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ABSTRACT	

In metagenome analysis, computational methods for assembly, taxonomic profiling 

and binning are key components facilitating downstream biological data 

interpretation. However, a lack of consensus about benchmarking datasets and 

evaluation metrics complicates proper performance assessment. The Critical 

Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global 

developer community to benchmark their programs on datasets of unprecedented 

complexity and realism. Benchmark metagenomes were generated from newly 

sequenced ~700 microorganisms and ~600 novel viruses and plasmids, including 

genomes with varying degrees of relatedness to each other and to publicly available 

ones and representing common experimental setups. Across all datasets, assembly 

and genome binning programs performed well for species represented by individual 

genomes, while performance was substantially affected by the presence of related 

strains. Taxonomic profiling and binning programs were proficient at high taxonomic 

ranks, with a notable performance decrease below the family level. Parameter 

settings substantially impacted performances, underscoring the importance of 

program reproducibility. While highlighting current challenges in computational 

metagenomics, the CAMI results provide a roadmap for software selection to answer 

specific research questions. 

 

INTRODUCTION 

The biological interpretation of metagenomes relies on sophisticated computational 

analyses such as read assembly, binning and taxonomic profiling. All subsequent 

analyses can only be as meaningful as the outcome of these initial data processing 

steps. Tremendous progress has been achieved in metagenome software 

development in recent years1. However, no current approach can completely recover 

the complex information encoded in metagenomes. Methods often rely on simplifying 

assumptions that may lead to limitations and inaccuracies. A typical example is the 

classification of sequences into Operational Taxonomic Units (OTUs) that neglects 

the phenotypic and genomic diversity found within such taxonomic groupings2. 

Evaluation of computational methods in metagenomics has so far been largely 

limited to publications presenting novel or improved tools. However, these results are 

extremely difficult to compare, due to the varying evaluation strategies, benchmark 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2017. ; https://doi.org/10.1101/099127doi: bioRxiv preprint 

https://doi.org/10.1101/099127
http://creativecommons.org/licenses/by/4.0/


	

4	
	

datasets, and performance criteria used in different studies. Users are thus not well 

informed about general and specific limitations of computational methods, and their 

applicability to different research questions and datasets. This may result in 

difficulties selecting the most appropriate software for a given task, as well as 

misinterpretations of computational predictions. Furthermore, due to lack of regularly 

updated benchmarks within the community, method developers currently need to 

individually evaluate existing approaches to assess the value of novel algorithms or 

methodological improvements.  Due to the extensive activity in the field, performing 

such evaluations represents a moving target, and consumes substantial time and 

computational resources, and may introduce unintended biases. 

We tackle these challenges with a new community-driven initiative for the Critical 

Assessment of Metagenome Interpretation (CAMI). CAMI aims to evaluate 

computational methods for metagenome analysis comprehensively and most 

objectively. To enable a comprehensive performance overview, we have organized a 

benchmarking challenge on datasets of unprecedented complexity and degree of 

realism. CAMI seeks to establish consensus on performance evaluation and to 

facilitate objective assessment of newly developed programs in the future through 

community involvement in the design of benchmarking datasets, evaluation 

procedures, choice of performance metrics, and specific questions to focus on. 

We assessed the performance of metagenome assembly, binning and taxonomic 

profiling programs when encountering some of the major challenges commonly 

observed in metagenomics. For instance, the study of microbial communities benefits 

from the ability to recover genomes of individual strains from metagenome 

samples2,3. This enables fine-grained analyses of the functions of community 

members, studies of their association with phenotypes and environments, as well as 

understanding of the microevolution and dynamics in response to environmental 

changes (e.g. SNPs, lateral gene transfer, genes under directional selection, 

selective sweeps4,5 or strain displacement in fecal microbiota transplants6). In many 

ecosystems, a high degree of strain-level heterogeneity is observed7,8. To date, it is 

not clear how much assembly, genome binning and profiling software are influenced 

by factors such as the evolutionary relatedness of organisms present, varying 

community complexity, the presence of poorly categorized taxonomic groups such as 

viruses, or the specific parameters of the algorithms being used.  
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To address these questions, we generated extensive metagenome benchmarking 

datasets employing newly sequenced genomes of approximately 700 microbial 

isolates and 600 complete plasmids, viruses, and other circular elements, which were 

not publicly available at the time of the challenge and include organisms 

evolutionarily distinct from strains, species, genera, or orders already represented in 

public sequence databases. Using these genomes, benchmark datasets were 

designed to mimic commonly used experimental settings in the field. They include 

frequent properties of real datasets, such as the presence of multiple, closely related 

strains, of plasmid and viral sequences, and realistic abundance profiles.  For 

reproducibility, CAMI challenge participants were encouraged to provide their 

predictions together with an executable docker-biobox implementing their software 

with specification of parameter settings and reference databases used. Overall 215 

submissions representing 25 computational metagenomics programs and 36 biobox 

implementations of 17 participating teams from around the world were received with 

consent to publish. To facilitate future comparative benchmarking, all data sets are 

provided for download and together with the current submissions in the CAMI 

benchmarking platform (https://data.cami-challenge.org/), allowing to submit 

predictions for further programs and computation of a range of performance metrics.  

Our results supply users and developers with extensive data about the performance 

of common computational methods on multiple datasets. Furthermore, we provide 

guidance for the application of programs, their result interpretation and suggest 

directions for future work. 

	

RESULTS 	

Assembly challenge	

Assembling genome sequences from short-read data remains a computational 

challenge, even for microbial isolates. Assembling genomes from metagenomes is 

even more challenging, as the number of genomes in the sample is unknown and 

closely related genomes occur, such as from multiple strains of the same species, 

that essentially represent genome-sized repeats which are challenging to resolve. 

Nevertheless, sequence assembly is a crucial part of metagenome analysis and 
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subsequent analyses – such as binning – depend on the quality of assembled 

contigs. 

 

Overall performance trends 

Developers submitted reproducible results for six assemblers and assembly 

pipelines, namely for Megahit9, Minia10, Meraga (Meraculous11 + Megahit), A* (using 

the OperaMS Scaffolder12), Ray Meta13 and Velour14. Several of these were 

specifically developed for metagenomics, while others are more broadly used (Table 

1, Supplementary Table 1). The assembly results were evaluated using the metrics 

of MetaQUAST15 using the underlying genome sequences of the benchmark 

datasets as a reference (Supplementary Table 2, Supplementary methods “Assembly 

metrics”). The gold standard assembly of the high complexity data set has 2.80 Gbp 

in 39,140 contigs. As performance metrics, we focused on genome fraction and 

assembly size, as well as on the number of unaligned bases and misassemblies. 

Genome fraction and assembly size are measures representing the completeness of 

genomes recovered from a data set, while the number of misassemblies and 

unaligned bases are error metrics reflective of the assembly quality. Combined, they 

provide an indication of the performance of a program, while individually, they are not 

sufficient for assessment. For instance, while assembly size might be large, a high-

quality assembly also requires the number of misassemblies and unaligned bases to 

be low. To assess how much metagenome data was included in each assembly, we 

also mapped all reads back to them.  

Across all datasets (Supplementary Table 3) the assembly statistics varied 

substantially by program and parameter settings (Supplementary Figures SA1-

SA12). For the high complexity data set, values ranged from 12.32 Mb to 1.97 Gb 

assembly size (corresponding to 0.4% and 70% of the gold standard assembly, 

respectively), 0.4% to 69.4% genome fraction, 11 to 8,831 misassemblies and 249 

bp to 40.1 Mb of unaligned contig length (Supplementary Table 2, Supplementary 

Figure SA1). Megahit9 (Megahit) produced the largest assembly of 1.97 Gb, with 

587,607 contigs, 69.3% genome fraction, and 96.9% mapped reads. It had a 

substantial number of unaligned bases (2.28 Mb) and the largest number of 

misassemblies (8,831). Changing the parameters of Megahit (Megahit_ep_mtl200) 
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substantially increased the unaligned bases to 40.89 Mb, while the total assembly 

length, genome fraction and fraction of mapped reads remained almost identical 

(1.94 Gb, 67.3%, and 97.0%, respectively, number of misassemblies: 7,538). The 

second largest assembly was generated by Minia10 (1.85 Gb in 574,094 contigs), 

with a genome fraction of 65.7%, only 0.12 Mb of unaligned bases and 1,555 

misassemblies. Of all reads, 88.1% mapped back to the Minia assembly. Meraga 

generated an assembly of 1.81 Gb in 745,109 contigs, to which 90.5% of reads could 

be mapped (2.6 Mb unaligned, 64.0% genome fraction, 2,334 misassemblies). 

Velour (VELOUR_k63_C2.0) produced the most contigs (842,405) in a 1.1 Gb 

assembly (15.0% genome fraction), with 381 misassemblies and 56 kb unaligned 

sequences. 81% of the reads mapped back to the Velour assembly. The smallest 

assembly was generated by Ray6 using k-mer of 91 (Ray_k91) with 12.3 Mb 

assembled into 13,847 contigs (genome fraction <0.1%). Only 3.2% of the reads 

mapped back to this assembly. Altogether, we found that Megahit, Minia and Meraga 

produced results within a similar quality range when considering these various 

metrics, generated a higher contiguity for the assemblies (Supplementary Figures 

SA10-SA12) and assembled a substantial part of the underlying genomes.  

 

Closely related genomes 

To assess how the presence of closely related genomes in a metagenome data set 

affects the performance of assembly programs, we divided the genomes according to 

their Average Nucleotide Identity (ANI) to each other into “unique strains” (genomes 

with < 95% ANI to any other genome) and “common strains” (genomes with closely 

related strains present; all genomes with an ANI >= 95% to any other genome in the 

dataset). When considering the fraction of all reference genomes recovered, Meraga, 

Megahit and Minia performed best (Fig. 1a). For the unique strains, Minia and 

Megahit had the highest genome recovery rate (Fig. 1c; median over all genomes 

98.2%), followed by Meraga (median 96%) and VELOUR_k31_C2.0 (median 62.9%). 

Notably, for the common strains, the recovery rate dropped substantially for all 

assemblers (Fig. 1b). Megahit (Megahit_ep_mtl200) recovered this group of 

genomes best (median 22.5%), followed by Meraga (median 12.0%) and Minia 

(median 11.6%). VELOUR_k31_C2.0 showed only a genome fraction of 4.1% 

(median) for this group of genomes. Thus, current metagenome assemblers produce 
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high quality results for genomes for which no close relatives are present. Only a 

small fraction of the “common strain” genomes was assembled, while most strain-

level variants were lost. The resolution of strain-level diversity represents a 

substantial challenge to all evaluated programs.  

 

Effect of sequencing depth 

To investigate the effect of sequencing depth on the assembly metrics, we compared 

the genome recovery rate (genome fraction) to the genome sequencing coverage for 

the gold standard and all assemblies (Fig. 1d, Supplementary Fig. SA2 for complete 

results). The chosen k-mer size has an effect on the recovery rate for low abundance 

genomes (Supplementary Fig. SA3). While small k-mers allowed an improved 

recovery of low abundance genomes, large k-mers led to a better recovery of highly 

abundant ones. Assemblers using multiple k-mers (Minia, Megahit, Meraga) 

substantially outperformed single k-mer assemblers. All assemblers showed poor 

results in recovering very high copy number circular elements (sequencing coverage 

> 500x), except for the Minia Pipeline, which performed well in this respect, but 

surprisingly lost all genomes with a sequencing coverage between 80 and 200x (Fig. 

1d). Notably, no program investigated the topology of the obtained contigs, whether 

these were linear and incomplete or circular and complete. 

 

Binning challenge 

Metagenome assembly programs return mixtures of variable length fragments 

originating from individual genomes. Metagenome binning algorithms were thus 

devised to tackle the problem of classifying, or "binning" these fragments according 

to their genomic or taxonomic origins. These “bins”, or sets of assembled sequences 

and reads, group data from the genomes of individual strains or of higher-ranking 

taxa present in the sequenced microbial community. Such bin reconstruction allows 

the subsequent analysis of the genomes (or pangenomes) of a strain (or higher-

ranking taxon) from a microbial community. While genome binners group sequences 

into genome bins without assignment of taxonomic labels, taxonomic binners group 

the sequences into bins with a taxonomic label attached. 
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Results for five genome binners and four taxonomic binners were submitted together 

with bioboxes of the respective programs in the CAMI challenge, namely MyCC16, 

MaxBin 2.017, MetaBAT18, MetaWatt-3.519, CONCOCT20, PhyloPythiaS+21, taxator-

tk22, MEGAN 623 and Kraken24. Submitters could choose to run their program on the 

provided gold standard assemblies or on individual read samples (MEGAN 6), 

according to their suggested application. We then determined their performance for 

addressing important questions in microbial community studies: do they allow the 

recovery of high quality bins for individual strains, i.e. with high average 

completeness (recall), and low contamination levels (precision)? How does strain 

level diversity affect performance? How is performance affected by the presence of 

non-bacterial sequences in a sample, such as viruses or plasmids? Do current 

taxonomic binners allow recovery of higher-ranking taxon bins with high quality? How 

does their performance vary across taxonomic ranks? Which programs are highly 

precise in taxonomic assignment, so that their outputs can be used to assign taxa to 

genome bins?  Which software has high recall in the detection of taxon bins from low 

abundance community members, as is required for metagenomes from ancient DNA 

and for pathogen detection? Finally, which programs perform well in the recovery of 

bins from deep-branching taxa, for which no sequenced genomes yet exist?  

 

Recovery of individual genome bins 

We first investigated the performance of each program in the recovery of individual 

genome (strain-level) bins. We calculated precision and recall (Supplementary 

Methods) for every bin relative to the genome that was most abundant in that bin in 

terms of assigned sequence length. In addition, we calculated the Adjusted Rand 

Index as measure of assignment accuracy for the portion of the data assigned by the 

different programs.  As not all programs assigned the entire data set to genome bins, 

these values should be interpreted under consideration of the fraction of data 

assigned (Supplementary Figure B9). These two measures complement the 

precision and recall values averaged over genome bins, as assignment accuracy is 

evaluated per bp, with large bins contributing more than smaller bins in the 

evaluation. To determine whether the data partitioning achieved by taxonomic 

binners can also be used for strain-level genome recovery, we compared predicted 

taxon bins of all ranks from domain to species (a strain-level rank does not exist in 
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the reference taxonomy) to the genome bins. The precision and recall for predicted 

taxon bins were calculated in the same way as for the genome binners. Thus for 

taxonomic binners, we evaluated the bin quality in terms of completeness (recall) and 

purity (precision) relative to a reference genome, but not the taxon assignment.  

For the genome binners both the average recall (ranging from 34% to 80%) and 

precision (ranging from 70% to 97%) per bin varied substantially across the three 

challenge datasets (Supplementary Table 4, Supplementary Fig. B1).  For the 

medium and low complexity datasets, MaxBin 2.0 had the highest average recall and 

precision of all genome binners (70-80% recall, more than >92% precision), followed 

by other programs with comparably good performance in a narrow range (recall 

ranging with one exception from 50-64%, more than 75% precision). Notably, other 

programs assigned a larger portion of the datasets in bp than MaxBin 2.0, though 

with lower ARI (Supplementary Figure B9). For applications where binning a larger 

fraction of the dataset at the cost of some accuracy is important, therefore, programs 

such as MetaWatt, MetaBAT and CONCOCT could be a good choice. The high 

complexity dataset was more challenging to all programs, with average recall values 

decreasing to around 50% and more than 70% precision, except for MaxBin 2.0 and 

MetaWatt-3.5, which showed an outstanding precision of above 90%. The programs 

either assigned only a smaller portion of the dataset (>50% of the sample bps, 

MaxBin 2.0), with high ARI or assigned a larger fraction with lower ARI (more than 

90% with less than 0.5 ARI). The exception was MetaWatt-3.5, which assigned more 

than 90% of the dataset with an ARI larger than 0.8, thus performing better than the 

others in the recovery of abundant genomes from the high complexity dataset.  

For the taxonomic binners, the recall was notably lower than for the genome binners 

– mostly less than 30% – with that of PhyloPythiaS+ (~20-31%) being the highest, 

while for all others, recall was below 10% (Supplementary Table 5 and 

Supplementary Fig. B2). The technical limitations of using taxonomic binners for 

genome bin recovery is evident by the positioning of the taxon bin gold standard – 

even when performing perfect binning down to the species level, the presence of 

multiple strains for many species prevents these approaches from achieving high 

recall values in genome reconstruction. Notably, the precision had a similar range to 

that of the genome binners. The most precise was Kraken, with mean values of 

above 80%, closely followed by the others. This finding, however, does not mean that 
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Kraken assigned many taxonomic labels correctly, but rather that it consistently 

grouped some fragments of the same genome together. 

 

Effect of strain diversity 

We investigated the effect that the presence of multiple related strains had on binning 

performance in more detail. Considering only unique strains, the performance of all 

genome binners improved substantially, both in terms of average precision and recall 

per bin (Fig. 2a). For the medium and low complexity datasets, all genome binners 

had precision values of above 80%, while recall was more variable. MaxBin 2.0 

performed the best across all three datasets, showing precision values above 90% 

and recall values of 70% or higher. An almost equally good performance for two of 

the three datasets was delivered by MetaBAT, CONCOCT and MetaWatt-3.5. For the 

taxonomic binners, both precision and recall improved by around 10% when 

evaluating “unique” strains for all three datasets, with recall values of up to 40% 

reached by PhyloPythiaS+, while simultaneously showing a precision of more than 

70% (Fig. 2c). Precision values of more than 90%, though with very low recall (~1%), 

were obtained by Kraken. A similar behavior to Kraken was shown by MEGAN 6 and 

taxator-tk, which have methodological similarities (Table 1). 

For the "common strains" of all three datasets, however, binning recall decreased 

substantially (Fig. 2b), similarly to precision for most programs. MaxBin 2.0 still stood 

out from the others, with a precision of more than 90% on all datasets. For the 

taxonomic binners, precision and recall also dropped notably (Fig. 2d). 

PhyloPythiaS+ again had the highest recall values, which was less than 30% though, 

at lower precision. Precision was down to 70% for the best performing taxonomic 

binner, taxator-tk. In part, this is expected even under ideal circumstances, as the 

reference taxonomy does not include a strain rank, with strains being part of the 

same species bin in the taxonomic binning gold standard. This effect is evident by 

the varying, and imperfect performance of the gold standard in recovering the 

underlying genomes for the "unique" and "common" datasets, where it performed 

well on the first, but poorly on the second. Interestingly, for the common strains 

datasets, taxonomic binners achieved a better genome resolution than attributed to 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2017. ; https://doi.org/10.1101/099127doi: bioRxiv preprint 

https://doi.org/10.1101/099127
http://creativecommons.org/licenses/by/4.0/


	

12	
	

the gold standard, by assigning genomes of related strains either not at all or 

consistently to taxon bins at different ranks. 

Overall, the presence of multiple related strains in a metagenome sample had a 

substantial effect on the quality of the reconstructed genome bins, both for genome 

and taxonomic binners. Very high quality genome bin reconstructions were attainable 

with binning programs for the genomes of “unique” strains, while the presence of 

several closely related strains in a sample presented a notable hurdle to these tools. 

Taxonomic binners had lower recall than genome binners for genome 

reconstructions, with similar precisions reached, thus delivering high quality, partial 

genome bins.  

 

Performance in taxonomic binning 

We next investigated the performance of taxonomic binners in recovering taxon bins 

at different ranks. These results can be used for taxon-level evolutionary or functional 

pangenome analyses and conversion into taxonomic profiles. As performance 

metrics, the average precision and recall per bin were calculated for individual ranks 

under consideration of the taxon assignment (Supplementary Material, Binning 

metrics). In addition, we determined the overall classification accuracy for the entire 

samples, as measured by total assigned sequence length, and misclassification rate 

for all assignments. While the former two measures allow assessing performance as 

averaged over bins, where all bins are treated equally irrespective of their size, the 

latter are influenced by the actual sample taxonomic constitution, with large bins 

having a proportionally larger influence. 

For the low complexity data set, PhyloPythiaS+ had the highest accuracy, average 

recall and precision, which were all above 75% from domain to family level. Kraken 

followed, with average recall and accuracy still above 50% down to family level. 

However, precision was notably lower, mostly caused by prediction of many small 

false bins, which affects precision more than overall accuracy, as explained above 

(Supplementary Fig. B3). Removing the smallest predicted bins (1% of the data set) 

increased precision for Kraken, MEGAN, and, most strongly, for taxator-tk, for which 

it was close to 100% until the order level, and above 75% until the family level 

(Supplementary Fig. B4). This shows that small predicted bins by these programs are 
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not reliable, but otherwise, high precision could be reached for higher ranks. Below 

the family level no program performed very well, with all either assigning very little 

data (low recall and accuracy, accompanied by a low misclassification rate), or 

performing more assignments with a substantial amount of misclassification. Another 

interesting observation is the similar performance for Kraken and Megan, which was 

not observed on the other datasets, though. These programs employ different 

features of the data (Table 1), but rely on similar algorithms. 

The results for the medium complexity data set qualitatively agreed with those 

obtained for the low complexity data set, except for that Kraken, MEGAN and taxator-

tk performed better (Fig.  2e). With the smallest predicted bins removed, both Kraken 

and PhyloPythiaS+ performed similarly well, reaching performance statistics of above 

75% for accuracy, average recall and precision until the family rank (Fig. 2f). 
Similarly, taxator-tk showed an average precision of almost 75% even down to the 

genus level on these data (almost 100% until order level) and MEGAN had an 

average precision of more than 75% down to the order level, while maintaining 

accuracy and average recall values of around 50%. The results of highly precise 

taxonomic predictions can be combined with genome bins, to enable their taxonomic 

labeling. The performance for the high complexity data set was similar to that for the 

medium complexity data set (Supplementary Figs. B5, B6).  

 

Analysis of low abundance taxa 

We determined which programs had high recall also for low abundance taxa. This is 

relevant when screening for pathogens in diagnostic settings25, or for metagenome 

studies of ancient DNA samples. Even though a high recall was achieved by 

PhyloPythiaS+ and Kraken until the rank of family (Fig. 1e,f), recall degraded for 

lower ranks and overall for low abundance bins (Supplementary Fig. B7), which are 

of most interest for these applications. It therefore remains a challenge to further 

improve the predictive performance. 
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Deep-branchers 

Taxonomic binning methods commonly rely on comparisons to reference sequences 

for taxonomic assignment. To investigate the effect of increasing evolutionary 

distances between a query sequence and available genomes, we partitioned the 

challenge datasets by their taxonomic distances to sequenced reference genomes 

and evaluated the program performance on the resulting partitions (genomes of new 

strains, species, genus, family, Supplementary Fig. B8). For genomes representing 

new strains from sequenced species, all programs performed well, with generally 

high precision and oftentimes high recall, or with characteristics observed also in 

other datasets (such as low recall for taxator-tk). At increasing taxonomic distances 

to the reference, performance for MEGAN and Kraken dropped substantially, in 

terms of both precision and recall, while PhyloPythiaS+ decreased most notably in 

precision and taxator-tk in recall. For deep branchers at larger taxonomic distances 

to the reference collections PhyloPythiaS+ maintained the best overall performance 

in precision and recall. 

 

Influence of plasmids and viruses  

The presence of plasmid and viral sequences had almost no effect on the 

performance for binning bacterial and archaeal organisms. Although the copy 

number of plasmids and viral data in the datasets was high, in terms of sequence 

size, the fraction of viral, plasmid and other circular elements was small (<1.5%, 

Supplementary Table 6). Only Kraken and MEGAN 6 made predictions for the viral 

fraction of the data or predicted viruses to be present, though with low precision 

(<30%) and recall (<20%). 

 

Profiling challenge  

Taxonomic profilers predict the identity and relative abundance of the organisms (or 

higher level taxa) from a microbial community using a metagenome sample. This 

does not result in classification labels for individual reads or contigs, which is the aim 

of taxonomic binning methods. Instead, taxonomic profiling is used to study the 

composition, diversity, and dynamics of clusters of distinct communities of organisms 
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in a variety of environments26-28. In some use cases, such as identification of 

potentially pathogenic organisms, accurate determination of the presence or absence 

of a particular taxon is important. In comparative studies (such as quantifying the 

dynamics of a microbial community over an ecological gradient), accurately 

determining the relative abundance of organisms is paramount.  

Members of the community submitted results for ten taxonomic profilers to the CAMI 

challenge: CLARK29; ‘Common kmers’ (an early version of MetaPalette30, 

abbreviated CK in the figures); DUDes31; FOCUS32; MetaPhlAn 2.033; Metaphyler34; 

mOTU35; a combination of Quikr36, ARK37, and SEK38 (abbreviated Quikr); Taxy-

Pro39; and TIPP40. For several programs, results were submitted with multiple 

versions or different parameter settings, bringing the number of unique submissions 

to twenty.  

 

Performance trends 

We employed commonly used metrics (Supplementary Material ‘Profiling Metrics’) to 

assess the quality of taxonomic profiling submissions with regard to the biological 

questions outlined above. These can be divided into abundance metrics (L1 norm 

and weighted Unifrac41)and binary classification measures (true positives, false 

positives, false negatives, recall, and precision). In short, the abundance metrics 

assess how well a particular method reconstructs the relative abundances in 

comparison to the gold standard. The binary classification metrics assess how well a 

particular method detects the presence or absence of an organism in comparison to 

the gold standard, irrespective of their abundances. All metrics except the Unifrac 

metric (which is rank independent) are defined at each taxonomic rank. 

We observed a large degree of variability in reconstruction fidelity for all profilers 

across metrics, taxonomic ranks, and samples. Each had a unique error profile, with 

different profilers showing different strengths and weaknesses (Fig. 3a). In spite of 

this variability, when comparing results for each sample, a number of patterns 

emerged. The profilers could be placed in three categories: (1) profilers that correctly 

predicted the relative abundances, (2) precise ones, and (3) profilers with high recall 

(sensitivity). To quantify this observation, we determined the following summary 

statistics: for each metric, on each sample, we ranked the profilers by their 
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performance. Each was assigned a score for its ranking (0 for first place among all 

tools at a particular taxonomic rank for a particular sample, 1 for second place, etc.). 

These scores were then added over the taxonomic ranks and summed over the 

samples, to give a global performance score (Fig. 3b, Supplementary Figs P1-P7, 

Supplementary Table 7).  

Among the profilers analyzed, MetaPhyler exhibited the best performance at inferring 

the relative abundances of organisms in a sample. The profilers with the highest 

recall were Quikr, Tipp, Taxy-Pro, and CLARK (Fig. 3), indicating their suitability for 

pathogen detection, where failure to identify an organism can have severe negative 

consequences. The profilers with the highest recall were also among the least 

precise (Supplementary Figs P8-P12) where low precision was typically due to 

prediction of a large number of low abundance organisms. In terms of precision, 

MetaPhlAn 2.0 and “Common Kmers” demonstrated an overall superior performance, 

indicating that these two are best at only predicting organisms that are actually 

present in a given sample and suggesting their use in scenarios where many false 

positives can cause unwanted increases in costs and effort in downstream analysis. 

The programs that best reconstructed the relative abundances were MetaPhyler, 

FOCUS, TIPP, Taxy-Pro, and CLARK, making such profilers desirable for analyzing 

organismal abundances between and among metagenomic samples. 

Often, a balance between precision and recall is desired. To assess this, we took for 

each profiler one half of the sum of precision and recall and averaged this over all 

samples and taxonomic ranks. The top performing programs by this criterion were 

Taxy-Pro v0, (mean=0.616), MetaPhlAn 2.0 (mean=0.603), and DUDes v0 

(mean=0.596). 

 

Performance at different taxonomic ranks 

Most profilers performed well at higher taxonomic ranks (Fig. 3c and Supplementary 

Figs. P8-P12). A high recall was achieved until family level, and degraded 

substantially below.  For example, over all samples and tools at the phylum level, the 

mean±SD recall was 0.845±0.194, and the median L1 norm was 0.382±0.280, both 

values close to each of these metrics’ optimal value (ranging from 1 to 0 and 0 to 2, 

respectively). The precision had the largest variability among the metrics, with a 
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mean phylum level value of 0.529 with a standard deviation of 0.549. Precision and 

recall were simultaneously high for several methods (DUDes, Common Kmers, 

mOTU, and MetaPhlAn 2.0) until the rank of order. We observed that accurately 

reconstructing a taxonomic profile is still difficult for the genus level and below. Even 

for the low complexity sample, only MetaPhlAn 2.0 maintained its precision down to 

the species level, while the maximum recall at genus rank for the low complexity 

sample was 0.545 for Quikr. Across all profilers and samples, there was a drastic 

average decrease in performance between the family and genus level of 47.5±14.9% 

and 51.6±18.1% for recall and precision, respectively. In comparison, there was little 

change between the order and family levels, with a decrease of only 9.7±6.9% and 

8.8±26.4% for recall and precision, respectively. The other error metrics showed 

similar performance trends for all samples and methods (Figs 3c and Supplementary 

Figs. P13-P17).  

 

Parameter settings and software versions 

Several profilers were submitted with different parameter settings or versions 

(Supplementary Table 1). For some, this had little effect: for instance, the variance in 

recall among 7 different versions of FOCUS on the low complexity sample at the 

family level was only 0.002. For others, this caused large changes in performance: 

for instance, one version of DUDes had twice the recall compared to another at the 

phylum level on the pooled high complexity sample (Supplementary Figs. P13-P17). 

Interestingly, a few developers chose not to submit results beyond a fixed taxonomic 

rank, such as for Taxy-Pro and Quikr. These submissions generally performed better 

than default program versions submitted by the CAMI team; indicating that, not 

surprisingly, experts can generate better results than when using a program’s default 

setting.  

 

Performance for viruses and plasmids 

In addition to microbial sequence material, the challenge datasets also included 

sequences of plasmids, viruses and other circular elements (Supplementary Table 

7). We investigated the effect of including these data in the gold standard profile for 
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the taxonomic profilers (Supplementary Figs P18-P20). Here, the term “filtered” is 

used to indicate the gold standard did not include these data, and the term 

“unfiltered” indicates use of these data. The metrics affected by the presence of 

these data were the abundance-based metrics (L1 norm at the superkingdom level 

and Unifrac), and precision and recall (at the superkingdom level). All methods 

correctly detected Bacteria and Archaea, indicated by a recall of 1.0 at the 

superkingdom level on the filtered samples.  The only methods to detect viruses in 

the unfiltered samples were MetaPhlAn 2.0 and CLARK. Averaging over all methods 

and samples, the L1 norm at the superkingdom level increased from 0.051 for the 

filtered samples to 0.287 for the unfiltered samples. Similarly, the Unifrac metric 

increased from 7.213 for the filtered to 12.361 for the unfiltered datasets. Thus, a 

substantial decrease in the fidelity of abundance estimates was caused by the 

presence of viruses and plasmids in a sample. 

 

Taxonomic profilers vs. profiles derived from taxonomic binning 

We compared the profiling results to those generated by several taxonomic binners 

using a simple coverage-approximation conversion algorithm for deriving profiles 

from taxonomic bins (Supplementary Methods, Figs P21-P24). Overall, the 

taxonomic binners were comparable to the profilers in terms of precision and recall: 

at the order level, the mean precision over all taxonomic binners was 0.595 (versus 

0.401 for the profilers) and the mean recall was 0.816 (versus 0.857 for the profilers). 

Two binners, MEGAN 6 and PhyloPythiaS+, had better recall than the profilers at the 

family level, with the degradation in performance past the family level being evident 

for the binners as well. However for precision at the family level, PhyloPythiaS+ was 

the fourth, after the profilers CK_v0, MetaPhlan 2.0, and the binner taxator-tk 

(Supplementary Figs P21-P22). 

Abundance estimation at higher ranks was more problematic for the binners, as the 

L1 norm error at the order level was 1.07 when averaged over all samples, while the 

profilers average was only 0.681. Overall, though, the binners delivered slightly more 

accurate abundance estimates, as the binning average Unifrac metric was 7.03, 

while the profiling average was 7.23. These performance differences may in part be 

due to the use of the gold standard contigs as input by the binners except for 
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MEGAN 6, though oftentimes Kraken is also applied to raw reads, while most 

profilers used the raw reads.  

 

CONCLUSIONS 

Determination of program performance is essential for assessing the state of the art 

in computational metagenomics. However, a lack of consensus about benchmarking 

datasets and evaluation metrics has complicated comparisons and their 

interpretation. To tackle this problem, CAMI has engaged the global developer 

community in a benchmarking challenge, with more than 40 teams initially registering 

for the challenge and 19 teams handing in submissions for the three different 

challenge parts. This was achieved by providing benchmark datasets of 

unprecedented complexity and degree of realism, generated exclusively from around 

700 newly sequenced microbial genomes and 600 novel viruses, plasmids and other 

circular elements. These spanned a range of evolutionary divergences from each 

other and from publicly available reference collections. We implemented commonly 

used metrics in close collaboration with the computational and applied metagenomics 

communities and agreed on the metrics most important for common research 

questions and biological use cases in microbiome research using metagenomics. To 

be of practical value to researchers, the program submissions have to be 

reproducible, which requires knowledge of parameter settings and program versions. 

In CAMI, we have taken steps to ensure reproducibility by development of docker-

based bioboxes10 and encouraging developer submissions of bioboxes for the 

benchmarked metagenome analysis tools, enabling their standardized execution and 

format usages. The benchmark datasets, along with the CAMI benchmarking 

platform are provided, allowing further result submissions and their automated 

evaluation on the challenge data sets, to facilitate benchmarking of further programs.  

The evaluation of assembly programs revealed a clear advantage for assemblers 

using a range of k-mers compared to single k-mer assemblies. While single k-mer 

assemblies reconstructed only genomes with a certain coverage (small k-mers for 

low abundant genomes, large k-mers for high abundant genomes), using multiple k-

mers significantly improved the fraction of genomes recovered from a metagenomic 

data set. An unsolved challenge of metagenomic assembly for all programs is the 
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reconstruction of closely related genomes. A poor assembly quality or lack of 

assembly for these genomes will negatively impact subsequent contig binning as the 

contigs of the affected genomes will be missing in the assembly output, further 

complicating their study. 

In evaluation of the genome and taxonomic binners, all programs were found to 

perform surprisingly well at genome reconstruction, if no closely related strains were 

present. Taxonomic binners performed acceptably in taxon bin reconstruction down 

to the family rank. This leaves a gap in species and genus-level reconstruction that is 

to be closed, also for taxa represented by single strains in a microbial community. 

Taxonomic binners achieved a better precision in genome reconstruction than in 

species or genus-level binning, raising the possibility that a part of the decrease of 

performance in low ranking taxon assignment is due to limitations of the reference 

taxonomy used. A sequence-derived reference phylogeny might represent a more 

suitable framework for – in that case – “phylogenetic” binning. Another challenge for 

all programs is the deconvolution of strain-level diversity, which we found to be 

substantially less effective than binning of genomes without close relatives present. 

For the typically covariance of read coverage based genome binners it may require 

substantially larger numbers of replicate samples than those analyzed here (up to 5) 

to attain a satisfactory performance. 

Despite of a large variability in performance amongst the submitted profilers, most 

profilers performed well with good recall and low errors in abundance estimates until 

the family rank, with precision being the most variable of these metrics. The use of 

different classification algorithms, reference taxonomies, reference databases and 

information sources (marker gene versus genome wide k-mer based) are likely 

contributors to the observed performance differences. Similarly to taxonomic binners, 

performance across all metrics substantially decreased for the genus level and 

below. Also when taking plasmids and viruses into consideration for abundances 

estimates, the performance of all programs decreased substantially, indicating a 

need for further development to enable a better analysis of datasets with such 

content, as plasmids are likely to be present and viral particles are not always 

removed by size filtration42.   

As both the sequencing technologies and the computational metagenomics programs 

continue to evolve rapidly, CAMI will continue to provide benchmarking challenges to 
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the community. Long read technologies such as those by Oxford Nanopore, Illumina 

and PacBio43 are expected to become more common in metagenomics, which will in 

turn require other assembly methods and may allow a better resolution of closely 

related genomes from metagenomes. In the future, we also plan to tackle 

assessment of runtimes and RAM requirements, to determine program suitability for 

different use cases, such as execution on individual desktop machines or as part of 

computational metagenome pipelines provided by MG-RAST44, EMG45 or IMG/M46. 

We invite everyone interested to join and work with CAMI on providing 

comprehensive performance overviews of the computational metagenomics toolkit, to 

inform developers about current challenges in computational metagenomics and 

applied scientists of the most suitable software for their research questions.  

 

MATERIALS AND METHODS 

Community involvement 
We organized public workshops, roundtables, hackathons and a research 

programme around CAMI at the Isaac Newton Institute for Mathematical Sciences 

(Supplementary Fig. M1), to decide on the principles realized in data set and 

challenge design. To determine the most relevant metrics for performance 

evaluation, a meeting with developers of evaluation software and of commonly used 

binning, profiling and assembly software was organized. Subsequently we created 

biobox containers implementing a range of commonly used performance metrics, 

including the ones decided as most relevant in this meeting (Supplementary Table 8). 

Computational support for challenge participants was provided by the Pittsburgh 

Supercomputing Centre.  

 

Standardization and reproducibility 

For performance assessment, we developed several standards: we defined output 

formats for profiling and binning tools, for which no widely accepted standard existed. 

Secondly, standards for submitting the software itself, along with parameter settings 

and required databases were defined and implemented in docker container 

templates named bioboxes47 These enable the standardized and reproducible 

execution of submitted programs from a particular category. Challenge participants 

were encouraged to submit the results together with their software in a docker 
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container following the bioboxes standard. In addition to 23 bioboxes submitted by 

challenge participants, we generated 13 additional bioboxes and ran them on the 

challenge datasets (Supplementary Table 1), working with the developers to define 

the most suitable execution settings, if possible. For several submitted programs, 

bioboxes using default settings were created, to compare performance with default 

and expert chosen parameter settings.  If required, the bioboxes can be rerun on the 

challenge datasets. 

 

Genome sequencing and assembly 

Draft genomes of 310 type strain isolates were generated at the DOE Joint Genome 

Institute (JGI) using the Illumina technology48 Illumina standard shotgun libraries 

were constructed and sequenced using the Illumina HiSeq 2000 platform. All general 

aspects of library construction and sequencing performed at the JGI can be found at 

http://www.jgi.doe.gov.  All raw Illumina sequence data was passed through DUK, a 

filtering program developed at JGI, which removes known Illumina sequencing and 

library preparation artifacts [Mingkun L, Copeland A, Han J. DUK, unpublished, 

2011]. Genome sequences of isolates from culture collections are available in the 

JGI genome portal (Supplementary Table 9). Additionally, 488 isolates from the root 

and rhizosphere of Arabidopsis thaliana were sequenced7. All sequenced 

environmental genomes were assembled using the A5 assembly pipeline (default 

parameters, version 20141120)49 and are available for download at https://data.cami-

challenge.org/participate).  A quality control of all assembled genomes was 

performed based on tetranucleotide content analysis and taxonomic analyses 

(Supplementary Methods “Taxonomic annotation”), resulting in 689 genomes that 

were used for the challenge (Supplementary Table 9). Furthermore, we generated 

1.7 Mb or 598 novel circular sequences of plasmids, viruses and other circular 

elements from multiple microbial community samples of rat caecum (Supplementary 

Methods, ‘Data generation’).  

 

Challenge datasets 

We simulated three metagenome datasets of different organismal complexities and 

sizes from the genome sequences of 689 newly sequenced bacterial and archaeal 
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isolates and 598 sequences of plasmids, viruses and other circular elements 

(Supplementary Methods “Metagenome simulation”, Supplementary Tables 3, 6 

Supplementary Figs D1, D2). These datasets represent common experimental 

setups and specifics of microbial communities. The three datasets consist of a 15 Gb 

single sample dataset from a low complexity community (40 genomes and 20 circular 

elements), a 40 Gb differential abundance dataset with two samples of a medium 

complexity community (132 genomes and 100 circular elements) and long and short 

insert sizes, as well as a 75 Gb time series dataset with five samples from a high 

complexity community (596 genomes and 478 circular elements). Some important 

properties that were realized in these benchmark datasets are: All included species 

represented by single and by multiple strains, to explore the effect of strain diversity 

on program performance. They also included viruses, plasmids and other circular 

elements, to assess their impact on program performances. All datasets furthermore 

included genomes at different evolutionary distances to those in reference 

databases, to explore their effect on taxonomic binning. The data generation pipeline 

is available on GitHub and as a Docker container at 

https://hub.docker.com/r/cami/emsep/.  

 

Challenge Organization 

The first CAMI challenge benchmarked software for sequence assembly, taxonomic 

profiling and (taxonomic) binning. To allow developers to familiarize themselves with 

the data types, biobox-containers and in- and output formats, we provided simulated 

datasets from public data together with a standard of truth before the start of the 

challenge (Supplementary Figures M1, M2, https://data.cami-challenge.org/). 

Reference datasets of RefSeq, NCBI bacterial genomes, SILVA50, and the NCBI 

taxonomy from 04/30/2014 were prepared for taxonomic binning and profiling tools, 

to allow performance comparisons for reference-based tools based on the same 

reference datasets. For future benchmarking of reference-based programs with the 

challenge datasets, it will be important to use these reference datasets, as the 

challenge data have subsequently become part of public reference data collections. 

 

The CAMI challenge started on 03/27/2015. Challenge participants had to register on 

the website for download of the challenge datasets, with 40 teams registered at that 

time. They could then submit their predictions for all datasets or individual samples 
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thereof. Optionally, they could provide an executable biobox implementing their 

software together with specifications of parameter settings and reference databases 

used. Submissions of assembly results were accepted until 05/20/2015. 

Subsequently, a gold standard assembly was provided for all datasets and samples, 

which was suggested as input for taxonomic binning and profiling. Provision of this 

assembly gold standard allowed us to decouple the performance analyses of binning 

and profiling tools from assembly performance. Developers could submit their binning 

and profiling results until 07/18/2015. Overall, 215 submissions were obtained from 

initially 19 external teams and CAMI developers, with 17 teams consenting to publish 

for the three challenge datasets and samples (Supplementary Table 1), representing 

25 different programs. The genome data used to generate the simulated datasets 

was kept confidential until the end of the challenge and then released7. The CAMI 

challenge and toy datasets including the gold standard are available for download 

and in the CAMI benchmarking platform, where further predictions can be submitted 

and a range of metrics calculated for benchmarking (https://data.cami-

challenge.org/participate).  
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Table 1: Computational metagenomics programs evaluated in the CAMI challenge.	

Software Description 
Assemblers  
Megahit v.0.2.2 Metagenome assembler using multiple k-

mer sizes and succinct de Bruijn graphs 
Ray Meta v2.3.2 Distributed de Bruijn graph metagenome 

assembler 
Meraga v2.0.4 Meraculous + Megahit 
Minia 2 and Minia 3 De Bruijn graph assembler based on a 

Bloom filter 
A* OperaMS Scaffolder using SOAPde novo2 

on medium complexity and Ray assemblies 
on low and high complexity data sets 

Velour De Bruijn graph genome assembler 
Binners and taxonomic binners  
CONCOCT Binner using differential coverage, 

tetranucleotide frequencies, paired-end 
linkage 

MaxBin 2.0 Binner using multi-sample coverage, 
tentranucleotide frequencies 

Kraken Taxonomic binner using long k-mers and 
Lowest Common Ancestor (LCA) related 
assignments 

Megan 6 Taxonomic binner using sequence 
similarities and LCA-related assignments 

MetaBAT Binner using multi-sample coverage, 
tetranucleotide frequencies, paired-end 
linkage 

MetaWatt-3.5 Binner using tetranucleotide frequencies  
MyCC Binner using short k-mer frequencies, multi-

sample coverage, and 40 universal 
phylogenetic marker genes 

PhyloPythiaS+ Taxonomic  binner using Kmer frequencies 
(4-6mers), Structural SVM 

taxator-tk Taxonomic binner using sequence homology 
and tax. placement algorithm 

Taxonomic profilers  
MetaPhyler Phylogenetic marker genes 
mOTU Phylogenetic marker genes 
Quikr/ARK/SEK k-mer based nonnegative least squares. 
Taxy-Pro Mixture model analysis of protein signatures 
TIPP Marker genes and SATÉ phylogenetic 

placement 
CLARK Phylogenetically discriminative k-mers 
Common Kmers/MetaPalette Long k-mer based nonnegative least 

squares 
DUDes Read mapping and deepest uncommon 

descendant 
FOCUS k-mer based nonnegative least squares 
MetaPhlAN 2.0 Clade specific marker genes 
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Figure 1: Boxplots representing the fraction of reference genomes assembled by 

each assembler for the high complexity data set. (a): all genomes, (b): genomes with 
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ANI >=95%, (c): genomes with ANI < 95%. Coloring indicates the results from the 

same assembler incorporated in different pipelines or with other parameter settings. 

(d): genome recovery fraction versus genome sequencing depth (coverage) for the 

high complexity data set. Data were classified as unique genomes (ANI < 95%, 

brown color), genomes with related strains present (ANI >= 95%, blue color) and high 

copy circular elements (green color). The gold standard includes all genomic regions 

covered by at least one read in the metagenome dataset, therefore the genome 

fraction for low abundance genomes can be less than 100%. 	
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Figure 2: Average precision (x-axis) and recall (y-axis) for genome binners (a,b) and 

taxonomic binners (c,d) by genome, and their standard errors (bars), for unique 

strains with equal to or less than 95% ANI to other (a,c) and common strains with 

more than 90% ANI to each other (b,d). For each program and complexity dataset, 

the submission with the largest sum of precision and recall is shown (Supplementary 

Tables 1, 10, 11, 12, 13). Bars denote the standard error of the mean across genome 
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bins. In each case, small bins adding up to 1% of the data set size overall were 

removed. (e,f) Taxonomic binning performance metrics across ranks for the medium 

complexity data set, with (e) results for the complete data set and (f) with smallest 

predicted bins summing up to 1% of the data set removed. Shaded areas indicate the 

standard error of the mean in precision and recall across taxa.	
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Figure 3: (a) Relative performance of profilers for different ranks and with different 

error metrics (Weighted unifrac, L1 norm, recall, precision, and false positives), 

shown here exemplarily for the microbial portion of the first high complexity sample. 

Each error metric was divided by its maximal value to facilitate viewing on the same 

scale and relative performance comparisons. A method’s name is given in red (with 

two asterisks) if it returned no predictions at the corresponding taxonomic rank. (b) 

Best scoring profilers using different performance metrics summed over all samples 

and taxonomic ranks. A lower score indicates that a method was more frequently 

ranked highly for a particular metric. The maximum (worst) score for the Unifrac 

metric is 38 = (18 + 11+ 9) profiling submissions for the low, medium and high 

complexity datasets respectively), while the maximum score is 228 for all other 

metrics (= 6 taxonomic ranks * (18 + 11+ 9) profiling submissions for the low, medium 

and high complexity datasets respectively). (c) Absolute recall and precision for each 

profiler on the microbial (filtered) portion of the low complexity data set across six 

taxonomic ranks. Abbreviations are FS (FOCUS), T-P (Taxy-Pro), MP2.0 (MetaPhlAn 

2.0), MPr (Metaphyler) and D (DUDes).	
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