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ABSTRACT

Heritability, h?, is a foundational concept in genetics, critical to understanding the genetic
basis of complex traits. Recently-developed methods that estimate heritability from genotyped
SNPs, h’syp, explain substantially more genetic variance than genome-wide significant loci, but
less than classical estimates from twins and families. However, h’sye estimates have yet to be
comprehensively compared under a range of genetic architectures, making it difficult to draw
conclusions from sometimes conflicting published estimates. Here, we used thousands of real
whole genome sequences to simulate realistic phenotypes under a variety of genetic
architectures, including those from very rare causal variants. We compared the performance of
ten methods across different types of genotypic data (commercial SNP array positions, whole
genome sequence variants, and imputed variants) and under differing causal variant
frequencies, levels of stratification, and relatedness thresholds. These results provide guidance
in interpreting past results and choosing optimal approaches for future studies. We then chose
two methods (GREML-MS and GREML-LDMS) that best estimated overall h’syp and the causal
variant frequency spectra to six phenotypes in the UK Biobank using imputed genome-wide
variants. Our results suggest that as imputation reference panels become larger and more
diverse, estimates of the frequency distribution of causal variants will become increasingly

unbiased and the vast majority of trait narrow-sense heritability will be accounted for.

KEYWORDS

heritability, h%; complex trait; genetic architecture; GREML
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INTRODUCTION

Narrow-sense heritability, h?, the proportion of the total phenotypic variance due to
additive genetic variation, is a fundamental concept of medical and quantitative genetics. In
addition to providing an understanding of the genetic basis of traits, h’ determines the response
to selection, the potential utility of individual genetic risk and trait prediction, and how much of the
phenotypic variability could theoretically be accounted for in genome-wide association studies
(GWAS)"2. Importantly, while GWAS have now identified thousands of variants associated with
complex traits®>™, the loci identified by these studies have typically explained only a small fraction
of traits’ total heritability, with the remaining genetic variance termed “missing heritability.” This
remaining unaccounted for genetic variance may be attributable to a variety of causes, including
the role of (typically rare) variants poorly tagged by arrays, small effect common variants that do
not reach genome-wide significance due to insufficient sample sizes, or inflated family-based h?
estimates™®,

While traditional family-based estimates of heritability, h?can, have provided valuable
insights®, the use of close relatives means that estimates of additive genetic variance can be
biased by factors shared by close relatives—for example, the joint action of non-additive genetic
and common environmental effects can inflate estimates of additive genetic variation'®'".
Recently-developed approaches that utilize unrelated individuals to estimate the variance
explained by all genotyped single nucleotide polymorphisms (SNPs), denoted as h®syp, have the
advantage of being unaffected by these sources of bias, and for many traits have found that a
large proportion of the heritability is captured by common variants®'?'3. For certain complex
traits, such as height, little unexplained additive genetic variance remains, as h?sne approaches

7,12

h?kan’'?. Despite this, h%snp estimates for most traits are still below h?:ay, with BMI a typical
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example where h’syp ~0.27 while h’can ~0.4-0.6 (ref. '?). Thus, for many complex traits, including
disease traits, much of the heritability remains unaccounted for.

A second application of these approaches is to better understand the genetic architecture
of complex traits. Genetic architecture refers to the number, frequencies, effect sizes, and
locations of causal variants (CVs) underlying trait variation. Methods for estimating heritability
from SNPs have found that estimated genetic variance is proportional to chromosome length for
numerous complex traits, including height, BMI, schizophrenia, depression, and metabolic traits,
consistent with the hypothesis that these traits are influenced by hundreds to thousands of
variants with small effects spread throughout the genome®®®'27'®More recently, these methods
have allowed insight into the frequency distribution and functional annotation of causal variants
by partitioning SNPs into MAF bins and annotation categories'”'®. Such methods have allowed
insight into gene networks involved in complex traits'®, and helped determine optimal strategies
for large-scale genotyping, such as whether genotyped SNPs on commercial arrays with
subsequent imputation can capture the genetic variation from all frequency classes of causal
variants or if whole genome sequences instead are needed'?.

A variety of methods to estimate h’syp and partition the genetic variance among sets of
markers have been developed for these purposes. Many of these methods use one or more
genetic relatedness matrices (GRMs) to estimate variances using restricted maximum likelihood
(GREML)*'2720 Manipulations of the GRM via treelet covariance smoothing?' or weighting by
linkage disequilibrium (LD) tagging of SNPs'® have also been proposed. A much different
approach, LD-score regression, estimates hsnp from GWAS summary statistics?®. The
performance of these methods has typically been evaluated via simulation by assuming that

causal variants have the same properties, on average, as common SNPs found on commercial
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genotyping arrays. However, such an approach is problematic because SNPs are specifically
selected because they are common, have unusually high LD with untyped SNPs, or have been
implicated in disease (e.g., the Affymetrix Axiom chip used in the UK Biobank?®). SNPs on arrays
are therefore probably not reflective of typical CVs across the genome, and thus the ability of
these methods to estimate h?syp or determine the genetic architecture of complex traits has not
yet been properly assessed, nor have these methods been directly compared across conditions,
such as levels of stratification or environmental confounding, that can cause biases. In particular,
how the various methods perform with traits derived from very rare CVs may be quite different
than how they perform on traits derived from common, well-tagged CVs, such as those used on
SNP arrays.

Here, we utilize thousands of recently-sequenced whole genomes to simulate complex
phenotypes to test the performance of the most widely used SNP heritability estimation methods.
We examine each method’s ability to estimate h’sye while varying the amount of population
stratification, the frequency distributions of causal variants, and the type of whole-genome data
analyzed (SNP array, imputed, and sequence). By using real sequence data to simulate
phenotypes, the genotypic data we use are highly realistic with respect to LD, allele frequency
distributions (with minor allele frequencies down to 3x10™), variant density, and other genomic
properties found in real data. Finally, we use the best-performing methods to estimate h?sne and
examine genetic architecture for six complex traits using the UK Biobank. While h’syp estimation
following imputation can account for the majority of the heritability, larger sample sizes and
reference panels, or novel methods, will be needed to fully account for all the additive genetic

variance in complex traits involving very rare causal variants.
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MATERIALS AND METHODS.
Samples and Population Structure

We simulated continuous phenotypes derived from whole genome sequence (WGS) data
in the Haplotype Reference Consortium (HRC) dataset. Full details of the HRC can be found in
McCarthy et al.?*. Briefly, this resource comprises roughly 32,500 individual whole genome
sequences from multiple whole-genome sequencing studies, with phased genotype calls
available at all sites with a minor allele count of at least 5. The HRC contains world-wide
populations, but the majority are of European (EUR) origin. This large collection allowed us to
simulate phenotypes with differing genomic architectures under realistic patters of LD structure,
stratification, and relatedness with the whole genomes. We obtained permission to access the
following HRC cohorts (recruitment region & sample size): AMD (Europe & worldwide; 3,189),
BIPOLAR (European ancestry; 2,487), GECCO (European ancestry; 1,112), GOT2D (Europe,
2,709), HUNT (Norway; 1,023), SARDINIA (Sardinia; 3,445), TWINS (Minnesota; 1,325), 1000
Genomes (worldwide; 2,495), UK10K (UK; 3,715) (see web resources for HRC information
including specific cohorts). The subset of the HRC data we accessed totaled 21,500 whole
genome sequences comprising 38,913,048 biallelic SNPs.

Our goal was to assess the bias and precision of various h’sye estimation methods using
data similar to that typically used in GWAS and h’sye analyses. In order to mimic this kind of
data, we first extracted variant positions corresponding to a widely-used commercially available
genotyping array, the UKBiobank Affymetrix Axiom array. We performed principal components
analysis using flashpca® on 133,603 SNPs after LD and MAF pruning (plink2*® commands —maf

0.05 --indep-pairwise 1000 400 0.2), extracting the first ten PCs, and performing K-means
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clustering in R?”. We used the 1000 Genomes individuals in the HRC as anchor points for
ancestry and identified 19,478 individuals of European descent, including individuals of Finnish
and Sardinian ancestry (Figure S1).

To identify subsets of these 19,478 individuals spanning different levels of genetic
heterogeneity, we reran PCA with only these individuals, then proceeded to identify four
increasingly homogenous subgroups within them using K-means clustering (Fig. 1). The most
stratified group contained all EUR samples (N=19,478). The somewhat stratified group excluded
Sardinian and Finnish samples (N=14,424). The low stratification group contained only
northern/western European samples (N=11,243), and the least stratified (homogeneous) group
was a subset of British ancestry samples (N=8,506). We used GCTA? to estimate relatedness
and remove samples so that the maximum relatedness was 0.1 within each of the four samples.
In the most homogeneous (smallest) sample, this left 8,201 individuals. To avoid confounding
sample size with degree of stratification, we randomly chose 8,201 of the unrelated individuals
from within each of the other three more stratified subsamples. Our purpose in identifying these
groups was to vary the amount of genetic heterogeneity within a sample, similar to what might be
found across a range of different GWAS samples, rather than formal population assignment or
classification of individuals. We also identified individuals with relatedness less than 0.05 within
each group, and used both subsets to examine how a 0.1 or 0.05 relatedness cutoff influences
h?sne estimates. Sample sizes when using the 0.05 relatedness cutoff were 7792, 8115, 8129,

and 8186 for the four genetic structure subsamples.

Simulated Phenotypes Using Whole Genome Sequencing Data
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To assess how methods performed on a range of genetic architectures, we simulated
phenotypes from CVs drawn randomly from five MAF ranges from the whole genome sequence
data: common (MAF=0.05), uncommon (0.01<MAF<0.05), rare (0.0025<MAF<0.01), very rare
(0.0003=MAF<0.0025), and all variants that had a minor allele count (MAC) of at least 5
(MAF=0.0003) (Fig. S2). Phenotypes were generated from 1,000 CVs from the model y; = g; + e,
where g; = >w i« Wi is the genotype (coded as 0, 1, or 2) of individual i at the k" CV, and S is
the k™ allelic effect size, drawn from ~N(0,1/[2p«(1-px)]), Wwhere py is the MAF of allele k within a
population subset. This model therefore assumes larger average additive effect sizes for rarer
variants. The g/s were standardized and added to residual error drawn from ~N(O, (1- h?)/h?) for
a h? of 0.5 for simulated phenotypes. A total of 100 repetitions were simulated for phenotypes
derived from each CV MAF range and for each of the four population stratification subsets. It is
important to note that we did not simulate any phenotypic effects as a function of ancestry within
any of the subsamples, and thus biases related to stratification in our results were due to the

genotypic (e.g., long-range LD), not phenotypic, effects of stratification.

SNPs, WGS, and Imputed Variants

Most marker heritability studies utilize commonly available commercial arrays, and
estimates of h’sye reflect how well SNPs on these arrays tag CVs. In particular, CVs with low
MAF or that exist in regions of low LD are typically tagged poorly by SNP arrays®' and h%sye <
h? in these situations. Alternatively, as large WGS reference panels (e.g., 1KG, UK10K, HRC)
become increasingly available, imputing genome-wide variants based on SNP arrays is an
attractive option for capturing more and rarer genetic variants than possible on arrays, although

imputation accuracy declines with MAF'2. Finally, using WGS data to estimate GRMs should
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reflect relatedness at all CVs, including those that are rare or in low LD with other SNPs.
Although WGS data in phenotyped samples is not yet widely available at the sample sizes
required for precise estimation of h?sye, we include it as a benchmark for results based on array
and imputed data and because large WGS samples are likely to become increasingly available
in the future. We therefore tested each of these data types (array, imputed, and WGS variants)
using each of the methods described below to determine how much of the heritability can be
captured from each data type, and how closely results from imputed data mimic those from WGS
data.

From the HRC sequence data (the WGS dataset), we extracted positions corresponding
to the Axiom array as noted above (the array SNP dataset) with MAF>0.01. To impute, we used
the 8,201 unrelated individuals in each population stratification set and added their close
relatives (relatedness > 0.1) back into the sample as described below in the GREML-SC method
description. We added these close relatives back in to the target imputation set in order to a)
remove close relatives from the reference panel which would artificially increase imputation
accuracy, and b) because some of the methods described below require the use of closely
related individuals. We phased these individuals using SHAPEIT2%, imputed using minimac3?°,
and retained variants with imputation R?>0.3 (ref. '?). We used the HRC sequence data as our
imputation reference panel after removing all target (8201 unrelated + relatives) individuals,
thereby assuring ~independence (no relatedness) between the target and reference panels.
Final reference panel sizes for the four structure subsamples were 11,584; 12,799; 12,785; and
12,994. Reducing the sample size of the reference panel likely resulted in poorer imputation than
had we used the full HRC panel but was nevertheless substantially larger than reference panels

used in most past imputation procedures (e.g., 1,000 Genomes). Moreover, because the target
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and reference samples were from the same populations and the same cohorts, the imputation
quality is likely higher than most GWAS samples would obtain. However, given that the HRC has
become a widely-used imputation reference panel, our imputation quality is probably roughly
reflective of imputation quality using modern procedures.

The amount of tagging throughout the genome differs between the various commercial
arrays'?, and these differences may lead to differing h’sye estimates. To assess this, for the
GREML-SC and GREML-MS methods (see below) using array positions data, we compared
results from the Axiom array to those from the lllumina Omni2.5 array. For reference, MAF
distributions of the different data types for two of the structure subsamples are shown in Figure

S2.

Heritability Estimation Methods Tested

Numerous methods have recently been developed to estimate h’sye and partition genetic
variance using genomic data. Among these, we compared the most widely used, including the
various single and multiple component GREML approaches implemented in the GCTA

software® 1217

, approaches that specifically take into account how LD influences the tagging of
nearby sites by SNPs'®, those that use related and unrelated samples to account for rare and
common variant effects®, those that denoise the GRM using treelet covariance smoothing®',
those that relate the effect sizes of SNPS from a GWAS to their degree of LD tagging'®%, and
computationally efficient mixed model approaches'®. Here, we briefly describe our
implementation of each of these methods; for additional information on the methods themselves,

see the above references. For all methods except LD-Score Regression and BOLT-REML

(described below), we generated GRMs following the procedures of each method, and estimated

10
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h?sne using GCTAZ. In all models, variance component estimates were unconstrained (e.g., by
using the —reml-no-constrain option of GCTA), and included 20 PCs (10 from worldwide PCA
and 10 from the specific subsample PCA) as continuous covariates and sequencing cohort as a

categorical covariate.

Single Component GREML (GREML-SC)
Yang et al.® introduced the single component GRM approach using a mixed-effects

model, with GRM entries:

o _ 1 om &ik—2Pr) (X jk—2Pk)
A” B mZk 2pk(1-pi) (1)

where m is the number of SNPs, xj is the genotype (coded as 0, 1, or 2) of individual j at the K
locus, and px is the MAF of the k™ locus. The variance of the phenotypes is

var(y) = Ac2 + Ic? (2)
where the variance explained by the SNPs (¢%,) and error variance (o%) are estimated using
restricted maximum likelihood (REML) implemented in the GCTA package®. The proportion of
the total variance explained by all SNPs is then a measure of heritability (h’syp = 6%, / (6%, +
o%)). Typically, the set of m SNPs used to build the GRM is the set of SNPs with MAF=0.01
(hereafter “common SNPs”) and unrelated individuals (relatedness < 0.05). Because the Axiom
array contains some rare markers, we compared this approach to one using all SNPs with
MAC=5 (hereafter “all SNPs”) in each particular stratification subsample, as well as to an
approach using less stringent relatedness thresholds (relatedness < 0.10 and no relatedness

threshold). For analyses that used no relatedness threshold, inclusion of close relatives

11


https://doi.org/10.1101/115527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/115527; this version posted March 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Running Head: Comparison of SNP heritability methods

increased our sample sizes to 9916, 8701, 8715, and 8506 for the samples with most, some,

low, and least stratification, respectively (Fig. 1).

MAF-Stratified GREML (GREML-MS)

Biased estimates of h’syp are expected when using the GREML-SC method if the MAF
distribution of the CVs does not match the MAF distribution of SNPs used to generate the
GRM'’. Stratifying variants into MAF classes and using a multiple GRM GREML approach can
mitigate this bias and can also partition the genetic variance into that explained by different MAF
categories of SNPs, lending insight into the genetic architecture of complex traits'**°. We applied
this approach using 4 MAF categories, matching the CV MAF categories used for phenotype

simulation.

LD- and MAF-Stratified GREML (GREML-LDMS)

Extending the GREML-MS method to account for different levels of LD throughout the
genome, Yang et al.'? introduced an LD score-stratified method to the GREML-MS approach.
GREML-LDMS stratifies variants according to both MAF categories as well as an LD-score,
defined as the sum of r* between the focal variant and all other variants in a window. We
estimated LD scores using the default settings in GCTA (10Mb block size with a 5Mb overlap),
and stratified variants into LD score quartiles. Combined with the four MAF categories above, we

used 16 GRMs for this approach.

Single Component and MAF-Stratified LD-Adjusted Kinships (LDAK-SC and LDAK-MS)

12
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Speed et al.” noted that because LD varies across the genome, CVs in regions of high
LD are given disproportionate weight by eqgn. (1) above. They proposed a method to weight
SNPs according to local LD, which potentially corrects for the bias introduced when there is
variation in how well CVs are tagged by SNPs. We used LDAK5 to estimate these LD-weighted
GRMs. This approach thins SNPs in very high LD first to reduce redundant tagging, then
estimates SNP weights that are inversely proportional to their average LD with other SNPs. We
also applied the MAF-stratified approach described above with the LDAK method (LDAK-MS).
For the single component model (LDAK-SC), we used all SNPs (MAC=5) as well as only
common SNPs (MAF=0.01) to build the GRM. For the MAF-stratified approach, following
recommendations in the LDAK documentation, we estimated variant weights over the union of all
variants (MAC=5), then computed GRMs for each MAF class separately. We then applied the

multiple GRM method with these LDAK-weighted GRMs to estimate h?syp using GCTA.

Extended Genealogy with Thresholded GRMs

Zaitlen et al.® introduced a method to simultaneously estimate the full narrow-sense
heritability (incorporating the effects of poorly tagged SNPs) and h?sye using two GRMs in a
sample containing close relatives. The first GRM contains relatedness from SNPs for all
individuals while relatedness estimates below a threshold, ¢, are set to 0 in the second GRM. The
first GRM, therefore, contains information on allele sharing of (mostly common) variants in
unrelated and related individuals and is used to estimate h’syp, while the second only contains
information from closely related individuals, presumably reflecting sharing of both common and
rare CVs, and provides an estimate of what we call h®zs>1, (following Zaitlen et al.?). The sum of

h?ss>t and h’syp should therefore provide an estimate of total h?, similar to hsau, , with all the

13
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same potential biases that exist in h?rau estimates from designs that use close relatives. We
tested two relatedness thresholds (t < 0.05 and 0.1) for the second GRM. By necessity, all

analyses using the relatedness thresholded GRM approach included close relatives.

Treelet Covariance Smoothing (TCS)

Crossett et al.?" noted that the GRM estimates (particularly for unrelated individuals) are
inherently noisy. They proposed a method to smooth the estimates using treelet covariance
smoothing (TCS) to obtain more accurate estimates of relatedness. Their method takes
advantage of the hierarchical nature of relatedness in samples to obtain better estimates of A;
among unrelated individuals. We replicated their methods, using common SNPs (MAF=0.01) and
including related individuals, and implemented the TCS method in the treelet R package®’. TCS
requires identifying a smoothing parameter, A (distinct from the genomic control inflation factor
Aac). Crossett et al.?" propose two methods to optimize A, one based on minimizing the GREML
likelihood and one based on minimizing a loss function (H(1)) at different levels of A based on
subsamples of the SNPs. With the large number of simulations across stratification subsamples
and genetic architectures, minimizing the GREML likelihood for each simulated phenotype was
not feasible. Minimizing H(1) using the second approach requires estimating the GRM and
applying the TCS method to over 50 subsets of data, also impractical computationally with over
8,000 individuals. We therefore used a modification of the 2" approach. We built GRMs from
2000 randomly chosen individuals from each stratification subsample and optimized A for each
subsample following the published methodology (Fig. S3), then applied the optimal A to the full

GRM of over 8,000 individuals.
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LD-Score Regression

LD-score regression uses a different approach to estimating h’snp. Rather than estimating
relatedness within a sample for use in mixed-model GREML analysis, LD-score regression
regresses GWAS test statistics (%) on SNPs’ LD scores, which reflect the degree to which each
SNP is correlated with surrounding SNPs'®?2. For a polygenic model, the expected GWAS test

statistic of variant j, x%, is

E[XZJ' | 1= N(hZSNP)/j IM + Na +1 (3)

where N is the sample size, M is the number of SNPs, /; is the LD score (= Zkfzjk) measuring the
tagging of surrounding variants by SNP j, and a is a measure of confounding biases arising from
stratification and cryptic relatedness. Thus, regressing GWAS test statistics on per-variant LD
scores allows for both estimation of h’syp and assessing the degree of confounding or
polygenicity of a trait*2. Bulik-Sullivan et al.?? argue that LD-score regression provides unbiased
estimates of h’syp regardless of whether GWAS test statistics are estimated with or without
controlling for ancestry or environmental covariates or relatedness. Here, we estimated GWAS
test statistics using plink2 without controlling for ancestry covariates, controlling for ancestry
covariates (20 PCs and sequencing cohort as above), and controlling for ancestry covariates as
fixed effects in a mixed model that included a kinship matrix. For the latter, we applied the GCTA
leave-one-chromosome-out (LOCO) approach?; because the GCTA-LOCO approach is
computationally intensive, we ran only 20 repetitions of each phenotype rather than 100, and did
so only for the array SNP dataset. We used the /dsc package with default parameters (see

URLs) to perform LD score regression. We calculated LD scores for all variants using the whole
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genome sequence data, including common and rare variants. As recommended by Bulik-Sullivan
et al.??, we used unrelated individuals (relatedness < 0.05) and only common variants to perform
the LD score regression itself, because the relationship between the GWAS y? and LD-score is
unclear for rare (MAF<.01) SNPs.

LD score regression can also be used to partition heritability among annotations'®. We
applied this approach using the four MAF categories described above. Because our MAF
categories included very rare variants, for this MAF-stratified LD score regression, we used
GWAS test statistics from all variants (MAF=0.0003, using the --not-5-50 flag in the Idsc

package) while controlling for covariates as above.

BOLT-REML

Unlike other GREML approaches, BOLT-REML uses a Monte Carlo approximation of the
gradient for the likelihood function to reduce computation time and memory requirements in
variance component estimation'®. When using whole genome sequence and imputed variant
data with >14M variants (see below), time required by BOLT-REML, even when highly
parallelized, was prohibitive for 100 repetitions of each combination of variables we tested, as it
scales with MN"°, where M is the number of markers and N is the number of samples (see
Supplementary Table 1 of Loh et al."® for computational performance). Note that GREML takes
longer for a single sample due to the length of time to create the GRM; in our simulations with
GCTA-style approaches, the GRM computation was done only once, and therefore was much
faster when estimating heritability for many repetitions created from randomly-drawn CVs with a
single GRM. We therefore only applied BOLT-REML to the array dataset. We applied the

method with a single component using either all array positions or only common markers
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(MAF>0.01) as well as a MAF-stratified approach with the same four MAF partitions and same

covariates described above.

Confounding between relatedness and shared environments

Many of the methods we tested use unrelated individuals to avoid the assumption of no
shared environmental effect among near relatives®. However, several, such as the extended
genealogy with thresholding, require the use of near relatives. This could lead to confounding
between relatedness estimates and shared environmental effects within families or closely
related individuals if shared environmental effects are not modeled”*. Indeed, Zaitlen et al.?
argue that such shared environmental effects were the likely cause of higher h?:ay estimates
among relatives who shared an environment through cohabitation (e.g., half-siblings) compared
to equally related relatives that did not share a cohabitation environment (e.g., grand-parents
and grand-children). We therefore assessed whether h?sye and h®:ay estimates are biased for
methods that use closely related individuals when extended shared environmental effects are
present but unmodeled.

We first identified all groups of individuals connected by at least one pairwise relatedness
value > 0.2 (“extended families”). Note that many of the pairwise relationships within these
extended families were below 0.2. For example, spouses are typically unrelated but are
nevertheless defined as being in the same family if their offspring are present, and cousins would
be defined as being in the same family if their parents were present in the sample. We then
simulated phenotypes with a shared extended family environmental effect that accounted for
10% of the variance (¢?=0.1). Simulations were similar to those described above, with genotypic

values exactly the same as above, but with shared effects for each family drawn from ~N(0O, V),
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386 where V. = c?*Vy/h? Vy is the variance of genetic values, and ¢ is the proportion of the

387  phenotypic variance due to shared environments, and residual error added as ~N(0, (1- h*-

388 ?)*V,/h?), for a simulated h?=0.5, ¢?=0.1, and ¢?=0.4. We applied GREML-SC, LD score

389  regression, and extended genealogy with thresholded GRMs using common variants from array
390  SNPs controlling for the same covariates as above and without modeling the shared

391 environmental effect. This tested whether methods are robust to violations of the assumption of
392 no shared environmental effects on the phenotype.

393

394  Heritability of Complex Traits in the UK Biobank

395 We estimated h?sype for six continuous phenotypes in the UK Biobank using the methods
396 (GREML-MS and GREML-LDMS) that produced consistently unbiased estimates of h? and

397  partitioned the genetic variance most accurately in the simulations above. The UK Biobank is a
398 large, publicly available resource of ~500,000 UK adults, with deep phenotyping, family history,
399 and genotype data®. The current release includes ~150,000 individuals, primarily of European
400  ancestry, genotyped on the Affymetrix Axiom platform, phased using SHAPEIT2 and imputed to
401 a combined 1000 Genomes and UK10K reference panel (N=6,285 individuals). The details of the
102  official UK Biobank genotyping and imputation methods in the released data can be found at
103  http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf and

104  http://biobank.ctsu.ox.ac.uk/crystal/docs/impute _ukb_v1.pdf (accessed 29 Feb. 2016). We

105  excluded individuals with no genetic data and those whose self-reported and genetic sex

106  conflicted (data fields f.31.0.0 and f.22001.0.0). Poor quality samples identified by the UK

1407  Biobank and Affymetrix were also removed (f.220010.0.0) as were UKBILEVE poor-quality

108 samples (f.22051.0.0), leaving a total of 151,661 individuals. To reduce population stratification,
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we included only individuals of European ancestry in our analyses. The UK Biobank identified
self-reported “British” individuals as “Caucasian” based on grouping of individuals with CEU
individuals in PCA (see UK Biobank documentation). To these individuals (f.22006.0.0), we
added those who self-identified as “White,” “Irish,” or “Any other white background” whose PC
scores on the first four axes (f.22009.0.1-4) were within the range of the UK Biobank-identified
“Caucasian” individuals, resulting in 126,338 individuals. We projected the UK Biobank samples
onto the HRC PCA axes using the loadings from the HRC EUR individuals, demonstrating that
the UK Biobank individuals we used in the analyses below are similar to the least stratified or
unstratified subsamples of the HRC we used (Fig. 1). To estimate the GRMs, we separately
used directly genotyped Axiom array positions as well as imputed genome-wide variants with
IMPUTE info score >0.3.

We estimated h?sye for the following traits in the UK Biobank (field ID number): height
(f.50.0.0), body mass index (BMI; f.21001.0.0), whole-body impedance (f.23127.0.0), trunk fat
percentage (f.23127.0.0), fluid intelligence (f.20016.0.0), and neuroticism (f.20127.0.0). We
normalized phenotypes and removed observations greater than 5 standard deviations away from
the mean. We included sex (f.31.0.0), UK Biobank assessment centre (f.54.0.0), genotype
measurement batch (f.22000.0.0), and educational attainment (“qualification”, f.6138.0.0) as
categorical covariates, and the Townsend deprivation index (f.189.0.0), age at assessment
(f.21003.0.0), age at assessment squared, and the 15 PC scores from the UK Biobank
(f.22009.0.1-15) as quantitative covariates.

For GREML-MS, we binned variants into eight MAF-categories: MAC>5 & MAF<0.0001,
0.0001-0.001, 0.001-0.01, 0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, & 0.4-0.5. For GREML-LMDS, we

were limited in the number of predictor GRMs to use due to computational constraints (1Tb of
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RAM); we therefore, used 4 MAF bins (common: MAF>0.05, uncommon: 0.01<MAF<0.05, rare:
0.0001<MAF<0.01, and very rare: MAC>5 & MAF<0.0001) and 2 LD-score bins (above and

below the median LD-score).

RESULTS
Simulation Results

We found clear differences across methods, degree of stratification, and data types (array
SNP, WGS, or imputed variants) in their ability to estimate the simulated h? for different CV MAF
architectures (Figs. 2-3 and S4-S6, Tables S1-S3). Below, we describe results for each method
in detail. Please refer to Figures 2-4, Figures S4-S6, and Tables S1-S5 for estimates of

heritability, and Figures S7-S9 for estimates of the heritability standard errors.

Single Component GREML (GREML-SC)

Estimates of h’snp using GREML-SC were highly sensitive to the CV allele frequencies,
dataset type (SNPs, WGS, or imputed variants), level of stratification, and MAF cutoff for SNPs
used to build the GRM. Using only Axiom array positions, h’syp was overestimated by ~20% for
common CV phenotypes, and progressively underestimated with rarer CVs, regardless of
whether all or just common (MAF>0.01) SNPs were used to build the GRM. The underestimation
of h’sye when the GRM is built from SNPs that are more common on average than the CVs is
well known®. It is due to a more general principle: when the average LD between CVs and the
markers used to build the GRM is lower than the average LD among the markers themselves,
h?sne is underestimated’?. Thus, h’sye was underestimated for rare CVs because they tend to

have lower LD with common markers than the common markers have with each other.
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The overestimation of h’sys for common CVs in our results is explained by the same
principle—the average LD between CVs and markers is, in this case, higher than the average LD
among markers used to build the GRM. This occurs for two reasons. First, the common CVs
(MAF=0.05) have higher MAF on average than the markers on the array (using either an
MAF=0.01 or MAC=5 cutoff for the Axiom-based GRM computation). Second, markers on arrays
are not chosen at random, but are typically chosen to minimally tag one another (to reduce
redundancy) and to maximally tag variants not on the array, leading to lower average LD among
markers than between markers and common variants not on the array (see also ref. '*). To
understand if the overestimation of h?sye for common CV phenotypes was unique to the Axiom
array positions, we reran the analysis with SNPs on the lllumina Omni2.5 array and observed
similar h?syp inflations for common CVs on the lllumina array as well, although the impact of
sample stratification appeared to more strongly influence the Illumina chip, perhaps due to the
incorporation of a larger number of rare (MAF<0.01) variants on the lllumina array (Figs. S2 and
S10).

Utilizing imputed or WGS data to build the GRMs resulted in complex patterns of h’syp
estimates depending on CV MAF class and stratification. Using a MAF>0.01 cutoff for imputed
SNPs in building the GRM resulted in patterns similar to array-based estimates above (Fig. S5-
S6), although the overestimates for common CVs were not as large, probably because the
imputed markers used to build the GRM included all common SNPs rather than an
overrepresentation of tag SNPs. On the other hand, when all imputed markers were used to
build the GRM, GREML-SC estimates depended strongly on stratification level and the CV MAF.
GREML-SC produced large overestimates for common CV phenotypes but underestimates for

rarer CV phenotypes in unstratified samples (Fig. S6), as previously noted in Yang et al.’?. The
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pattern was reversed for stratified samples: estimates of h’sye were approximately unbiased for
common CV phenotypes but underestimated for uncommon-to-rare CV phenotypes and
overestimated for very rare CV phenotypes. Finally, when the frequency distribution of the CVs
matched that of the WGS (e.g., randomly drawn from all WGS variants), the estimates were
unbiased regardless of stratification when using WGS data to build the GRM (Fig. S5), but were
slightly underestimated when using imputed data (Fig. S6), presumably due to imperfect
imputation. The reason for this complex pattern of h’syp estimates, where the effect of CV MAF
depended on stratification, was likely due to changes in CV-marker and marker-marker LD as a
function of stratification. The pattern of h’sye estimates in unstratified samples is predictable
based on the logic outlined above: when CVs are more common than the markers used to build
the GRM, h’syp is over-estimated, and vice-versa when CVs are less common than SNPs used
to build the GRM. In highly stratified samples, however, very rare variants tend to be ancestry-
specific and therefore weak proxies for variants elsewhere in the genome that predict ancestry
(long-range LD). This makes the LD between very rare CVs and markers that predict ancestry
elsewhere in the genome higher on average than the LD among the markers used to build the
GRM, thereby inflating h’sye estimates for very rare CV phenotypes in stratified samples.
These results underscore that h’syp estimates from GREML-SC, the typical approach
used, are sensitive to differences in average CV-marker LD vs. marker-marker LD (Fig. S11).
This difference itself depends on complex interplays between the CV MAF distribution, the
frequency distribution of markers used to build the GRM, and the level of stratification in the
sample. Thus, h’syp estimates using single-component GREML are highly context dependent,

which may help explain the variation in estimates sometimes observed across studies for the
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same traits. Fortunately, stratifying SNPs based on MAF and LD, to which we turn next, largely

ameliorates these issues.

GREML using MAF-Stratified (GREML-MS) and LD- and MAF-Stratified (GREML-LDMS)
GRMs

Genome partitioning using GREML-MS and GREML-LDMS produced h’syp estimates that
were substantially less biased and less sensitive to stratification than those from GREML-SC.
GREML-MS h?sye from array-based GRMs were underestimated for rarer CV phenotypes, as
expected given the lack of LD between common array SNPs and rarer CVs, and were very
slightly overestimated for common CV phenotypes, probably because of the LD properties of the
SNPs chosen to be on the array (e.g., lllumina vs. Axiom positions, Fig. S10), as described in the
previous section. GREML-MS using imputed variants slightly underestimated h®syp for common
to rare CV phenotypes. For very rare CV phenotypes, h’syp was underestimated by ~18% in
unstratified samples, likely due to poorer imputation quality for very rare SNPs, but
underestimated by only ~7% in stratified samples. The higher estimates in stratified samples for
very rare CVs is probably a lingering overestimation effect of long-range tagging of such variants
in stratified samples. WGS-based estimates appeared unbiased for all combinations of CV MAF,
relatedness, and stratification, with estimates all ~0.5.

Partitioning of the variance among the four MAF-stratified GRMs using GREML-MS
allowed examination of the CV frequency distributions (Fig. S12, Table S4). GREML-MS
estimated from GRMs built from array markers correctly apportioned the variation for common
CV phenotypes, but as expected progressively underestimated h?syp due to poor tagging of rare

CVs with common SNPs (Fig. S12). Imputed variant GREML-MS provided more accurate
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estimates of the CV frequency distributions, but still underestimated the effects of rare and very
rare CVs by as much as ~20% in unstratified samples (Fig. 3). Using WGS, the appropriate
proportion of the variance explained by each MAF-stratified GRM in the model was recovered
(Fig. S13, Table S4). Thus, the use of multiple GRMs based on MAF using imputed or WGS data
produces generally accurate GREML estimates of both h’sye and the CV frequency distribution,
with only modest downward biases for very rare CVs when using imputed data.

The patterns of h’syp estimates (Fig. 2-3, Figs. S12, S13) from GREML-LDMS were
almost identical to those from GREML-MS, which might be expected because the CVs in our
simulation were drawn at random within frequency bins and without regard to their LD. There
were, however, two minor differences between the GREML-LDMS and GREML-MS results. First,
for array-based GRMs (Fig. 2), estimates from GREML-LDMS for common CV phenotypes were
unbiased, whereas those for GREML-MS were slightly overestimated. As noted above, array
markers are more likely to tag common SNPs not on the array better than those on the array,
leading to higher CV-marker than marker-marker LD and creating a slight upward bias. By
binning by LD in addition to MAF, GREML-LDMS removes this source of bias, leading to
unbiased h®syp estimates for common CVs. Second, for unknown reasons, GREML-LDMS using
whole genome sequence data gave slight (~3%) underestimates of h’syp in highly stratified
samples for rare to common CVs, but not for very rare CVs (Fig. 2 and S5). This effect was not
apparent in imputed data, and may be simply sampling variance.

In summary, our findings suggest that using GREML-MS or GREML-LDMS on imputed
data generally leads to accurate estimates of h’syp and the CV allele frequency distributions,
with only modest underestimation of variance due to rare and very rare CVs. Moreover, once

large enough WGS datasets become available, the underestimation of rarer CVs should be
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largely ameliorated, although these methods can never estimate variance due to CVs that are so

rare as to be unshared in a given sample.

Single Component and MAF-Stratified LD-Adjusted Kinships (LDAK-SC and LDAK-MS)

Single component LD-adjusted estimates of the kinship matrix (LDAK-SC) downweights
markers that better tag other SNPs, thereby correcting for the overestimation of h’syp observed
in GREML-SC for common CV phenotypes in array-based data due to redundant tagging (Fig.
2). As with other methods using GRMs based on array SNPs, LDAK-SC produced downwardly
biased h’syp estimates for rarer CV phenotypes. Using the MAF-stratified approach (LDAK-MS)
resulted in similar patterns.

As with GREML-SC, using LDAK-SC on imputed data resulted in a complex set of biases
that depended on CV MAF, data type, and stratification, although the patterns of bias were
different. LDAK-SC h?syp estimates using only common (MAF > 0.01) imputed variants were
similar to those using only array SNP positions. LDAK-SC using all imputed variants led to
roughly unbiased h’syp estimates in unstratified samples, but led to h’syp estimates that varied
wildly depending on the CV MAF in the stratified samples (Fig. 2). LDAK-MS on imputed variants
produced h’syp estimates that were less biased that LDAK-SC, but nevertheless more biased
and more sensitive to stratification compared to those produced by GREML-MS on imputed data
(Fig. 2).

Using LDAK-SC on WGS data also resulted in biases. With only common variants, results
mirrored those found using array and imputed variants (Fig. S5). However, when all WGS
variants were used, h’syp for very rare CV phenotypes was overestimated, especially in highly

stratified samples, but underestimated for all other phenotypes. When using LDAK-MS on WGS
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data, the biases were less extreme. However, LDAK-MS resulted in over-estimated h’syp for
common CVs and underestimated h?syp for all other CV phenotypes (Fig. 2). Similar to LDAK-
MS estimates of total h’syp, using LDAK-MS to partition genetic variance among MAF ranges,
produced estimates that were less precise and more biased than either GREML-MS or GREML-
LDMS for the array, imputed, or WGS based GRMs (Figs. 3, S7-S9, S12-S13).

Much of the observed patterns was likely due to the relationship between MAF and LDAK
weights (Fig. S14; ref.'?) and differences in MAF distributions of array, imputed, and WGS
variants (Fig. S2). More very rare variants were observed and given higher weightings in the
WGS data than in either the imputed or array datasets. Similarly, in stratified datasets more very
rare variants were imputed (Fig. S2) and this likely contributed to stratification effects and

differences among imputed and WGS datasets.

Extended Genealogy with Thresholded GRMs

Patterns in the biases of h’syp estimates were similar to those found using GREML-SC
(Fig. 2) when using the extended genealogy method, demonstrating that h’syp estimates are
unaffected by the inclusion of close relatives so long as the model includes a second
(thresholded) GRM that contains only information on genomic sharing among close relatives.
However, the relative amount of variance attributable to the unthresholded GRM (estimating
h?snp) versus the thresholded GRM (estimating h?ss>¢) varied considerably, and depended on
whether common (MAF>0.01; Fig. S15) or all (Fig. S16) markers were used to estimate the
GRMs. Using GRMs built from common (MAF>.01) array markers (Fig. S15), the estimate of
h? s>t was negative, while h’syp was overestimated for common CV phenotypes. As CVs

became rarer, h’ss>t grew while h?syp shrunk, consistent with Zaitlen et al.’s interpretation that
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h? s>t would estimate variance due to rarer CVs. This pattern was more pronounced when all
markers were used (Fig. S16). Using imputed or WGS data, the pattern of negative variances
estimated for some of the GRMs remained. Nevertheless, estimates of total heritability, similar
to h%ram, the sum of h?sss: and h?syp, were nearly unbiased or slightly downwardly biased in most
datasets and stratification subsamples (Fig. S15-S16). Even the total heritability of very rare CV
phenotypes was underestimated by less than 5%, regardless of the dataset used (SNP, WGS, or
imputed variant). It is important to note, however, that shared environmental effects can inflate
estimates of total h? using this method (see Confounding between relatedness and shared

environments below).

Treelet Covariance Smoothing (TCS)

Estimates of h?syp from the TCS approach were highly unstable. Using samples of
unrelated individuals, the TCS method produced widely varying estimates of h’syp depending on
the CV MAF, level of stratification, and type of data used to build the GRM (Fig. 2). We note that
the original implementation?' used related individuals for h?sye estimation; however, performance
did not improve when using samples of related individuals (Figs. S4-S6). The estimated and
empirical standard errors were substantially higher than any other estimation method (Fig. S7-
S9). Moreover, the pattern of results was complex and depended strongly on the simulation
condition; for estimates from GRMs built from array (Fig. S4) or imputed (Fig. S6) markers, h’snp
was typically underestimated for all CV MAF frequencies irrespective of inclusion of close
relatives. However, h’syp estimates were too high when WGS data was used for certain
combinations of CV MAF frequencies and stratification levels, and too low for others. It is

possible the TCS method would work better in samples that included more close relatives, but it
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should be noted that other approaches (e.g., the thresholded GRM approach above) that rely

upon inclusion of close relatives produced unbiased total estimates with our sample sizes.

LD Score Regression

Estimates of h?syp from LD Score Regression were similar when utilizing either Axiom
SNPs, imputed, or WGS data (Figs. 2 and S4-S6), as were estimates of the intercept (which
reflect the contribution of stratification and cryptic relatedness to the GWAS test statistics; Figs.
S17-S19). Across data types, h’sye Was generally slightly underestimated (5-10%) for common
CV phenotypes. This downward bias was slightly reduced in simulations using 10,000 causal
variants, but remained (Fig. S20); it is possible that this bias would be eliminated under the truly
infinitesimal model assumed by the model. h’sye was increasingly underestimated for
phenotypes caused by increasingly rare CVs (Fig. 2), regardless of data type. This
underestimate of rare CV variation occurs because h?syp is estimated only from common marker
(MAF>0.01) GWAS statistics??, which are typically unaffected by rarer CVs. Interestingly, in the
highly stratified subsample, common CV phenotype h’syp was overestimated with no covariate
correction with array SNPs, but controlling for PCs and sequencing cohorts using regression
(Figs. 2 and S4-S6) or a mixed-model approach (GCTA-LOCO; Fig. S4) removed this bias,
suggesting that h’syp estimates from LD score regression are not immune to biases due to
stratification.

Estimates of h?snp using MAF-partitioned LD score regression were highly variable, but in
many cases biased upwards (Fig. S4-S6). For common CV phenotypes, the estimates were less
biased than the standard LD score regression estimates described above. However, with rarer

CV phenotypes, regardless of the data used (array positions, imputed variants, or WGS data),
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h?sne Was severely overestimated, expected when including very rare SNPs in the
regression'9%23*,

The genomic control inflation factor, Agcc, was greater in more stratified subsamples
without covariate correction, demonstrating the bias in GWAS with structure even in the absence
of confounding environmental effects (Figs. S17-S19), consistent with previous work that shows
structure alone can inflate GWAS test statistics*****° due to chance CV allele frequency
differences. We confirmed this using simulated data for two populations spanning a range of
structure (Fsr) and polygenicity without confounding environmental effects (Fig. S21). After
controlling for PC covariates using regression or by inclusion of a kinship matrix (using GCTA-
LOCO; Axiom SNPs only), there was limited effect of stratification, but Asc was still greater than
one for phenotypes derived from common, uncommon and rare CVs (Figs. S17-S19). That Agc
was not inflated for very rare CVs probably only reflects low statistical power for testing low MAF
markers.

The LD score regression intercept, which reflects the amount of confounding by
stratification and polygenicity®?, was greater than one when no covariate control was applied
across all stratification subsamples for all but the common CV traits (Figs. S17-S19). This was
stronger for the more stratified subsamples, as expected. The intercept was ~1 when the
covariates (and relatedness using Axiom SNPs) were accounted for, with the exception of
uncommon and rare CV phenotypes, which were slightly >1, suggesting that the control of
covariates was sufficient to account for the majority of the inflation in test statistics due to
stratification. We note that these simulations included no confounding environmental effects,
which may covary with stratification, and lead to inflation of GWAS statistics independent of the

inflation of the intercept observed here??. Nevertheless, such inflated GWAS statistics generally
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should not be associated with the degree of LD-tagging of the markers, and thus should not

inflate estimates of h?syp.

Confounding between relatedness and shared environments

We tested the effect of confounding between relatedness and shared environment
(simulated ¢?= 0.1) for GREML-SC, LD score regression, and thresholded GRMs, using
common array positions only. With unmodeled shared environmental effects, including all
relatives and using GREML-SC resulted in overestimates of h’syp, especially for rare CV
phenotypes and for stratified samples (Fig. 4). However, when close relatives were removed at
thresholds of 0.05 or 0.1, shared environmental effects produced no additional upward bias (Fig.
4) over those observed when no shared environmental effects existed (Fig. 2) Thus, as
previously argued® removing close relatives appears to correct for this type of shared
environmental effect. Also as argued in ref.??, h’sye from LD score regression was not biased
upward due to unmodeled shared environmental effects, even when close relatives were
included. Finally, using the thresholded GRM method with environmental confounding, h’sye was
biased slightly upward, particularly with a 0.1 relatedness threshold, but total heritability
overestimation reached 20%, consistent with all or almost all shared environmental variance
being estimated as additive genetic variance. Thus, care must be taken in interpreting results
from methods that use SNP GRMs to estimate heritability when related individuals are included;

shared environmental variance can masquerade as genetic variance.

Heritability of Complex Traits in the UK Biobank
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We applied the GREML-MS and GREML-LDMS approaches to six complex traits in the
UK Biobank data, and partitioned estimates of the heritability by marker MAF using either directly
genotyped Axiom SNPs or imputed genome-wide variants (Fig. 5, S23, Tables S6-S7). Total
h?swp was on average 12% lower using imputed data rather than the directly genotyped Axiom
positions; our simulation results suggest this may be due to overestimation of variation due to
common CVs for array markers (Fig. S4) and slight underestimation of variation due to common
CVs for imputed markers (Fig. S6) using this method. The difference between array and imputed
data was most apparent in the estimates of h’sye per MAF bin, where h?sye was lower using
imputed data for common variant bins (MAF>0.01), but higher for rarer MAF bins. For example,
the rare MAF bins (MAF<0.01) accounted for 8.8% of the phenotypic variance of height using
imputed markers but only 0.6% using genotyped SNPs, whereas common MAF bins accounted
for 48% and 59%, respectively. Fluid intelligence was even more striking, with rarer SNPs
accounting for 11% and 3.4% using imputed and directly genotyped markers, respectively, while
common markers accounted for 14% and 20%. Our simulations results suggest the h’syp
estimates from imputed data are more trustworthy.

Our simulation results also suggest that frequency distribution of CVs is best estimated
using imputed data. The h’syp across MAF bins from a GREML-MS model in the UK Biobank
imputed data suggest real differences in genetic architectures across the six traits (Fig. 5) . For
example, height and adiposity phenotypes (BMI, impedance, and trunk fat) appear to be
influenced mostly be common CVs, whereas fluid intelligence appears to have an important
contribution from rare (MAF < 0.01) CVs. Results from GREML-MS (Fig. 5) were similar to those

from GREML-LDMS (Fig. S23, Table S7), although GREML-LDMS suggested that more trait

31


https://doi.org/10.1101/115527
http://creativecommons.org/licenses/by-nc-nd/4.0/

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

bioRxiv preprint doi: https://doi.org/10.1101/115527; this version posted March 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Running Head: Comparison of SNP heritability methods

variance, even that attributable to common SNPs, was due to variants in the lower half of LD
scores.

Our results suggest that most of the genetic variance of these traits is attributable to
relatively common (MAF>0.01) variants. However, the contribution of increasingly rare CVs is
likely to be underestimated for a few reasons. First, our simulations suggest that variation due to
very rare CVs (0.0003<MAF<0.0025) is underestimated by ~ 20% due to low imputation quality
of rarer variants. Second, this under-estimate was probably more severe in these results given
the imputation reference panel used in the UK Biobank data was half the size of the reference
panel used in our simulations. The variation due to CVs not present in the imputation reference

panel used for the UK Biobank (UK10K and 1,000 Genomes) were missed in our results.

DISCUSSION
Performance of h’syp Methods in Simulated Data

We have demonstrated that estimates of genetic variation using SNP data can be biased
in a number of sometimes difficult to foresee ways, and depend strongly on a complex interplay
between method used, the frequency distribution of CVs, the type of data used in the analysis,
the degree of sample stratification, whether relatives are included or excluded, and the
importance of shared environmental effects. Approaches that are able to explore genetic
architecture of complex traits also differ in their ability to correctly estimate the CV frequency
distributions. Understanding how the different methods behave under different contexts is crucial
for proper interpretation of SNP-heritability estimates and for optimal design of future studies.

There has been much debate surrounding the relative importance of common vs. rare variants

32


https://doi.org/10.1101/115527
http://creativecommons.org/licenses/by-nc-nd/4.0/

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

bioRxiv preprint doi: https://doi.org/10.1101/115527; this version posted March 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Running Head: Comparison of SNP heritability methods

and the degree to which heritability remains unexplained (e.g., ref. "'#'%), and the findings
presented here offer context for how results from these methods inform these debates.

Through simulations, we have provided evidence that the use of WGS data, in
combination with genome partitioning methods such as GREML-MS or GREML-LDMS, results in
roughly unbiased h? estimates in unrelated samples, regardless of trait genetic architecture or
population stratification in the sample, although variation due to extremely rare variants (e.g., de
novo mutations) that are unshared between individuals in the sample will still be missed. Even
with the most comprehensive imputation reference panel available, using imputed genome-wide
markers still results in downwardly biased h’sye estimates to the degree that rare variants are
important to trait variation, but not nearly to the degree observed when using array markers. This
is important, because it implies that the narrow-sense heritability remains underestimated in
current studies using imputed data. Even with datasets using large reference panels, such as the
UK Biobank data presented here, h’syp from very rare CVs is likely underestimated due to poor
imputation of rare SNPs. As imputation reference panels, such as the HRC and the forthcoming
TOPMed panel®’, continue to grow in size and diversity, accurate imputation of increasingly rarer
variants will allow for increasingly accurate estimation of not the full narrow sense heritability, as
well as for increasingly accurate estimation of the frequency distribution of CVs. Alternatively,
novel methods, such as those that rely on sharing at identical-by-descent haplotypes rather than
allele sharing at measured SNPs*, may better-capture effects of rare and poorly-tagged
variants, and is a potential future direction for estimating the variation due to rare CVs.

Linkage disequilibrium (LD) between CVs and markers is central to the methods reviewed
here. The observed patterns of over- and underestimation can be partly understood through the

|.12

effect of LD among causal variants and markers (Fig. S11). As Yang et al.'© demonstrated, using
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GREML-SC, h’syp estimates should be unbiased when the average LD between markers and
CVs (r2qu) is the same as the average LD among all markers (r2yu), which occurs when
markers and CVs are sampled from the same allele frequency distribution. This explains the
underestimate of h’syp using array genotypes when the CVs are rare, because common markers
on an array typically have lower LD with rare CVs than with other markers, leading to r2qu/ r2um
<< 1 and h%syp << h?. On the other hand, when the CVs are a random sample of markers, this
ratio is ~1 and the estimated h’syp = h% Finally, when the CVs are more common than markers
used to create the GRM, LD between common CVs and markers will typically be higher than LD
among markers, leading to r2qu/ r2um > 1 and hsye > b2

The bias arising from a mismatch in CV and marker frequency distributions is not
alleviated by weighting of markers by LD. Speed et al.”® showed that redundant marker tagging
of CVs can bias h’sye upward, and proposed weighting markers inversely to their LD score,
which partially mitigates this bias in sparse genotype data. However, using such weights in
dense whole genome sequence or imputed data leads to near 0 weights for most common
markers, typically leading to underestimates of heritability arising from common CVs and,
potentially, to overestimates of heritability from very rare CVs. What does appear to alleviate
both the bias arising from a mismatch in CV and marker frequency distributions as well as the
bias due to differential LD is binning markers by different MAF and LD bins'2. When used on
imputed or sequence data, GREML-MS and GREML-LDMS provide the most accurate
partitioning of the variance and least biased total h’syp estimates across genomic data types, CV
frequency distributions, and levels of stratification. Although we showed that WGS is the ideal

data source for creating GRMs, imputation will, for the time being, remain a cost-effective way to
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capture most of the trait variation, and will only improve as sequencing initiatives continue to
amass larger, publicly available reference panels.

Our simulation results highlighted both limitations and advantages to LD score regression.
Although it uses a much different approach than GREML, LD score regression suffers from many
of the same problems as single-component GREML approaches. LD regression leverages the
fact that for common variants under an infinitesimal model, the effect size of a marker is related
to how well it tags the surrounding variants (and therefore how likely it is to tag a CV)"*?%.
Because LD is strongly related to MAF, the method increasingly underestimates variation as CVs
become rarer. Moreover, unlike GREML-MS, it provides unreliable estimates if used on rare
variants (MAF < .01), meaning that it cannot be used to accurately estimate CV frequency
distributions, or variation due to rare CVs, even if GWAS statistics from imputed or WGS data
are available. Nevertheless, LD score regression has several important advantages. Foremost
among them, it can be used on summary statistics alone, bypassing the need for raw genotype
data and allowing analyses based on sample sizes that would otherwise be impossible.
Furthermore, as argued by its originators and as we have shown, it is generally robust to
confounding biases due to stratification or shared family environmental effects, even when
relatives are included in the sample. Finally, it is readily applied to various marker annotations in
order to understand, for example, the relative importance of gene networks and functional
categories’®.

In our LD score regression simulation results, the contribution of common CVs to
phenotypic variance were slightly underestimated, regardless of the data type used (array SNPs,
imputed variants, or sequence data), a pattern previously reported>®. This underestimate was not

seen in the simulations performed by Bulik-Sullivan et al.??. This difference may stem from the
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fact that Bulik-Sullivan et al.?* simulated phenotypes caused by a much larger proportion of
markers whereas we simulated phenotypes with only 1,000 or 10,000 CVs. Consistent with this
possibility, when we increased the number of CVs to 10,000, our estimates were somewhat less
biased. Nevertheless, it seems unlikely that the infinitesimal model truly holds for any phenotype,
and thus h?syp estimates from LD-regression are likely to be biased downward, especially as
CVs become rarer.

There are several limitations to the findings presented here. First, although a subset of our
simulations included shared environmental effects among close relatives, we did not model more
complicated ways that environmental and genetic similarity can be confounded. For example, we
did not simulate “vertical transmission” models in which distant ancestry can lead to low levels of
environmental similarity, nor situations where environmental effects are confounded with

ancestry. Previous studies have investigated this latter issue*®*’

, and fitting ancestry PCs
removes much of the bias.

Second, other than varying CV MAF frequency distributions, we did not simulate
situations where the LD of CVs differed systematically from the LD of markers used to estimate
the GRM. As Speed et al."® demonstrated, if CVs come from regions of low LD (e.g., DNase I-
hypersensitivity sites*?), h’sye will be underestimated and vice-versa when CVs come from
regions of high LD. Yang et al." have shown that GREML-LDMS accounts for LD differences
between CVs and markers and provides unbiased estimates. However, as we shown (Fig. S7-
S9), standard errors for GREML-LDMS results are higher than GREML-MS. Given this tradeoff,

we recommend that investigators report results from both approaches, and trust those from

GREML-LDMS if there is a difference.
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Third, we simulated CV effect sizes that were proportional to their minor allele frequencies
(< [p(1-p)* , where a = -1 in nomenclature of ref. '®), so that the per-variant contribution to
heritability remained constant across MAF, similar to other studies®****. The validity of this
assumption has been the subject of recent debate (e.g., ref. >*>*) and it is clear that if this
assumption is unmet in real data, using a single component model will bias estimates, as several
well-designed evaluations of GREML-SC and LDAK-SC have shown'®. However, two relevant
findings from those studies bear mentioning. First, the scaling we applied (o = -1) is the most
robust to violations of the model assumptions, and in sensitivity analyses of real data, scaling
with various approaches often led to qualitatively and quantitatively similar conclusions'?,
Second, the GREML-MS and GREML-LDMS stratified approaches allow variances to differ
across MAF partitions, effectively achieving the same goal as varying the scaling factor and
allowing a greater exploration of CV frequency distributions. An interesting avenue of future work
could be exploring possible values of o among functional annotations for evidence of purifying or

positive selection.

h*sne Estimates in the UK Biobank

Using over 120,000 individuals with imputed genome-wide variants, we obtained
estimates of h’syp for complex traits similar to those previously published using directly
genotyped markers and imputed genome wide markers for height and BMI (e.g., ref. ).
Estimates of hsyp for measures of adiposity (impedance, trunk fat, and BMI) were similar to
each other, as expected given the relationship between these traits. Accounting for imperfect
imputation and using our simulation results as guidance, our results suggest that the true

narrow-sense heritability of height is 60-70%, and that of BMI is 20-30%, with some additional
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variation possibly from very rare and poorly-imputed CVs. Furthermore, the majority (~80%) of
the additive genetic variance in these complex traits is explained by common variants with small
additive effects, with a smaller proportion attributable to rarer variants. This finding has been
discussed elsewhere®'?". This indicates that larger sample sizes will be required to identify
common variants of very small effects in GWAS, but that little still-missing additive genetic
variation remains.

The two behavioral traits we examined appear to have qualitatively different genetic
architectures. Little of the additive genetic variance in neuroticism was explained by rare
variants, but roughly half of fluid intelligence h®syp was explained by rare variants with MAF <
0.01. Family- and twin- based estimates of heritability of intelligence are ~50%, while recent
studies using common SNPs have estimated h’syp ~ 0.25*”*%. Our estimates, using an
independent sample, are not dissimilar from these, and accounting for the downward bias in
h?snp using imputed data, heritability is likely ~30%, with roughly half of that from rare variants,
and some additional variance caused by very rare and poorly-imputed CVs. However, given that
we know that variation due to increasingly rare CVs is increasingly underestimated, it is possible
that a larger proportion of the additive genetic variation in fluid intelligence is due to extremely
rare CVs. Nevertheless, 30% is substantially lower than the ~50% estimates from family-based
studies. However, it is also possible that these twin- and family-based estimates are
overestimated, and that little remaining heritability will be explained by increasingly rare CVs.
Our estimates of neuroticism heritability suggest that little of the variance is due to rare SNPs. In
the UK Biobank data, our estimate of h’syp (0.09) is slightly higher than some published
estimates (h%sne = 0.06[ref. *°]), but lower than a recent study using the same UK Biobank data

(h*snp = 0.14-16[ref. °°]). This may be due to our use of MAF-stratified GREML, rather than
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single component GREML with array data as in Smith et al.*

, Wwhich we have showed here leads
to overestimation of variance due to common CVs. Extended-twin family studies, which can
provide estimates of narrow-sense heritability while addressing concerns of shared
environmental and non-additive genetic influences, suggest that the narrow-sense heritability of

neuroticism is ~30%'°, which still leaves much of the additive genetic variance unexplained and

presents a puzzle to be solved by future investigation.

Conclusions
Heritability is a fundamental concept of genetics and its unbiased estimation is critical for
understanding complex trait genetics as well as for designing better studies and obtaining a
clearer picture of the possible explanatory power of GWAS. Below we provide our recommended
best practices for studies aiming to estimate hsyp and CV frequency distributions for complex
traits. Even when applying these best approaches, heritability is still likely underestimated, but
will improve as larger sample sizes, larger imputation panels, and better methods to account for
rare variants are developed.
Recommended Practices
e Careful quality control in genetic data, for instance based on missingness and Hardy-
Weinberg equilibrium, is critical, particularly for case-control data and/or when the sample
is comprised of multiple cohorts**,
¢ Include appropriate covariates, such as principal components, cohorts, and other potential
confounders as fixed effects in GREML models and in the GWAS models for LD score

regression.
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40

MAF- and/or LD-stratified GREML approaches'? on WGS or imputed data provide the
most accurate estimates of h’syp and CV frequency distributions. Even if CV frequency
distributions are not of interest, these methods provide the most accurate estimates of
h?sne and are also the most robust to biases caused by stratification and differences
between the CV and marker allele frequency distributions. However, there is a bias-
precision tradeoff: more GRMs lead to larger standard errors, necessitating larger sample
sizes for these methods. We recommend to report results from both GREML-LDMS and
GREML-MS, and to trust the results of GREML-LDMS if there is a meaningful difference.
If possible, run GREML models on WGS data if available, and otherwise data imputed
using the largest and most diverse reference panel possible. Currently, this is the HRC*.
If raw genomic data is not available, use LD score regression on summary statistics, but
calculate LD scores using a large sequence reference panel. Estimates from LD score
regression are typically lower than those produced by GREML-SC on array data.

Related individuals may share common environmental and non-additive genetic effects
that can inflate estimates of h?sye. Removing related individuals provides estimates that
are less likely to be inflated by such environmental and non-additive genetic factors.
Most reports of h’sye in the literature have used the GREML-SC approach. However, as
we have demonstrated, these estimates are subject to a number of sometimes conflicting
biases, making interpretation of GREML-SC results challenging. Most crucially, GREML-
SC is especially sensitive to the similarity between the frequency distributions of the CVs
and the markers used to create the GRM, which can differ across genomic data types and
array types. Moreover, GREML-SC can be sensitive to stratification effects, even when

ancestry covariates are included in the model.
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FIGURE TITLES AND LEGENDS

Figure 1. Population structure subsamples of European ancestry individuals in the HRC (A-D).
and UK Biobank individuals projected onto these axes (E). Total sample sizes are shown in
each panel. To keep sample size constant across stratification level, we randomly sampled
8,201 individuals with relatedness < 0.1 (the number of unrelated individuals in the most
homogeneous and smallest set in panel D) from each subsample to create the subsamples used

in the simulations.

Figure 2. Average h’syp estimates across 100 replicates (+ SEM) from GRMSs built from Axiom

array positions (left), whole genome sequence data (center), or imputed genome-wide variants

(right). Horizontal panels show MAF ranges (specified in insert) of 1,000 randomly chosen causal
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variants (CVs). Methods are listed on the X-axis as follows: Single component GREML (GREML-
SC); MAF-stratified GREML (GREML-MS); LD- & MAF-stratified GREML (GREML-LDMS);
Single-component Linkage Disequilibrium-Adjusted Kinships (LDAK-SC); MAF-stratified LDAK
(LDAK-MS); Treelet Covariance Smoothing (TCS); Extended Genealogy with Thresholded
GRMs; LD Score Regression using no PCs as covariates in GWAS, using PCs as covariates, or
using both PCs and the kinship matrix; and Single Component and MAF-stratified BOLT-REML.
Estimates are from samples of unrelated individuals (relatedness <0.05) except for samples
used in the Threshold GRM method, which included all individuals. For the Threshold GRM
method we plot h’sype rather than total h? (h°snp + h%sst) from models where t = .05. Dotted line is
the simulated (true) h? = 0.5. Colors represent the 4 subsamples varying in genetic structure.

See Figs. S4-6 for estimates using different relatedness thresholds.

Figure 3. Average of 100 h’syp estimates (+ SEM) from GRMs constructed from imputed
genome-wide variants of different MAF ranges (different symbols) in samples of unrelated
(<0.05) individuals. Horizontal panels show MAF ranges (specified in insert) of 1,000 randomly
chosen CVs and colors represent the 4 subsamples varying in genetic structure. GREML-MS &
GREML-LDMS partition the phenotypic variance to the correct MAF-range GRM, while LDAK-

MS often attributed genetic variance to incorrect GRMs.

Figure 4. Mean heritability estimates (£ SEM) from 100 replicates of phenotypes simulated with
or without confounding shared environmental effects among families for three different methods
(x axis) for different genetic architectures. GRMs were estimated using common (MAF>0.01)

array SNP positions for the most structured and most homogeneous stratification subsamples
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only. Different symbols indicate the relatedness cutoffs used. For GREML-SC, we used three
thresholds, including no relatedness cutoff (all individuals included). For LD Score Regression,
we did not apply a 0.1 relatedness cutoff, as most studies will use a 0.05 or lower threshold for
individuals included in GWAS. The threshold GRM approach requires all individuals, and the
different symbols indicates the relatedness threshold (f) below which the thresholded GRM was
set to 0. h?7osr is the sum of both variance components, h?sye is the variance component of the
unthresholded GRM. Each horizontal panel indicates the minor allele frequency (MAF) range of

the 1,000 randomly chosen causal variants (CV), with the range specified in the inset.

Figure 5. Estimates of MAF partitioned h’syp using GREML-MS on Axiom array SNPs (left) and
imputed genome-wide variants (center) for six complex traits in the UK Biobank. Total h’sye

shown on right.
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