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Figure 3 | Coordinated mRNA and protein covariation in differentiating ES cells.
(a) Clustergram of pairwise correlations between mRNAs with 2.5 or more reads per cell as quan-
tified by inDrop in single EB cells12. (b) Clustergram of pairwise correlations between proteins
quantified by SCoPE-MS in 12 or more single EB cells. (c) The overlap between corresponding
RNA from (a) and protein clusters from (b) indicates similar clustering patterns. (d) Protein-
protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with
significant mRNA-mRNA correlations were used for this analysis. (e) The concordance between
corresponding mRNA and protein correlations (computed as the correlation between between cor-
responding correlations14) is high for ribosomal proteins (RPL and RPS) and lower for develop-
mental genes; distribution medians are marked with red pluses. Only the subset of genes quantified
at both RNA and protein levels were used for all panels.
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Extended Data Figures
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Extended Data Figure 1 | Contribution of background noise to quantification of peptides in

single cells. (a) Reporter ion (RI) intensities in a SCoPE set in which the single cells were omitted

while all other steps were carried out, i.e., trypsin digestion, TMT labeling and addition of carrier

cells in channel 131. Thus, RI intensities in channels 126 − 130C correspond to background

noise. The distribution of RI intensities in the inset shows that the RI for most peptides in channels

126 − 130C are zero, i.e., below the MaxQuant noise threshold. The y-axis is limited to 150

to make the mean RI intensities visible. The mean RI intensity for single-cell channels is about

500. (b) Mean RI intensities for a TMT set in which only 6 channels contained labeled proteome

digests and the other 4 were left empty. Channels 126, 127N, 128C, and 129N correspond to

peptides diluted to levels corresponding to 100, 100, 200 and 300 picograms of cellular proteome,

channel 131 corresponds to the carrier cells (bars truncated by axes), and the remaining channels

were left empty. The RI for most peptides are not detected in the empty channels, and their mean

levels very low. This suggests that background noise is low compared to the signal from peptides

corresponding to a single cell.
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Correlations between U-937 / Jurkat ratios
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Extended Data Figure 2 | Consistency of protein ratios between Jurkat and U-937 cells esti-

mated from different combinations of TMT channels. (a) A correlation matrix of all pairwise

Pearson correlations among the ratios of peptide abundances in U-937 and in Jurkat cells from Set

1 in Fig. 1b. The superscripts corresponds to the TMT labels ordered by mass, with 1 being 126, 2

being 127N and so on.

12

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/102681doi: bioRxiv preprint first posted online Jan. 24, 2017; 

http://dx.doi.org/10.1101/102681
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 7 8 9 10 11 12

Protein abundance, log
10

0

200

400

600

800

1000

1200

N
um

be
r 

of
 p

ro
te

in
s

107 cells
Single cells

a

3 5 8
Days of differentiation

0.04

0.06

0.08

0.1

P
C

 1
 lo

ad
in

gs

b

Extended Data Figure 3 | Proteome coverage of differentiating ES cells and distributions

of the PC 1 loadings by day of differentiation. (a) Distribution of protein abundances for all

proteins quantified from 107 differentiating ES cells or in at least one single-cell SCoPE-MS set

at FDR ≤ 1 %. The probability of quantifying a protein by SCoPE-MS is close to 100 % for the

most abundant proteins quantified in bulk samples and decreases with protein abundance, for total

of 1526 quantified proteins. (b) The proteomes of all differentiating single cells were decomposed

into singular vectors and values, and distributions of the loading (elements) of the singular vector

with the largest singular value, i.e., PC 1, shown as violin plots. Individual blue circles correspond

to single cells, and the red crosses correspond to the medians for each day.
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Extended Data Figure 4 | Correlations between ribosomal proteins (a) All pairwise Pearson

correlations between ribosomal proteins on day 8 were computed by averaging across cells. The

correlations matrix was clustered, using the cosine between the correlation vectors as a similarly

measure.
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