a reasonable approximation to the 5

true dynamics of person-to-person contact. But for sexually-transmitted infections (STIs) and 6

many other pathogens, the contacts required for transmission are generally more limited in 7

number, less transient in nature, and form non-randomly based on individual 8

behavior—resulting in host populations that are highly structured locally at the level of 9

individuals [1–4]. For such pathogens, it is more reasonable to view communities as networks of 10

individuals connected by edges that represent the physical contacts through which transmission 11

can occur. Through the study of theoretical network models, epidemiologists now understand 12

that contact network structure has a profound influence on epidemic dynamics and whether or 13

not control strategies will be effective [5–9]. Yet studying the structure of contact networks 14

empirically through methods such as contact tracing is difficult and costly, meaning we still 15

know relatively little about real-world contact networks [10,11]. 16
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New hope for the empirical study of contact networks has emerged in recent years from the 17

widespread availability of pathogen molecular sequence data. In molecular epidemiology, 18

sequence data is already commonly used to link individuals into probable transmission pairs or 19

clusters based on the phylogenetic distances between their pathogens. While such approaches do 20

not directly reveal the structure of contact networks, they can reveal paths in the contact 21

network through which the pathogen spread and provide a useful heuristic for assessing how well 22

connected networks are within and between different subpopulations or risk-groups [12–14]. 23

Other methods in molecular epidemiology attempt to reconstruct the full details of the 24

underlying transmission tree, the directed graph showing exactly who infected whom in an 25

outbreak [15–20]. Essentially though, all current methods for inferring linkage and transmission 26

trees take a bottom-up approach—they attempt to reconstruct routes of transmission by linking 27

sampled individuals based on their phylogenetic distance. While this can be a powerful approach 28

for studying densely sampled outbreaks where most infected individuals are sampled, bottom-up 29

approaches may provide misleading results when applied to sparsely sampled epidemics. In this 30

case, two infected individuals may have pathogens that are most closely related to one another 31

phylogenetically but an unknown number of intervening infections might separate them in the 32

true transmission tree. Thus the phylogenetic proximity of individuals may only weakly 33

correlate with their proximity in the transmission tree, making it very difficult to reconstruct 34

the detailed transmission history of who infected whom. 35

While it may not be possible to reconstruct the detailed structure of transmission networks 36

from sparsely sampled data, it may still be possible to infer large-scale properties of contact 37

networks. By simulating the phylogenetic history of pathogens spreading through networks, 38

recent studies have shown that network properties can exert a strong influence on the structure 39

of phylogenetic trees [21–23]. For example, increasing levels of contact heterogeneity—variation 40

in the number of contacts individuals form—can result in increasingly asymmetric or imbalanced 41

trees and shift the distribution of coalescent (i.e. branching) events earlier towards the beginning 42

of an epidemic [21,22]. However, statistical measures of tree topology like imbalance may only 43

weakly correlate with network statistics like contact heterogeneity, and may be highly dependent 44

on how samples are collected [23]. Moreover, in addition to network structure, population 45

dynamics also strongly shape phylogenies and therefore potentially confound inferences of 46

network structure drawn from phylogenies [23]. For example, clustering of samples together in 47

phylogenetic trees has previously been assumed to indicate clustering of individuals in the 48

underlying contact network, but phylogenetic clustering can arise naturally in epidemics even 49

when no measurable degree of clustering exists in a population [24]. Taken together then, 50

previous work suggests that contact network structure can shape pathogen phylogenies, but we 51

do not yet know how to properly extract this information from trees. 52

In this paper, we present a new theoretical framework for relating pathogen phylogenies to 53

contact networks using phylodynamic modeling. Our approach is quite different from bottom-up 54

approaches in that it does not attempt to reconstruct the details of person-to-person 55

transmission. Rather, we start with a random graph model [25] that captures the important 56

statistical properties of real-world networks. We then use pairwise epidemic models [26–28] to 57

capture the population dynamics of an epidemic on a network with the statistical properties 58

specified by the random graph model. In addition to tracking the infectious status of individuals, 59

these pairwise models track the status of pairs of individuals and thereby correlations in the 60

infectious status of neighboring individuals, such as the depletion of susceptible hosts around 61

infected individuals. Analogously, by shifting our focus from the level of individuals to the level 62

of pairs, we derive a relatively simple coalescent model that captures a pathogen’s phylogenetic 63

history as a backwards-time dynamical process on a network. The pairwise coalescent model 64

naturally takes into account incomplete sampling and how network structure and epidemic 65

dynamics interact to shape pathogen phylogenies. By considering phylogenies in a probabilistic 66

framework, the pairwise coalescent model also allows us to compute the likelihood of a given 67

phylogeny evolving on a network with defined statistical properties, and therefore to estimate 68

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2016. ; https://doi.org/10.1101/082966doi: bioRxiv preprint 

https://doi.org/10.1101/082966
http://creativecommons.org/licenses/by-nc-nd/4.0/


the structure of networks from phylogenies using likelihood-based inference. 69

How local contact network structure shapes pathogen phylogenies has received some 70

attention in recent years [21–23], but has not been comprehensively studied. After deriving the 71

pairwise coalescent model, we therefore begin by using simulations to explore how network 72

properties such as overall connectivity, clustering, contact heterogeneity and assortativity shape 73

phylogenies. Using these simulations, we demonstrate that the pairwise coalescent model 74

captures how these network properties shape phylogenies in terms of coalescent times, how 75

lineages move through a network, and overall tree topology. We then go on to show that the 76

model can be used to accurately estimate network properties from phylogenies, although how 77

precisely depends strongly on sampling effort. Finally, we have implemented the model in 78

BEAST 2 [29] as a package called PairTree, which we use to estimate the structure of a contact 79

network underlying a large HIV sub-epidemic in Switzerland. 80

Models and Methods 81

Our phylodynamic modeling framework is composed of three interacting components. The first 82

two components, random graph and pairwise epidemic models, are well described in the 83

literature and we only briefly review the necessary concepts and notation here. Instead, we focus 84

on the third and novel component of our framework, the pairwise coalescent model, which we 85

derive from the pairwise epidemic model. 86

Random graph models 87

In network epidemiology, random graph models are often used to model the large-scale 88

statistical properties of networks while treating the fine-scale details of who is connected to 89

whom as random. Random graph models can therefore be thought of as a probability 90

distribution on graphs constrained to take on certain statistical properties. Here, we use the 91

configuration model [30] and extensions thereof to model network structure and generate 92

random graphs parameterized to vary in overall connectivity, contact heterogeneity, clustering 93

and assortative mixing. 94

A. Connectivity 95

Connectivity quantifies how well-connected individual nodes are in a network in terms of their 96

degree, or number of contacts. In the simplest case of the configuration model, all N nodes are 97

assigned a fixed degree k̂ and then randomly connected to other nodes through edges, resulting 98

in a homogenous or k-regular random graph. The parameter k̂ therefore quantifies the overall 99

connectivity of the network. 100

B. Clustering 101

Clustering is defined as the probability that two nodes connected to a common neighbor are also 102

connected to one another, and therefore quantifies how locally interconnected networks are [26]. 103

Clustering can be quantified in terms of a clustering coefficient φ: 104

φ =
3× number of triangles

number of connected triples
, (1)

where a triangle refers to a closed loop of three connected nodes and a triple to three linearly 105

connected nodes [25]. 106

To introduce clustering into random networks, we use the triangular configuration 107

model [31,32]. Under this model, rather than defining the degree distribution dk, we define a 108

joint degree distribution dst on the probability that a node is connected to s neighbors not 109
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forming triangles and 2t other neighbors through triangles, and thus has total degree k = s+ 2t. 110

As shown by [32], given dst and the overall degree distribution dk, the expected clustering 111

coefficient is 112

E(φ) =

∑
s,t tdst∑
k

(
k
2

)
dk
. (2)

C. Contact heterogeneity 113

Contact heterogeneity refers to variation in the number of contacts individuals form in a 114

network and can be quantified by the variance σ2
k in the degree distribution dk. Networks with 115

any arbitrary degree distribution can be generated under the standard configuration model by 116

assigning each node n = 1, 2, ..., N a degree according to a random degree sequence k1, k2, ..., kN 117

drawn from dk. Each individual node n is then randomly joined to kn other nodes to form the 118

edges of the network. 119

D. Assortative mixing 120

Assortative mixing is the tendency for individuals to form connections with individuals similar 121

to themselves, leading to correlations between the properties of adjacent nodes in a network [25]. 122

Here, we consider assortative mixing by node degree. To introduce correlations in the degree of 123

connected nodes, we specify the edge degree distribution ekl, which gives the probability of a 124

randomly chosen edge connecting a degree k to a degree l node. The strength of assortative 125

mixing can be quantified in terms of the assortativity coefficient r given ekl and dk: 126

r =

∑
kl kl(ekl − dkdl)

σ2
k

. (3)

Thus, r can also be interpreted as the Pearson correlation coefficient in the degree of nodes 127

connected by edges in the network. 128

To get a one-parameter random graph model that allows for the strength of assortative 129

mixing to vary based on r, we follow [33] and constrain each entry in ekl to follow the form 130

ekl = dkdl + rσ2
k(dk − xk)(dl − xl), (4)

where xk is a normalized distribution chosen such that ekl is never negative. To our knowledge, 131

there is no algorithm that allows for direct simulation of networks from the distribution over 132

graphs defined by ekl. We therefore sample networks using the Metropolis-Hastings sampler also 133

proposed by [33] that iteratively rewires networks until convergence on a target distribution 134

defined by ekl is reached. 135

Pairwise epidemic model 136

The second component of our modeling framework consists of epidemiological models that 137

describe the dynamics of a pathogen spreading through a network with statistical properties 138

specified by a random graph model. As in standard SIR-type epidemiological models, we track 139

the infection status of each node or host as susceptible or infected, along with an optional 140

recovered class. We use the notation [Sk] and [Ik] to denote the number of degree k susceptible 141

and infected individuals; [SkIl] denotes the the number of pairs or edges in the network 142

connecting Sk and Il individuals. At the level of individuals, the epidemic dynamics are 143

described by the following differential equations: 144

d[Sk]

dt
= −τ

∑
l

[SkIl] + {ν[Ik]} (5)

d[Ik]

dt
= τ

∑
l

[SkIl]− ν[Ik]
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Here, τ is that rate at which infected individuals transmit to their neighbors and ν is the 145

recovery rate. Terms in braces are either present if there is no immunity (the SIS model) or 146

absent if infection is completly immunizing (the SIR model). 147

As seen from Eq (5), the transmission dynamics depend on the [SkIl] terms and thus how 148

individuals are connected into pairs or partnerships. We therefore need to track the dynamics at 149

the level of pairs: 150

d[SkSl]

dt
= −τ

∑
m

([SkSlIm] + [ImSkSl]) + {ν([SkIl] + [IkSl])}

d[SkIl]

dt
= τ

∑
m

([SkSlIm]− [ImSkIl])− τ [SkIl]− ν[SkIl] + {ν[IkIl]} (6)

d[IkIl]

dt
= τ

∑
m

([IkSlIm] + [ImSkIl]) + τ([SkIl] + [IkSl])− 2ν[IkIl]

These are the pairwise network equations introduced by [26] and extended to heterogenous 151

contact networks by [28]. By tracking the status of pairs rather than just individuals, the 152

pairwise equations take into account local correlations that build up over time between the 153

infection status of neighboring nodes; hence their other common name, correlation 154

equations [27]. These local correlations arise because a node’s infection status depends strongly 155

on the status of its neighbors. For example, early on in an epidemic positive correlations develop 156

between infected individuals, reflecting the fact that infected individuals are likely to be 157

surrounded by other infected individuals who either infected them or became infected by them. 158

Because these correlations can have a strong impact on epidemic dynamics, such as through the 159

local depletion of susceptible nodes surrounding infected nodes, tracking these correlations 160

allows pairwise models to more accurately describe epidemic dynamics on networks. 161

While the dynamics at the level of pairs depends on the number of triples such as [SkSlIm], 162

which in turn depends on even higher-order configurations, previous work has shown that 163

moment closure methods can be used to approximate the number of triples based on the number 164

of pairs without much loss of accuracy [28,34]. We thus “close” the system at the level of pairs 165

by approximating each triple of arbitrary type [ABC] as: 166

[ABC] =
l − 1

l

[AB][BC]

[B]

(
(1− φ) +

N

l

[AC]

[A][C]
φ

)
, (7)

where l is the degree of the central node in state B. By taking into account the clustering 167

coefficient φ, this moment closure takes into account additional state correlations that can arise 168

between three nodes when there is appreciable clustering in the network [26,27] 169

Pairwise coalescent model 170

The third and novel component of our modeling framework are coalescent models that allow us 171

to probabilistically relate the phylogenetic history of a pathogen back to the dynamics of an 172

epidemic on a network. In essence, these coalescent models provide a probability distribution 173

over trees on random networks, and therefore allow us to compute the likelihood of a given 174

phylogeny having evolved on a network. While coalescent theory has previously been extended 175

to accommodate the nonlinear transmission dynamics of infectious pathogens [35–38], these 176

coalescent models assume random mixing, at least within discrete subpopulations, and therefore 177

neglect local contact network structure. Below, we extend the structured coalescent models 178

of [38] to include local contact network structure by shifting our focus from the level of 179

individuals to pairs of hosts in the network. 180

The likelihood of a phylogeny T under a structured coalescent model with parameters θ has 181
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the general form: 182

L(T |θ) =
M−1∏
m=1

λij(tm) exp

−∫ s=tm+1

s=tm

m+1∑
i

m+1∑
j>i

λij(s)ds

. (8)

For a tree containing M samples, the total likelihood is the product of the likelihood of each of 183

the M − 1 coalescent events and the waiting times between events. The likelihood of each 184

coalescent event is given by the rate λij(tm) at which lineages i and j coalesce at the time of the 185

event tm. 186

The pairwise coalescent rates λij are centrally important to our model as they are required to 187

compute the likelihood in Eq (8) and provide the main link between the epidemic dynamics and 188

the coalescent process. To derive these rates, we begin by making the simplifying assumption 189

common in phylodynamics that only a single pathogen lineage resides in each infected host. 190

While this assumption ignores within-host pathogen diversity, it dramatically simplifies the 191

relationship between transmission events and coalescent events in the pathogen phylogeny: each 192

coalescent event in the phylogeny will represent a transmission event on the network. Below, we 193

use this relationship to derive the pairwise coalescent rates λij for pairs of lineages. 194

Pairwise coalescent rates 195

To derive the pairwise coalescent rate λij , we first need to consider the probability that lineages 196

i and j coalesce conditional on a transmission event occurring somewhere in the network. In 197

order for two lineages to coalesce at a transmission event from an individual with l contacts to 198

an individual with k contacts, we can reason that at the time of the event three conditions must 199

hold: 200

1. The two lineages must be in two infected individuals, one with k and the other with l 201

contacts. 202

2. The two lineages must reside in two nodes connected in a IkIl pair. 203

3. The two lineages must be in the specific IkIl pair involved in the transmission event. 204

We note that each of these conditions must be met in turn for the remaining conditions to be 205

met. We will therefore consider the probability that each of these conditions is true in turn 206

conditional on the preceding conditions having been met. 207

First, consider the probability that lineages i and j are in two infected individuals; one in a 208

Ik node and the other in a Il node. In general, we will not know the degree of the infected node 209

in which the lineage resides (for shorthand, we will refer to this as the lineage’s state). We must 210

therefore treat the state of lineages probabilistically and will use the notation pik to represent 211

the probability that lineage i resides in a degree k infected node. The probability Pkl that 212

lineages i and j reside in nodes with degrees k and l is then equal to the probability that lineage 213

i is in state k and lineage j is in state l or vice versa, such that 214

Pkl =

{
pikpjl + pilpjk, if k 6= l

pikpjl, if k = l.
(9)

Second, consider the probability that lineages i and j reside in two nodes connected in a IkIl 215

pair. The total number of possible pairs between Ik and Il nodes is [Ik][Il] if k 6= l or
(
[Ik]
2

)
if 216

k = l. Because pairs are assumed to form randomly under our random graph models, the 217

probability χkl that a randomly chosen Ik node is connected to a random Il node in a IkIl pair 218

is: 219

χkl =


[IkIl]
[Ik][Il]

, if k 6= l

[IkIl]

([Ik]
2 )
, if k = l.

(10)
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Given that our two lineages reside in Ik and Il nodes, then the probability that our lineages 220

reside in a IkIl pair is χkl. 221

Third, given that lineages i and j are in two nodes that form a IkIl pair, the probability that 222

it is this pair out of all IkIl pairs in the network that was involved in a given transmission event 223

is simply 1/[IkIl]. 224

These three probabilities collectively give the probability that lineages i and j coalesce at a 225

particular transmission event. Multiplying these probabilities by the total rate at which degree l 226

nodes transmit to degree k nodes, the rate at which lineages i and j coalesce through l→ k 227

transmission events is: 228

λl→k
ij =

τ [SkIl]χkl

[IkIl]
Pkl. (11)

Summing over all possible transmission events with respect to the degree of the nodes 229

involved, we arrive at the total pairwise coalescent rate: 230

λij =
∑
k

∑
l

τ [SkIl]χkl

[IkIl]
Pkl. (12)

The likelihood given in Eq (8) can then be computed by plugging in λij(t) for each lineage pair 231

after numerically integrating the ODEs for [SkIl] and [IkIl] given in Eq (6) up to time t. 232

For a homogenous network where all nodes have the same degree k̂, Eq (12) simplifies to 233

λij =
τ [SI]χ

[II]
. (13)

In a fully connected network where each node has degree k̂ = N − 1, every node is connected 234

to every other node. In this limiting case, we expect the dynamics of an epidemic on a network 235

to be the same as under a random mixing model with a transmission rate β scaled so that 236

infectious contacts occur at the same rate under both models. In this case, the probability that 237

two random infected nodes are connected in a pair χ⇒ 1, [SI]⇒ SI, and [II]⇒
(
I
2

)
. Making 238

these substitutions in Eq (13), we see that 239

λ =
τ [SI]χ

[II]
⇒ βSI(

I
2

) ≈ 2βS

I
. (14)

This is the same pairwise coalescent rate derived by [35] for a random mixing SI(R) model. We 240

therefore see that the pairwise coalescent model and earlier coalescent models assuming random 241

mixing converge in the limit of a fully connected network. 242

Tracking lineage movement 243

We now consider how individual pathogen lineages move through a network. Because we need to 244

know the probabilities pik of a lineage residing in a degree k host in order to compute the 245

pairwise coalescent rates given in Eq (12), we probabilistically track the movement of lineages by 246

tracking how pik changes backwards through time along a lineage using a framework based on 247

master equations previously developed by [38]. These master equations have the general form 248

d

dt
pik =

∑
l

(
γk←lpil − γl←kpik

)
, (15)

where γk←l is the rate at which lineages transition from degree l to degree k hosts backwards in 249

time. How these transition rates are computed and further details about how the ancestral 250

degree distribution pk is computed for each lineage in a phylogeny are described in the SI Text, 251

where we also show that these master equations accurately describe how lineages move through 252

networks. 253
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Results 254

The coalescent process on random networks 255

Most of the local structure present within real-world contact networks can be captured by a few 256

key statistical properties: its overall connectivity and the degree of clustering, contact 257

heterogeneity and assortativity [28]. To see how these network properties shape pathogen 258

phylogenies and how well the pairwise coalescent model captures their effects, we generated 259

networks under random graph models parameterized to obtain networks with known statistical 260

properties. On top of these networks, we simulated the spread of an epidemic using 261

individual-based stochastic (IBS) simulations that tracked the ancestry of each pathogen lineage 262

forward in time so that a true phylogeny was obtained from each simulation (see SI Text). We 263

then compared the epidemic dynamics and phylogenies simulated under the the IBS model to 264

those expected under the pairwise epidemic and coalescent models. 265

As expected from earlier work [9, 34,39], the pairwise epidemic model provides an excellent 266

deterministic approximation to the mean dynamics observed in IBS simulations across a wide 267

range of random networks, whereas random mixing models generally do not (Fig 1). Likewise, 268

the pairwise coalescent model does an excellent job of capturing the coalescent process on these 269

networks in terms of the temporal distribution of coalescent events over the epidemic (Fig 2). In 270

contrast, the coalescent distributions expected under a random mixing coalescent model provide 271

a reasonable approximation on some networks but not others (Fig 2). For example, on poorly 272

connected and highly clustered networks, the expected distribution of coalescent times under 273

random mixing deviates widely from the IBS simulations. This is the case even if we condition 274

the random mixing model on the more accurate population trajectories predicted by the 275

pairwise epidemic model. On better connected networks and on networks with more contact 276

heterogeneity, the random mixing model does almost as well as the pairwise coalescent model. 277

In the SI Text, we additionally explore when the pairwise approximation fails due to the 278

presence of higher-order network structure. 279

Network effects on tree topology 280

In addition to coalescent time distributions, contact network structure can shape the topology of 281

phylogenies. In particular, trees tend to become increasingly asymmetric or imbalanced as the 282

amount of contact heterogeneity increases in a population [21–23,40]. We therefore simulated 283

trees on random networks with different levels of contact heterogeneity using IBS simulations 284

and under the pairwise coalescent model using backward-time simulations in order to see if the 285

coalescent model can capture the effects of contact heterogeneity on tree imbalance. 286

Overall, trees simulated under the pairwise coalescent model are very similar in shape to 287

trees simulated on random networks using IBS simulations (Fig 3). For two different measures of 288

imbalance, Colless’ and Sackin’s index, tree imbalance grows only weakly with increasing contact 289

heterogeneity for both coalescent trees and IBS trees. While imbalance in our coalescent trees 290

grows proportionally to how imbalance grows in IBS trees with increasing contact heterogeneity, 291

coalescent trees do tend to be slightly more imbalanced, especially for Sackin’s index. The 292

number of cherries, or pairs of tips sharing a direct ancestor, can also be used as a measure of 293

imbalance as more imbalanced trees will have fewer cherries [40]. We found that the number of 294

cherries decreases proportionally for both coalescent and IBS trees as contact heterogeneity 295

increases, although again coalescent trees seem to be slightly more imbalanced with fewer overall 296

cherries (Fig 3). Thus, it appears that the pairwise coalescent model can capture the effects of 297

local contact structure on tree topology, even if these effects are rather weak overall. 298

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2016. ; https://doi.org/10.1101/082966doi: bioRxiv preprint 

https://doi.org/10.1101/082966
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 5 10
0

0.2

0.4

0.6

0.8

1 ak̂ = 2

Connectivity

0 5 10
0

0.2

0.4

0.6

0.8

1 bk̂ = 4

0 5 10
0

0.2

0.4

0.6

0.8

1 ck̂ = 8

In
fe

ct
ed

 fr
ac

tio
n

0 5 10
0

0.2

0.4

0.6

0.8

1 dφ = 0
Clustering

0 5 10
0

0.2

0.4

0.6

0.8

1 eφ = 0.165

0 5 10
0

0.2

0.4

0.6

0.8

1 fφ = 0.33

0 5 10
0

0.2

0.4

0.6

0.8

1 gσk
2 = 0

Contact het.

0 5 10
0

0.2

0.4

0.6

0.8

1 hσk
2 = 4

0 5 10
0

0.2

0.4

0.6

0.8

1 iσk
2 = 16

0 5 10
0

0.2

0.4

0.6

0.8

1 jr = −0.4
Assortativity

0 5 10
0

0.2

0.4

0.6

0.8

1 kr = 0

0 5 10
0

0.2

0.4

0.6

0.8

1 lr = 0.4

Time

Fig 1. Comparison of SIS epidemic dynamics on networks with different statistical
properties. Grey lines show 500 stochastic realizations of the individual-based model run on
different random networks. Colored lines show the mean dynamics expected under the pairwise
epidemic model (solid) versus the random mixing model (dashed). (a-c) Homogenous networks

with varying overall connectivity k̂. (d-f) Homogenous networks with different clustering

coefficients φ but fixed degree k̂ = 4. (g-i) Heterogenous networks with constant mean degree
µk = 4 but with different variances σ2

k in the degree distribution. (j-l) Heterogenous networks
with different assortativity coefficients r. To allow for greater assortativity, the mean and
variance of the degree distribution was raised to six. For all simulations the network size
N = 250, the transmission rate τ = 0.5 and the recovery rate ν = 0.1. The transmission rate β
under random mixing was scaled so that the rate of infectious contacts was the same as under
the pairwise epidemic model at t = 0, giving the two models the same intrinsic growth rate.
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Fig 2. The cumulative distribution of coalescent event times for the networks and
epidemic dynamics shown in Figure 1. Grey lines show the observed distribution of
coalescent events obtained by tracking two randomly sampled lineages back in time until they
coalesce in 500 stochastic individual-based simulations. Colored lines show the theoretically
predicted coalescent densities under the pairwise coalescent (solid), the random mixing
coalescent (dashed) and the random mixing coalescent conditioned on the mean dynamics
provided by the pairwise epidemic model (dotted). (a-c) Homogenous networks with varying

overall connectivity k̂. (d-f) Homogenous networks with different clustering coefficients φ. (g-i)
Heterogenous networks with different variances σ2

k in the degree distribution. (j-l) Heterogenous
networks with different assortativity coefficients r. All network and epidemiological parameters
are the same as in Figure 1.
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35 fFig 3. Phylogenetic tree imbalance on networks with increasing levels of contact

heterogeneity. Trees were simulated using stochastic, individual-based simulations on random
networks (black lines) or using backward-time simulations of the pairwise coalescent model (blue
line). (a-c) Imbalance measured in terms of Colless’ index, Sackin’s index and the total number
of cherries for trees simulated with increasing levels of contact heterogeneity. Colless’ and
Sackin’s imbalance measures are normalized according to the expected imbalance of a tree with
the same number of samples. Circles and vertical lines mark the mean and standard deviation of
the imbalance measures for 500 simulated trees. All simulations were performed with N = 250
and a sampling fraction of ρ = 0.5.

Inference 299

The pairwise coalescent model allows us to compute the likelihood of a given phylogeny being 300

generated by an epidemic on a random network with defined statistical properties. It is 301

therefore possible to directly estimate the statistical properties of a network directly from a 302

phylogeny. However, phylogenies may retain little information about contact network structure, 303

especially if the epidemic is sparsely sampled. To explore the information content of phylogenies 304

regarding network structure, we simulated epidemics on random networks with known statistical 305

properties. A variable fraction of infected nodes was then sampled upon removal to obtain 306

phylogenies with sampling fractions ρ of 10, 25, 50 and 100%. The pairwise coalescent model 307

was then used to construct likelihood profiles for different parameters controlling local network 308

structure. Here, we focus only on the information content of the phylogenies but we further 309

investigate the statistical performance of the pairwise coalescent model as an estimator of these 310

parameters in the SI Text. 311

At sampling fractions at or below 10%, except for overall connectivity the simulated 312

phylogenies contain little or no information about local network structure, as seen from the 313

essentially flat likelihood profiles (Fig 4). At sampling fractions ≥ 25%, the likelihood profiles 314

begin to show significant curvature for clustering and contact heterogeneity, and with sampling 315

fractions ≥ 50% the likelihood profiles are sharply curved enough that these parameters can be 316

estimated rather precisely with narrow 95% confidence intervals. Assortativity appears more 317

difficult to infer from phylogenies, even if the true degree of sampled nodes is provided (Fig 4). 318

Although the likelihood profiles for r do show some curvature at sampling fractions ≥ 50%, the 319

credible intervals remain relatively wide even with complete sampling. 320

HIV-1 in Switzerland 321

We performed a phylodynamic analysis of a HIV-1 subtype B epidemic among 322

men-who-have-sex-with-men (MSM) in Switzerland using the pairwise coalescent model to see if 323

we could estimate the statistical properties of a real-world sexual contact network. HIV pol 324

sequences from infected individuals were obtained from patients enrolled in the Swiss HIV 325

Cohort Study [41–43]. To minimize the effects of spatial structure, we focus on a single large 326

sub-epidemic identified as primarily occurring in the Zürich region in a preliminary phylogenetic 327
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Fig 4. Likelihood profiles for network parameters inferred from phylogenies
containing a variable fraction of all infected nodes ρ . Solid blue lines indicate true
parameter values and dashed red lines are the approximate 95% confidence intervals derived
from the quantiles of the chi-squared distribution with one degree of freedom. Parameters were
estimated one at a time, with all other parameters fixed at their true values. (a-d) Overall
connectivity as parameterized by the mean degree µk. Here we assume the degree distribution
follows a discretized gamma distribution with a fixed standard deviation σk = 2 (e-h) Clustering
as parameterized by the clustering coefficient φ. (i-l) Contact heterogeneity as parameterized by
the standard deviation of the degree distribution σk. The mean of the degree distribution was
fixed at µk = 4. (m-p) Assortativity as parameterized by the assortativity coefficient r of the
edge degree distribution. For assortativity, the true degree of all sampled nodes was provided
when computing the likelihood profiles. Trees were simulated on networks with N = 250 and the
epidemiological parameters were fixed at the values used in Figures 1 and 2.
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analysis (see SI Text). A time-calibrated phylogeny containing 200 sequences revealed this 328

sub-epidemic to be quite genetically diverse with many older lineages originating in the early 329

1980’s (Fig 5). 330

We fit a SIR-type pairwise epidemic model to the dated phylogeny assuming a discretized 331

gamma distribution for the degree distribution dk. This allowed us to independently estimate 332

the mean µk and variance σ2
k of the network’s underlying degree distribution. The posterior 333

estimates of µk and σ2
k indicate that the network was not especially well-connected (median 334

µk = 1.78) but heterogenous in degree (median σ2
k = 3.65) (Fig 5). The basic reproductive 335

number was estimated to be between 1.0 and 2.0, although unlike for the network parameters 336

the posterior density of R0 did not diverge appreciably from the prior (Fig 5). R0 values 337

estimated under the pairwise coalescent model were however significantly lower than the values 338

estimated under the random mixing model. Because the random mixing model does not account 339

for contact heterogeneity, it can only capture the rapid early growth of the epidemic by 340

overestimating R0. 341

Overall our phylodynamic analysis suggests that this particular sub-epidemic spread rapidly 342

by way of a few highly connected individuals. This is supported by the inferred degree 343

distribution of the network and can be seen from the expected degree of lineages computed from 344

the inferred ancestral degree distribution of each lineage over time (Fig 5). Most coalescent (i.e. 345

transmission) events early in the epidemic are attributable to lineages residing in high degree 346

individuals. Later, towards the beginning of the 2000’s, a few clusters in the tree begin to grow 347

again through new transmission events along lineages with higher than average degree, which 348

corresponds in time to the resurgence of HIV among MSM in Switzerland [42,44]. 349

Discussion 350

Recent work has suggested that the structure of local contact networks can shape pathogen 351

phylogenies [21–23]. Yet it remains unclear how much information pathogen phylogenies retain 352

about the networks through which they spread and how to best extract information about 353

network structure from trees. As a step towards addressing these questions, we sought a simple 354

theoretical framework to explore the relationship between contact networks, epidemic dynamics, 355

and phylogenies. Starting with random graph and pairwise epidemic models, we derived a fairly 356

simple coalescent model that includes local network structure by using a pair approximation 357

technique. By treating the coalescent process as a backwards-time dynamical process on a 358

network, our pairwise coalescent model allows us to capture the phylogenetic history of a 359

pathogen in terms of how lineages move through a network and the rates at which they coalesce. 360

As we have shown, our phylodynamic modeling framework provides a very good approximation 361

to the coalescent process on random networks and can recapitulate the major features of 362

pathogen phylogenies simulated on different types of random graphs. 363

Using the pairwise coalescent model and individual-based stochastic simulations as guides, 364

we reexamined how contact network structure shapes pathogen phylogenies. Overall, we found 365

that local contact network structure can have a strong impact on the the coalescent process in 366

terms of the timing of coalescent events. Network properties like overall connectivity and 367

contact heterogeneity that increase the epidemic growth rate concentrate coalescent events 368

towards the beginning of an epidemic, while properties like clustering that slow epidemic growth 369

broaden the distribution of coalescent events over the epidemic. On the other hand, properties 370

like assortativity that have no strong effect on epidemic dynamics likewise have little influence 371

on the timing of coalescent events. This suggests that local contact network structure primarily 372

shapes the coalescent process indirectly through the network’s influence on epidemic dynamics, 373

particularly the timing of transmission events. The timing of transmission events as regulated by 374

local interactions on the network also appears to determine how well random mixing models can 375

approximate the coalescent process on networks. On weakly connected or highly clustered 376

networks where local interactions strongly limit transmission due to saturation effects, random 377
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a

Fig 5. Phylodynamic analysis of a HIV-1 sub-epidemic among MSM in
Switzerland. (a) Maximum clade credible phylogeny reconstructed from 200 HIV pol
sequences. Lineages are colored by their expected degree in the network based on their ancestral
degree distribution inferred under the pairwise coalescent model. The ancestral degree
distribution was computed using a forward-backwards type algorithm while conditioning on the
median posterior estimate of all parameters. Inset shows the inferred degree distribution for the
entire network (capped at k = 10 for visual simplicity). (b-c) Posterior (dark grey) and prior
(light grey) distributions of the mean degree µk and variance σ2

k of the degree distribution. (d)
Estimates of the basic reproductive number R0 inferred under the pairwise coalescent (grey) and
under the random mixing coalescent model (red).
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mixing models overshoot the true transmission rate and therefore also the expected coalescent 378

rate. In better connected networks, the effect of these local interactions on transmission is 379

minimized by well-connected nodes and the random mixing models can perform quite well. 380

Local contact network structure can therefore probably be safely ignored in highly connected 381

networks, but may be important to consider in less well-connected networks. 382

Because the pairwise coalescent model can be used for likelihood-based inference, it offers a 383

means of exploring how much information phylogenies contain about contact network structure. 384

Using simulated phylogenies, we found that our ability to infer network properties was highly 385

dependent on the fraction of sampled individuals. We could estimate network properties that 386

strongly regulate epidemic dynamics, such as overall connectivity and the degree of contact 387

heterogeneity, even at sampling fractions as low as 10-25%. Other properties that do not 388

strongly regulate epidemic dynamics, such as assortativity, proved difficult to precisely estimate 389

even with complete sampling. This observation suggests that for the parameters that can be 390

estimated at low sampling fractions, we may largely be inferring the structure of networks not 391

from any direct signal of network structure in the tree itself, but from the indirect effect of 392

network structure on the epidemic dynamics reflected in the timing of the coalescent events in 393

the tree. 394

While it therefore appears difficult to estimate some network properties from phylogenies, we 395

were able to estimate the degree distribution of a sexual contact network underlying a large HIV 396

sub-epidemic in Switzerland. While we were likely helped by the high fraction of HIV infected 397

individuals sampled in Switzerland and the relatively informative priors we placed on the 398

model’s epidemiological parameters, this demonstrates that it is at least technically possible to 399

estimate the structure of real-world contact networks from phylogenies. Our analysis of the 400

Swiss HIV data also indicated that accounting for network structure in phylodynamic models 401

can be important for estimating key epidemiological parameters. Our estimated values of the net 402

reproductive number R0 under a model assuming random mixing were more than twice as high 403

as under a pairwise coalescent model that allowed for contact heterogeneity. Phylodynamic 404

methods based on random mixing models may therefore be inappropriate when host populations 405

are highly locally structured or when contact patterns vary considerably among individuals. 406

While we strove for simplicity, the true complexity of real-world contact networks does 407

highlight some deficiencies in the pairwise models. First, while we only considered perfectly 408

static random graph models, real-world networks temporally evolve as new contacts form and 409

dissolve. Pairwise epidemic models that allow for dynamic partner exchange have been 410

proposed [45,46], and in theory could be merged with our pairwise coalescent model to explore 411

contact durations that are intermediate between the infinitesimal nature assumed by random 412

mixing models and the permanent nature assumed by static models. Finally, the random graph 413

models we employed here only consider local structure at the level of pairs in the network. 414

Higher-order structure that subdivides networks into different communities also likely plays a 415

very strong role in shaping pathogen phylogenies. Developing methods that can quantify 416

connectivity within and between communities while accounting for epidemic dynamics and 417

incomplete sampling such as our approach does on local networks remains a challenging but 418

highly important area of future research. 419
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Supporting Information

Tracking lineage movement on networks

Here we consider how lineages move through a network in terms of the ancestral degree
distribution of a lineage. Going backwards in time, the degree of a lineage will transition from k
to l whenever the lineage is transmitted from a degree l individual to a degree k individual in
forward time. Transitions from k to l in backwards time are written as l← k so that the
direction of time is transparent. With incomplete sampling, a lineage may be transmitted
between two nodes at a coalescent event that went unobserved in the tree because the parent
lineage was not sampled. A lineage will therefore transition between states along branches in the
tree each time an unobserved transmission event occurs between nodes of unequal degree. Thus,
the rate at which l← k transitions occur along a lineage currently in state k is equal to the rate
at which the lineage coalesces with lineages in state l (through a l→ k transmission event) that
are not among the sampled lineages in the phylogeny. Assuming for the moment that there are
no lineages in the phylogeny currently in state l, the rate at which l← k transitions occur along
a branch is

γl←k =
τ [SkIl]χkl[Il]

[IkIl]
, (16)

which is the rate of coalescence between a lineage in state k and all [Il] lineages in the
population.

Notice that if k 6= l, then χkl = [IkIl]/[Ik]][Il], Eq (16) simplifies to

γl←k =
τ [SkIl]

[Ik]
, (17)

which has the more intuitive interpretation that a lineage transitions from state k to l at the
same rate at which l→ k transmission events occur in the population multiplied by the
probability 1

Ik
that it is this particular lineage in state k that is transmitted.

If the phylogeny contains lineages in state l, we need to consider that in order for the
coalescent event to appear as l← k transition along a branch, the parent lineage must not be
among the sampled lineages in the phylogeny. As suggested by [38], the expected number of
sampled lineages al in state l can be approximated from the lineage state probabilities as
al ≈

∑
i pil. We can then substitute the [Il] term in Eq (16) with the probable number of

lineages in state l but not in the phylogeny: [Il]− al.
Given these transition rates, we can write down master equations for how pik changes

backwards in time:
d

dt
pik =

∑
l

(
γk←lpil − γl←kpik

)
. (18)

These master equations allow us to compute the probability of a lineage being in a given
state at any time in the past, which we refer to as the ancestral degree distribution of a lineage.
However, we generally do not know the degree of sampled individuals, we need to place a prior
on pik at the time of sampling. We use the degree distribution of the infected population at the
time of sampling as a natural prior on the initial values of pik:

pinitik =
Ik∑
k Ik

. (19)

To obtain the degree distribution of the infected population, we can numerically solve the ODEs
for Ik under the pairwise epidemic model.

Finally, we need to consider how the lineage state probabilities get updated after an observed
coalescent event in the tree. Specifically, we need to compute the state probabilities for the
parent lineage h after its daughter lineages i and j coalesce. This is:

phk =
1

λij

∑
l

τ [SlIk]χkl

[IkIl]
Pkl, (20)
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which is just the normalized probability of the parent being in state k conditional on Pkl and
the rate at which transmission events occur.

In order to see if the master equations given in Eq (18) provide an accurate representation of
how lineages move through a network, we compare our theoretical expectations of pk with
stochastic simulations where we recorded the state of a single sampled lineage backwards
through time in each realization. In the population at large, well-connected nodes with high
degree are overrepresented in the infected population early in an epidemic but the degree
distribution of infected nodes rapidly converges to a stationary and approximately uniform
distribution where all nodes have an equal probability of being infected regardless of degree (SI
Fig 1a). Relative to the infected population at large, the ancestral degree distribution
reconstructed from IBS simulations reveals that sampled lineages have an even higher
probability of being in well-connected nodes during the early stages of an epidemic (SI Fig 1b).
This results from lineages in higher degree nodes leaving more descendants and therefore having
a higher probability of being ancestral to a sampled lineage. The master equations used by the
pairwise coalescent model to track lineage movement reproduce this pattern almost exactly,
although there is some disagreement during the earliest stages of the epidemic when Ik << 1 for
all k (SI Fig 1c).

Simulation methods

For each individual-based stochastic (IBS) simulation, we first generated a random network with
the desired statistical properties using the configuration model [30]. If the network was not
completely connected with all nodes connected to all others by at least one path in the network,
it was discarded and a new one generated. To seed the epidemic, a single node was then
randomly chosen to become infected at time t = 0. The simulations then preceded forwards in
time using an event-driven approach similar to the Gillespie stochastic simulation algorithm [47].
Infected hosts were allowed to either transmit to their susceptible neighbors or recover from
infection. At transmission events, the parent and child pathogen lineage were recorded so that
the ancestry of each lineage could be traced in order to recover the true phylogeny of the
pathogen population. At recovery events, infected individuals were sampled with probability ρ
and subsequently included in the phylogeny. At the final time t = T , all surviving infections
were also sampled with probability ρ and included in the phylogeny. Unless otherwise stated,
infected individuals were sampled serially though time upon removal (i.e. recovery).

Phylogenies were simulated under the pairwise coalescent model backwards in time. At time
t = T , sampled individuals were added to a set of lineages that were then traced back through
time. The degree of sampled lineages was drawn randomly from the degree distribution of the
infected population at the time of sampling according to the pairwise epidemic model. The state
of each lineage was then updated incrementally using small time steps receding into the past. At
each discrete time step, lineages could either transition to a different degree node or coalesce
with another lineage with probabilities proportional the rate of transitions and coalescent events
given Eq (16) above and Eq (12) in the main text. Simulations were run until the final two
ancestral lineages coalesced.

When the pairwise approximation fails

From the general theory of dynamical processes on networks, we expect pair approximations to
work well when dynamical correlations arise locally at the level of pairs or other lower-order
motifs like triples, but may break down when there is significant higher-order network structure,
such as when the network is modular or broken up into different communities [34,48]. Given
that the coalescent process can also be viewed as a dynamical process on a network (albeit
backwards in time), we expect that the pair approximations underlying the pairwise coalescent
will also break down in the presence of higher-order network structure. To explore how
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SI Figure 1. The degree distribution of infected nodes and ancestral lineages over
the time course of an epidemic. (a) Degree distribution for the entire infected population.
At time t = 0 we start with a uniform degree distribution for the initial infected host that mirrors
the uniform degree distribution of the underlying network. The overlaid grey line represents
prevalence over time. (b) The ancestral degree distribution for a single lineage traced backwards
through time from 1000 stochastic simulations (c) Theoretical expectation for the ancestral
degree of a single lineage given by the master equations derived from the pairwise model.
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higher-order structure affects the accuracy of the pairwise models, we used the well-known
Watts-Strogatz model [49] to generate networks with varying levels of higher-order structure.

To simulate random graphs under the Watt-Strogatz model we start with an initially
perfectly ordered ring network where each node is connected to its k̂ nearest neighbors and then
randomly rewire a fraction of edges f . A low f therefore preserves the original community
structure present in the ring whereas a high f randomizes the network in a way that destroys
higher-order structure (SI Fig 2). Our variant of this algorithm uses degree-preserving rewiring
so that we can study the effects of community structure without introducing additional contact
heterogeneity.

To measure the error in the theoretical expectations provided by the pairwise models when
compared against individual-based stochastic (IBS) simulations on Watts-Strogatz networks, we
approximate the time-integrated mean error Ē in prevalence and coalescent distributions by
averaging over all T time points on the discretized interval, such that

Ē =
1

T

T∑
i=1

|zpw(ti)− zstoch(ti)|, (21)

where zpw is the value given by the pairwise model and zstoch is the mean value given by the
stochastic simulations.

The time-integrated mean error in the theoretical expectations provided by the pairwise
models for both prevalence and the distribution of coalescent events is shown in SI Fig 2. The
error arising from the pair approximation is only large when the rewiring fraction is very low
(f <= 0.10) and there is substantial community structure in the networks. Moreover, the
pairwise coalescent model appears to break down at the same point as the pairwise epidemic
model, which is not surprising given that the coalescent model depends on the accuracy of the
epidemic dynamics predicted by the pairwise epidemic model. While networks with f <= 0.10
have high clustering coefficients, this does not appear to be the ultimate downfall of the pairwise
models because there is already substantial clustering with f > 0.10 where the pairwise models
still perform well (SI Fig 2). Rather, where the pairwise models breaks down at f <= 0.10 is
also the point at which we see a large spike in the mean internode distance, the minimum
distance between two nodes in a network (SI Fig 2).

Thus, the pairwise models perform well as long as the networks are sufficiently “small” as
quantified by mean internode distances, which will rise sharply once the network is broken up
into different communities. This echoes an earlier observation made by [48], who showed
low-dimensional models that ignore higher-order community structure can provide surprisingly
accurate approximations to dynamics on a variety of complex networks as long as networks are
sufficiently small-world.

Statistical performance of estimators

The statistical performance of the pairwise coalescent model in estimating network properties
from phylogenies was extensively tested on simulated phylogenies. To check for potential biases
in our estimates of network connectivity, clustering, contact heterogeneity and assortativity, we
simulated 100 additional phylogenies under a fixed value of each parameter using forward-time
IBS simulations. We then obtained a maximum likelihood estimate (MLE) of the corresponding
parameter from each tree using a nonlinear numerical optimization routine. All other
epidemiological parameters were fixed at their true values. The MLEs appear centered around
the true parameter values with little to no detectable bias (SI Fig 3).

Next, we simulated trees under a wider range of parameter values for each network property
to check how well our estimator performs under different model parameterizations. Overall,
parameter estimates appear well-calibrated with a high correlation between the true and MLE
values (SI Fig 3). While the coverage of our confidence intervals falls below the desired 95%
level, we believe the coverage achieved is very reasonable given that the pairwise models ignore
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SI Figure 2. Accuracy of pairwise approximation on Watts-Strogatz networks with
varying levels of higher-order community structure. (a) Watts-Strogatz networks with
different edge rewiring fractions f . For ease of viewing, N = 50 here. (b) Time-integrated mean
error in the coalescent density (blue) and prevalence (black) given by the pairwise models when
compared against stochastic simulations on networks randomly generated with different f values.
(c) The mean clustering coefficient φ of simulated networks for each f value. (d) The mean

internode distance for the same networks as in b and c. For all simulations k̂ = 4 and N = 250.
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SI Figure 3. Likelihood-based estimates of network parameters and their
statistical performance. (a-d) Distribution of maximum likelihood point estimates of the

overall connectivity k̂, clustering coefficient φ, contact heterogeneity σk and assortatvity
coefficient r for 100 simulated phylogenies. (e-h) Maximum likelihood estimates (dots) and 95%
confidence intervals (lines) for each network property under different model parameterizations.
Blue lines indicate the true parameter value used in each simulation. Correlation (corr) refers to
the Pearson correlation between the true and estimated parameter values. Coverage refers to the
fraction of simulations in which the true parameter falls within the estimated 95% confidence
intervals. All simulations were performed with a fraction ρ = 0.5 of infected individuals sampled
upon removal serially over time.

stochastic variation in both network topology and epidemic dynamics, which can cause tree
structure to diverge considerably from what is theoretically expected under the pairwise models.

Phylogenetic analysis of Swiss HIV-1 sequence data

The HIV-1 subtype B epidemic in Switzerland (hereafter CH) is strongly integrated into the
general European subtype B epidemic, especially among MSM [42,50]. We therefore first tried
to identify sub-epidemics primarily occurring on local contact networks within CH rather than
abroad. We combined 4441 subtype B pol sequences taken from MSM patients enrolled in the
Swiss HIV Cohort Study (SHCS) with a large background dataset of 4550 subtype B sequences
from the Los Alamos National Laboratory (LANL) HIV database. After removing all
non-subtype B and recombinant sequences, the SHCS and LANL sequences were then aligned
together against the HBX2 subtype B reference strain. After alignment, a total of 51 codon
positions associated with known drug resistance mutations were also stripped from the
alignment. A maximum likelihood (ML) phylogeny of the combined LANL + SHCS alignment
was then reconstructed in FastTree [51] assuming a GTR model of molecular evolution with
gamma distributed rate heterogeneity.

To identify sub-epidemics occurring predominantly within CH, we first reconstructed the
ancestral location of all internal nodes using maximum parsimony. Introductions into CH were
assumed to occur whenever a node inferred to be in CH had a parent node outside of CH.
Sub-epidemics were then defined to include all lineages sampled in CH that descended from an
introduction event into CH without passing through a node reconstructed to be outside of CH.
This preliminary analysis revealed that the Swiss epidemic is composed of many sub-epidemics
likely originating from independent introductions into CH. Most of these sub-epidemics are
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SI Figure 4. Size distribution of HIV sub-epidemics in Switzerland. Sub-epidemics
were categorized as occurring in either the German or French speaking regions of Switzerland.
Size refers to the number of sampled individuals included in each sub-epidemic. The red arrow
marks the large sup-epidemic we chose to analyze in detail.

composed of only a few sampled individuals and can be categorized as occurring predominantly
in either the French or German speaking region of CH (SI Fig 4). To minimize the effects of
geographic structure within CH on our phylodynamic analysis, we chose to focus on a large
cluster which included 200 sampled individuals who predominantly lived or sought treatment in
the Zürich area.

From these 200 sequences, we reconstructed a new time-calibrated phylogeny in BEAST 2
assuming a strict molecular clock, a GTR substitution model and a Bayesian Skyline prior on
effective population size through time [29]. The maximum clade credibility tree from this initial
BEAST analysis was then fixed for our phylodynamic analysis using the pairwise coalescent
model. To this tree, we fit a SIR-type pairwise epidemic model where the degree distribution was
modeled as a discretized gamma distribution. In general, we used fairly informative priors on
the epidemiological parameters in the model but relatively uninformative priors on the network
parameters (SI Table 1). This model was implemented in BEAST 2 as an add-on package called
PairTree, freely available at https://github.com/davidrasm/PairTree. Posterior distributions for
all model parameters were inferred using BEAST’s built-in MCMC sampling algorithm.
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Table 1. Priors on the parameters used in the Swiss HIV analysis.

Parameter Prior distribution

R0 LogNormal(0.4055, 0.15)
Removal rate ν LogNormal(-2.28, 0.1)
Net size N Uniform(200, 1000)
Mean µk LogNormal(1.0986, 0.4)
Variance σ2

k LogNormal(1.0986, 0.4)

Parameters for the LogNormal distribution are the (log) mean and variance. For the Uniform
distribution, the lower and upper limit.
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