c-Maf-dependent regulatory T cells mediate immunological tolerance to intestinal microbiota

Mo Xu1,*, Maria Pokrovskii1,*, Yi Ding2, Ren Yi3,4, Christy Au1,6, Carolina Galan1, Richard Bonneau3,4,5, Dan R. Littman1,6

1Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA

2Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642

3Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA

4Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY 10003, USA

5Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.

6The Howard Hughes Medical Institute

*These authors contributed equally to this work.

ABSTRACT

Both microbial and host genetic factors contribute to the pathogenesis of autoimmune disease1-4. Accumulating evidence suggests that microbial species that potentiate chronic inflammation, as in inflammatory bowel disease (IBD),
often also colonize healthy individuals. These microbes, including the *Helicobacter* species, have the propensity to induce autoreactive T cells and are collectively referred to as pathobionts\(^4-8\). However, an understanding of how such T cells are constrained in healthy individuals is lacking. Here we report that host tolerance to a potentially pathogenic bacterium, *Helicobacter hepaticus* (*H. hepaticus*), is mediated by induction of ROR\(\gamma\)^t\(Foxp3^+\) regulatory T cells (iT\(_{reg}\)) that selectively restrain pro-inflammatory T\(_H\)17 cells and whose function is dependent on the transcription factor c-Maf. Whereas *H. hepaticus* colonization of wild-type mice promoted differentiation of ROR\(\gamma\)^t-expressing microbe-specific iT\(_{reg}\) in the large intestine, in disease-susceptible IL-10-deficient animals there was instead expansion of colitogenic T\(_H\)17 cells. Inactivation of c-Maf in the T\(_{reg}\) compartment likewise impaired differentiation of bacteria-specific iT\(_{reg}\), resulting in accumulation of *H. hepaticus*-specific inflammatory T\(_H\)17 cells and spontaneous colitis. In contrast, ROR\(\gamma\)^t inactivation in T\(_{reg}\) only had a minor effect on bacterial-specific T\(_{reg}\)-T\(_H\)17 balance, and did not result in inflammation. Our results suggest that pathobiont-dependent IBD is a consequence of microbiota-reactive T cells that have escaped this c-Maf-dependent mechanism of iT\(_{reg}\)-T\(_H\)17 homeostasis.

Main Text

We chose *Helicobacter hepaticus* (*H. hepaticus*) as a model to investigate host-pathobiont interplay. In mice with impaired anti-inflammatory IL-10 signaling, *H. hepaticus* induces inflammation of the large intestine (LI), marked by
production of interferon gamma (IFNγ) and IL-177,8, with TH17 cells accounting for up to 50% of total CD4+ T cells (Extended Data Fig. 1a). Such an increase in TH17 cells was not observed in the LI of H. hepaticus-colonized specific pathogen-free (SPF) mice in the absence of IL-10 blockade (Extended Data Fig. 1a). Therefore we wished to determine why H. hepaticus-induced T cells do not cause disease in wild-type (WT) animals at steady state. To tackle this question, we initially identified the T cell receptor (TCR) sequences and cognate epitopes of H. hepaticus-induced TH17 cells present in inflammatory conditions, and subsequently traced the fate of these cells at steady state.

We sorted GFP+ intestinal TH17 cells from H. hepaticus-colonized Il23rGFP reporter mice treated with IL-10RA blocking antibody, and performed single cell cloning of T cell receptor (TCR) cDNAs from 384 cells (Extended Data Fig. 1b). We focused on twelve TCR heterodimers that were retrieved from at least two cells. By using a hybridoma carrying NFAT-GFP+, which serves as a reporter of TCR signaling, we found that the majority (nine out of twelve) of these TCRs were H. hepaticus-specific. We subsequently used a whole-genome shotgun cloning and expression screen9,10 to identify a H. hepaticus-unique outer membrane protein, HH_1713, as an immunodominant antigen, and further pinpointed two epitopes in HH_1713. The E1 peptide epitope stimulated H. hepaticus-specific TCR HH5-1, whereas E2 stimulated TCR HH5-5, HH6-1 and HH7-2 (Extended Data Fig. 1c). We next developed two complementary approaches to track H. hepaticus-specific T cells in vivo, including HH7-2 and HH5-1 TCR transgenic mice (HH7-2tg and HH5-1tg)11,12 and a MHCII-tetramer
loaded with E2 peptide (HH-E2 tetramer)13,14. We validated the specificity of these tracking tools \textit{in vitro} and \textit{in vivo} (Extended Data Fig. 1d-g).

To track what happens to \textit{H. hepaticus}-specific T cells in healthy animals, we simultaneously transferred naïve HH7-2tg and 7B8tg (segmented filamentous bacteria (SFB)-specific TCRtg control)10 T cells into WT mice, stably colonized with both \textit{H. hepaticus} and SFB. Donor- and recipient-derived T cells were distinguished using CD45.1 and CD45.2 congenic markers (Fig. 1a). Two weeks post-adoptive transfer, we detected both HH7-2tg and 7B8tg donor T cells in the spleen (SP), mesenteric lymph nodes (mLNs), small and large (including cecum and colon) intestinal lamina propria (SILP and LILP), Peyer’s patches (PPs) and the cecal patch (CP) (Extended Data Fig. 2a, b). HH7-2tg donor cells were enriched in the LILP and CP, whereas 7B8tg donor cells predominated in the SILP and PP (Extended Data Fig. 2a, b). The anatomical distribution of the two donor T cell populations was consistent with the colonization of \textit{H. hepaticus} in the LI and SFB in the SI. We next explored the phenotypes of the donor-derived T cells by staining for lineage-specific transcription factors. As previously reported, the vast majority of 7B8 cells developed into T\textsubscript{H}17 cells in the SILP, as they were predominantly positive for ROR\textgamma t though negative for Foxp310 (Fig. 1b, c). In contrast, HH7-2tg cells in the LILP of WT recipients were mostly iT\textsubscript{reg} cells that expressed both ROR\textgamma t and Foxp3 (accounting for ~60% of total donor-derived HH7-2tg cells)15,16, rather than T\textsubscript{H}17 cells (<10% of total HH7-2tg cells) (Fig. 1b, c). There was also a sub-population of 7B8tg and HH7-2tg T cells that expressed neither ROR\textgamma t nor Foxp3 and predominantly localized to the PPs and
The vast majority of these were T follicular helper (T_{FH}) cells, marked by co-expression of Bcl-6 and CXCR5 (Fig. 1b, c, Extended data Fig. 2c, d). When bred onto the <i>Rag1</i>−/− background, HH7-2tg mice did not generate T_{reg} in the thymus (Extended Data Fig. 3a), but naïve T cells from these mice differentiated into iT_{reg} when adoptively transferred into <i>H. hepaticus</i>-colonized WT mice (Extended Data Fig. 3b, c). These results rule out that HH7-2tg iT_{reg} cells detected after adoptive transfer were derived from thymic T_{reg} contamination or were influenced by the presence of dual TCRs generated by incomplete allelic exclusion of the alpha-chain. Consistent with these results, adoptively transferred HH5-1tg and HH-E2-tetramer positive cells had similar differentiation profiles as HH7-2tg cells (Fig. 1d, e and Extended data Fig. 4a, b). These results indicate that the host responds to the pathobiont <i>H. hepaticus</i> by generating an immunotolerant iT_{reg} response rather than a pro-inflammatory T_{H17} response.

To examine if the iT_{reg}-biased differentiation of <i>H. hepaticus</i>-specific T cells is perturbed in the context of intestinal inflammation, we co-transferred naïve HH7-2tg and control 7B8tg T cells into <i>H. hepaticus</i>- and SFB-colonized <i>Il10</i>−/− recipients. Strikingly, unlike in <i>Il10</i>+/− healthy mice, only a small proportion of transferred HH7-2tg T cells expressed Foxp3 in the LILP of <i>Il10</i>−/− mice. Instead, most of them differentiated into T_{H17} cells with T_{H1}-like features, characterized by expression of both RORγt and T-bet, which was not observed with SFB-specific T_{H17} cells (Fig. 2a-c and Extended Fig. 5a,b). Upon re-stimulation, HH7-2tg cells in control <i>Il10</i>−/− mice produced IL-10 and very little IL-17A, consistent with the role of Foxp3 in suppressing pro-inflammatory T_{H17} cytokines.
(Extended Fig. 5c). By contrast, HH7-2tg cells from \(\text{Il}10^{\text{-/-}} \) mice produced high levels of both IL-17A and IFN\(\gamma \), a typical signature of TH17-TH1 trans-differentiation, which was reported to correlate with inflammation in previous studies\(^{18} \) (Fig. 2d, e and Extended Fig. 5c, d). These data were recapitulated with HH-E2 tetramer staining and adoptive transfer of HH5-1tg T cells (Fig. 2f, g and Extended Data Fig. 4c). By comparison, the pro-inflammatory environment in \(\text{Il}10^{\text{-/-}} \) mice did not result in deviation of SFB-specific TH17 cells to the inflammatory TH17-TH1 phenotype, as these cells neither acquired a higher level of T-bet nor expressed IFN\(\gamma \) following re-stimulation (Extended Data Fig. 5). Therefore, disruption of IL-10-mediated immune tolerance redirected \(H. \) hepaticus-specific T cells to an inflammatory TH17 program, but did not change the fate of SFB-specific T cells.

Finding that \(H. \) hepaticus-specific T cells are restrained as ROR\(\gamma \)\(^{+} \) TH17 cells in healthy hosts suggested that these cells could be critical for immune tolerance to pathobionts. Yet, the molecular mechanism that maintains this antigen-specific iT\(\text{reg} \)-TH17 axis balanced toward TH\(\text{reg} \) remains an open question. The transcription factor c-Maf attracted our attention, because recent studies have found it to be highly enriched in ROR\(\gamma \)\(^{+} \) iT\(\text{reg} \)^{15,19}, and it is known to directly promote ROR\(\gamma \) expression while maintaining an anti-inflammatory program, e.g. directing IL-10 expression in other T helper subsets\(^{20,21} \). Flow cytometric analysis confirmed c-Maf to be most highly expressed in ROR\(\gamma \)\(^{+} \) Foxp3\(^{+} \) cells compared to other CD4\(^{+} \) T cell subsets, including ROR\(\gamma \)\(^{-} \) Foxp3\(^{+} \) cells, in the LI (Fig. 3a). We subsequently deleted \(\text{Maf} \) with Foxp3\(^{\text{cre}} \) to test its function in TH\(\text{reg} \). In \(\text{Maf}^{\text{-/-}} \),
Foxp3^{cre} (Maf^{Treg}) mice there was a marked decrease in the fraction of RORγ^{t+} but not RORγ^{t-} T_{reg} among CD4⁺ T cells in the LI (Fig. 3b, Extended Data Fig. 6a, c). The remaining small proportion of RORγ^{t+} T_{reg} in Maf^{Treg} mice had residual c-Maf expression, suggesting incomplete protein depletion at the time of analysis (Extended Data Fig. 6b). In addition, Maf^{Treg} mice exhibited a marked increase in proportions and total numbers of T_{H17} cells, whereas this phenotype was less striking in Rorc^{fl/fl};Foxp3^{cre} (Rorc^{Treg}) mice (Fig. 3b). The altered frequency of RORγ^{t+} T_{reg} and T_{H17} subsets led us to test if the fate of H. hepaticus-specific T cells would be affected in the Maf^{Treg} and Rorc^{Treg} mice. Strikingly, HH-E2-tetramer⁺ cells were predominantly T_{H17} in Maf^{Treg} animals, as compared to being mostly RORγ^{t+} T_{reg} in the control mice (Fig. 3c, Extended Data Fig. 6d). In contrast, although Rorc^{Treg} mice also had increased H. hepaticus-specific T_{H17} cells, the majority of tetramer⁺ cells were T_{reg} (Fig. 3c, Extended Data Fig. 6d). Collectively, these results suggest that microbe-specific RORγ^{t+} iT_{reg} cells are required for the suppression of inflammatory T_{H17} cell accumulation. Moreover, while RORγ^t expression contributes to gut iT_{reg} function, c-Maf plays a more substantial role in the differentiation and/or function of these cells.

We therefore wondered if loss of c-Maf resulted in trans-differentiation of microbe-specific iT_{reg} to T_{H17} cells in a cell intrinsic manner, or if the accumulation of T_{H17} was a consequence of absence of RORγ^{t+} iT_{reg} in the tissue. To address this, we co-transferred equal numbers of congenic isotype-labeled naïve Maf^{+/+};Foxp3^{cre} and Maf^{fl/fl};Foxp3^{cre} HH7-2tg cells into H. hepaticus-colonized WT animals. Two weeks after adoptive transfer, the Maf^{fl/fl};Foxp3^{cre}
HH7-2tg cells were markedly underrepresented compared to control cells in the LI, and were unable to form iT_{reg} (Fig. 3d-f and Extended data Fig. 6e). Importantly, the mutant donor-derived cells did not give rise to a high frequency of T_{H17} cells. Moreover, the vast majority of accumulated T_{H17} cells in Maf^{ΔTreg} animals expressed c-Maf, indicating that the bulk of these cells did not arise from T_{reg} in which c-Maf was deleted (Extended data Fig. 6f). Thus c-Maf is a critical cell-intrinsic factor for the development of microbe-specific iT_{reg}, but suppression of T_{H17} expansion is mediated by these iT_{reg} cells in trans.

RORγt expression in iT_{reg} cells has been implicated in the maintenance of gut immune homeostasis under different challenges15,16. However, spontaneous gut inflammation in Rorc^{ΔTreg} animals has not been described. To determine the relative contribution of RORγt or c-Maf in iT_{reg} cells towards immune tolerance, we examined Rorc^{ΔTreg} and Maf^{ΔTreg} mice for signs and symptoms of inflammation. We noticed that Maf^{ΔTreg}, but not Rorc^{ΔTreg} or control littermates, were prone to rectal prolapse (Fig. 4a). Moreover, five to six weeks after colonization with H. hepaticus, Maf^{ΔTreg} mice had enlarged LI-draining mesenteric lymph nodes (mLN)s and increased cellularity of mLN)s and LI (Fig. 4b, c). Histopathological analysis of the large intestine of these animals revealed mixed acute and chronic inflammation including multifocal or diffuse mononuclear inflammatory infiltrates in the lamina propria, crypt abscesses or cryptitis and architectural glandular disarray with reactive epithelial changes (nuclear enlargement, mitotic activity, reduced mucin) (Fig. 4d). Notably, none of the above changes was observed in Rorc^{ΔTreg} mice (Fig. 4b-d, Extended data Fig. 6c, peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.
Thus, c-Maf but not RORγt expression in iTreg cells is critical for suppression of spontaneous inflammation.

Because, MafΔTreg and Il10−/− mice have a similar H. hepaticus-driven colitis phenotype, we wished to determine if bacteria-specific Th17 cells share an inflammatory regulatory program. We therefore compared the transcriptional profiles of H. hepaticus-specific T effector (T_{Eff}) cells from HH7-2tg;MafΔTreg mice with spontaneous colitis and HH7-2tg;Foxp3^{cre} mice with IL-10RA blockade-induced colitis to homeostatic IL-23R-GFP{+} T cells (which are predominantly SFB-specific Th17 cells) (Extended Data Fig. 7a). The gene expression profiles of T_{Eff} from the MafΔTreg and anti-IL10RA-treated HH7-2tg animals were distinct from those of homeostatic Th17 cells, as shown by principal component analysis (PCA) (Extended data Fig. 7b, c). Comparison of HH7-2tg T_{Eff} cells to homeostatic Th17 cells revealed 1,129 differentially expressed genes, 149 of which were up-regulated in T_{Eff} from both MafΔTreg and anti-IL10RA-treated mice (Fig. 4e, Extended data Fig. 7e). Further analysis of this shared gene set revealed transcripts associated with pathogenic Th17 cells (Ifng, A100a8, Cxcl3, Ccl5, Ctla2b) and inflammatory disease pathways (Fig. 4f, Extended data Fig. 7d). These data indicate that H.hepaticus-specific Th17 cells in MafΔTreg mice are highly similar to pathogenic Th17 cells in Il10−/− mice, but differ markedly from homeostatic Th17 cells.

As c-Maf is also expressed, albeit at a lower level, in thymus-derived nT_{reg} cells, we considered whether it also has an important role in the function of these cells. We sorted Neuropilin-1{+} (NPR1{+}) nT_{reg} from the spleen and peripheral
lymph nodes (pLNs) of $Maf^{\Delta Treg}$ mice and their control littermates, and evaluated their functions22,23. C-Maf-deficient and –sufficient nT$_{reg}$ showed equal activity in inhibiting T$_{Eff}$ cell proliferation in vitro, as well as in suppressing pathogenesis in a model of T cell transfer colitis in vivo (Extended Data Fig. 8). These results argue against the possibility that a defect in nT$_{reg}$ cells contributes to the accumulation of inflammatory T$_{H17}$ cells and spontaneous development of colitis in $Maf^{\Delta Treg}$ mice, further highlighting the critical function of iT$_{reg}$ in the maintenance of tolerance to gut pathobionts.

Our results reveal a mechanism for how a common commensal pathobiont like $H. hepaticus$ can co-exist with a healthy host without causing disease. Through induction of tolerogenic c-Maf-dependent iT$_{reg}$, the immune system constrains pro-inflammatory $H. hepaticus$-specific T$_{H17}$ cells. Our results are consistent with and help explain the expansion of colitogenic T$_{H17}$ cells in mice with T$_{reg}$-specific inactivation of Stat324. Like c-Maf, Stat3 is likely required for the differentiation and/or function of microbiota-induced RORγ^+iT_{reg} cells. The accumulation of similar colitogenic T$_{H17}$ cells in IL-10 signaling-deficient and $Maf^{\Delta Treg}$ mice is consistent with the role of RORγ^+T_{reg} cells as the most robust IL-10 producing T cell subset25. This work represents a significant step toward elucidating the mechanisms by which the host immune system contains inflammatory disease induced by pathobionts. Our results also raise the question of why benign SFB-induced T$_{H17}$ responses are not constrained by iT$_{reg}$ cells while they suggest a mechanism whereby commensalism is established by
balancing induction of microbe-specific iT_{reg} and inflammatory Th17 cells, with the regulatory cells keeping inflammation at bay.

METHODS

Mice

Mice were bred and maintained in the animal facility of the Skirball Institute (New York University School of Medicine) in specific pathogen-free conditions. C57Bl/6 mice were obtained from Jackson Laboratories or Taconic Farm. II10^{−/−} (B6.129P2-II10^{ltm1Cgn}/J) mice were purchased from Jackson Laboratories and bred with WT C57Bl/6 mice, which subsequently generated II10^{+/−} and II10^{−/−} littermates by heterozygous breeding. CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) mice were purchased from Jackson Laboratories. Foxp3^{creYFP} mice were previously described and obtained from Jackson Laboratories. Il23r^{gfp} and Maf^{fl/fl} strains were previously described^{27,28} and kindly provided by Drs. M. Oukka and C. Birchmeier, respectively. All animal procedures were performed in accordance with protocols approved by the Institutional Animal Care and Usage Committee of New York University School of Medicine.

Antibodies, intracellular staining and flow cytometry

The following monoclonal antibodies were purchased from eBiosciences, BD Pharmingen or BioLegend: CD3 (145-2C11), CD4 (RM4-5), CD25 (PC61), CD44 (IM7), CD45.1 (A20), CD45.2 (104), CD62L (MEL-14), CXCR5 (L138D7), NPR-1 (3E12), TCRβ (H57-597), TCR Vβ6 (RR4-7), TCR Vβ8.1/8.2 (MR5-2),
TCR Vβ14 (14-2), Bcl-6 (K112-91), c-Maf (T54-853), Foxp3 (FJK-16s), GATA3 (TWAJ), Helios (22F6), RORγt (B2D or Q31-378), T-bet (eBio4B10), IL-10 (JES5-16E3), IL-17A (eBio17B7) and IFN-γ (XM61.2). 4′,6-diamidino-2-phenylindole (DAPI) or Live/dead fixable blue (ThermoFisher) was used to exclude dead cells.

For transcription factor staining, cells were stained for surface markers, followed by fixation and permeabilization before nuclear factor staining according to the manufacturer’s protocol (Foxp3 staining buffer set from eBioscience). For cytokine analysis, cells were incubated for 5 h in RPMI with 10% FBS, phorbol 12-myristate 13-acetate (PMA) (50 ng/ml; Sigma), ionomycin (500 ng/ml; Sigma) and GolgiStop (BD). Cells were stained for surface markers before fixation and permeabilization, and then subjected to intracellular cytokine staining according to the manufacturer’s protocol (Cytofix/Cytoperm buffer set from BD Biosciences).

Flow cytometric analysis was performed on an LSR II (BD Biosciences) or an Aria II (BD Biosciences) and analyzed using FlowJo software (Tree Star).

Isolation of lymphocytes

Intestinal tissues were sequentially treated with PBS containing 1 mM DTT at room temperature for 10 min, and 5 mM EDTA at 37°C for 20 min to remove epithelial cells, and then minced and dissociated in RPMI containing collagenase (1 mg/ml collagenase II; Roche), DNase I (100 µg/ml; Sigma), dispase (0.05 U/ml; Worthington) and 10% FBS with constant stirring at 37°C for 45 min (SI) or 60 min (LI). Leukocytes were collected at the interface of a 40%/80% Percoll
gradient (GE Healthcare). The Peyer’s patches and cecal patch were treated in a similar fashion except for the first step of removal of epithelial cells. Lymph nodes and spleens were mechanically disrupted.

Single-cell TCR cloning

I23r^{GFP/+} mice were maintained in SFB-free conditions to guarantee low T_H17 background levels. To induce robust T_H17 response, the mice were orally infected with *H. hepaticus* and injected intraperitoneally with 1mg anti-IL10RA (clone 1B1.3A, Bioxcell) every week from the day of infection. After two weeks, LI GFP⁺ CD4⁺ T cells were sorted on the BD Aria II and deposited at one cell per well into 96-well PCR plates pre-loaded with 5µl high-capacity cDNA reverse transcription mix (Thermo Fisher) supplemented with 0.1% Triton X-100 (Sigma-Aldrich). Immediately after sorting, whole plates were incubated at 37 °C for 2 h, and then inactivated at 85 °C for 10 min for cDNA. A nested multiplex PCR approach described previously was used to amplify the CDR3_α and CDR3_β TCR regions separately from the single cell cDNA²⁹. PCR products were cleaned up with ExoSap-IT reagent (USB) and Sanger sequencing was performed by Macrogen. Open reading frame nucleotide sequences of the TCR_α and TCR_β families were retrieved from the IMGT database (http://www.imgt.org)³⁰.

Generation of TCR hybridomas

The NFAT-GFP 58α−β− hybridoma cell line was kindly provided by Dr. K. Murphy³¹. To reconstitute TCRs, cDNA of TCR_α and TCR_β were synthesized as gBlocks fragments by Integrated DNA Technologies (IDT), linked with the self-cleavage sequence of 2A (TCR_α-p2A-TCR_β), and shuttled into a modified MigR1
retrovector in which IRES-GFP was replaced with IRES-mCD4 (mouse CD4) as described previously10. Then retroviral vectors were transfected into Phoenix E packaging cells using TransIT-293 (Mirus). Hybridoma cells were transduced with viral supernatants in the presence of polybrene (8µg/ml) by spin infection for 90 min at 32°C. Transduction efficiencies were monitored by checking mCD3 surface expression three days later.

Assay for hybridoma activation

Splenic dendritic cells were used as antigen presenting cells (APCs). B6 mice were injected intraperitoneally with 5×10^6 FLT3L-expressing B16 melanoma cells to drive APC proliferation as previously described32. Splenocytes were prepared 10 days after injection, and positively enriched for CD11c$^+$ cells using MACS LS columns (Miltenyi). 2×10^4 hybridoma cells were incubated with 10^5 APCs and antigens in round bottom 96-well plates for two days. GFP induction in the hybridomas was analyzed by flow cytometry as an indicator of TCR activation.

Construction and screen of whole-genome shotgun library of H. hepaticus

The shotgun library was prepared with a procedure modified from previous studies9,10. In brief, genomic DNA was purified from cultured *H. hepaticus* with DNeasy PowerSoil kit (Qiagen). DNA was partially digested with MluCI (NEB), and the fraction between 500 and 2000 bp was ligated into the EcoRI-linearized pGEX-6P-1 expression vector (GE Healthcare). Ligation products were transformed into ElectroMAX DH10B competent Cells (Invitrogen) by electroporation. To estimate the size of the library, we cultured 1% and 0.1% of
transformed bacteria on lysogeny broth (LB) agar plates containing 100µg/mL Ampicillin for 12 h and then quantified the number of colonies. The library is estimated to contain 3X10^4 clones. To ensure the quality of the library, we sequenced the inserts of randomly picked colonies. All the sequences were mapped to the *H. hepaticus* genome, and their sizes were 700 to 1200 bp. We aliquoted the bacteria into 96-well deepwell plates (Axygen) (~30 clones/well) and grew with AirPort microporous cover (Qiagen) in 37°C. The expression of exogenous proteins was induced by 1mM isopropylthiogalactoside (IPTG, Sigma) for 4 h. Then bacteria were collected in PBS and heat-killed by incubating at 85°C for 1 h, and stored at −20°C until use. Two screening rounds were performed to identify the antigen-expressing clones. For the first round, pools of heat-killed bacterial clones were added to a co-culture of splenic APCs and hybridomas. Clones within the positive pools were subsequently screened individually against the hybridoma bait. Finally, the inserts of positive clones were subjected to Sanger sequencing. The sequences were blasted against the genome sequence of *H. hepaticus* (ATCC51449) and aligned to the annotated open reading frames. Full-length open reading frames containing the retrieved fragments were cloned into pGEX-6P-1 to confirm their activity in the T cell stimulation assay.

Epitope mapping

We cloned overlapping fragments spanning the entire HH_1713 coding region into the pGEX-6P-1 expression vector, and expressed these in *E. coli* BL21 cells. The heat-killed bacteria were used to stimulate relevant hybridomas.
This process was repeated until we mapped the epitope to a region containing 30 amino acids. The potential MHCII epitopes were predicted with online software RANKPEP33. Overlapping peptides spanning the predicted region were further synthesized (Genescript) and verified by stimulation of the hybridomas.

Generation of TCRtg mice

TCR sequences of HH5-1 and HH7-2 were cloned into the pT\(\alpha\) and pT\(\beta\) vectors kindly provided by Dr. D. Mathis. TCR transgenic animals were generated by the Rodent Genetic Engineering Core at the New York University School of Medicine. Positive pups were genotyped by testing TCR V\(\beta\)8.1/8.2 (HH5-1tg) or V\(\beta\)6 (HH7-2tg) expression on T cells from peripheral blood.

MHCII tetramer production and staining

HH-E2 tetramer was kindly produced by the NIH Tetramer Core Facility. Briefly, QESPRIAAAYTIKGA (HH_1713-E2), an immunodominant epitope validated with the hybridoma stimulation assay, was covalently linked to I-A\(^{b}\) via a flexible linker, to produce pMHCII monomers. Soluble monomers were purified, biotinylated, and tetramerized with phycoerythrin- or allophycocyanin-labelled streptavidin. To stain endogenous T cells, mononuclear cells from LILP or CP were first resuspended in MACS buffer with FcR block, 2% mouse serum and 2% rat serum. Then tetramer was added (10 nM) and incubated at room temperature for 60 min, and cells were re-suspended by pipetting every 20 min. Cells were washed with MACS buffer and followed by regular surface marker staining at 4 °C.

Adoptive transfer of TCRtg cells
Spleens from TCRtg mice were collected and mechanically disassociated. Red blood cells were lysed using ACK lysis buffer (Lonza). For TCRtg mice in WT background, naive Tg T cells were sorted as CD4⁺CD3⁺CD44loCD62LhiCD25⁻Vβ6⁺ (HH7-2tg), Vβ8.1/8.2⁺ (HH5-1tg) or Vβ14⁺ (7B8tg) on the Aria II (BD Biosciences). For HH7-2tg mice bred to the Foxp3creYFP background, naive Tg T cells were sorted as CD4⁺CD3⁺CD44loCD62LhiFoxp3creYFP⁻Vβ6⁺. Cells were resuspended in PBS and transferred into congenic isotype-labeled recipient mice by retro-orbital injection.

H. hepaticus culture and oral infection

H. hepaticus was kindly provided by Dr. James Fox (MIT). Frozen stock aliquots of *H. hepaticus* were stored in Brucella broth with 20% glycerol and frozen at -80°C. The bacteria were grown on blood agar plates (TSA with 5% sheep blood, Thermo Fisher). Inoculated plates were placed into a hypoxia chamber (Billups-Rothenberg), and anaerobic gas mixture consisting of 80% nitrogen, 10% hydrogen, and 10% carbon dioxide (Airgas) was added to create a micro-aerobic atmosphere, in which the oxygen concentration was 3~5%. The micro-aerobic jars containing bacterial plates were left at 37°C for 5 days before animal inoculation. For oral infection, *H. hepaticus* was resuspended in Brucella broth by application of a pre-moistened sterile cotton swab applicator tip to the colony surface. The concentration of bacterial inoculation dose was determined by the use of a spectrophotometric optical density (OD) analysis at 600 nm, and adjusted to OD₆₀₀ readings between 1 and 1.5. 0.2 mL bacterial suspension was...
administered to each mouse by oral gavage. Mice were inoculated every 5 days for a total of two doses.

T_{reg} cell in vitro suppression assay

Naïve T cells (T_{naive}) with the phenotype CD4⁺CD3⁺CD44^{lo}CD62L^{hi}CD25⁻ were isolated from CD45.1 WT B6 mice by FACS and labeled with carboxyfluorescein diacetate succinimidy l ester (CFSE). nT_{reg} (CD45.2) with the phenotype CD4⁺CD3⁺Foxp3^{creYFP}↑NRP1[↑] were isolated from Foxp3^{creYFP} or Mat^{Treg} mice by FACS. B cells were isolated as APCs by positive enrichment for B220⁺ cells using MACS LS columns (Miltenyi) from CD45.2 WT B6 mice. 2.5 × 10⁴ CFSE-labeled T_{naive} cells were cultured for 72 h with APCs (5 × 10⁴) and anti-CD3 (1 µg/ml) in the presence or absence of various numbers of T_{reg} cells. The cell division index of responder T cells was assessed by dilution of CFSE using FlowJo software (Tree Star).

Adoptive transfer colitis

CD4⁺CD3⁺CD25⁻CD45RB^{hi} T_{Eff} cells were isolated by FACS from B6 mouse spleens. CD4⁺CD3⁺Foxp3^{creYFP}↑NRP1[↑] nT_{reg} were isolated from the splenocytes of *H. hepaticus*-colonized Foxp3^{creYFP} or Mat^{Treg} mice. T_{Eff} cells (5 × 10⁵) were administered by retro-orbital injection into *H. hepaticus*-colonized Rag1^{−/−} mice alone, or simultaneously with 4 × 10⁵ nT_{reg} as previously described³⁴. Co-housed littermate recipients were randomly assigned to different treatment groups such that each cage contained all treatment conditions. Animal weights were measured weekly. After eight weeks, large intestines were collected and fixed with 10% neutral buffered formalin (Fisher). Samples were
sectioned and stained with Haemotoxylin and Eosin by the Histopathology Core at the New York University School of Medicine.

Histology analysis

The H&E slides from each sample were examined in a blinded fashion. Samples of proximal, mid, and distal colon were graded semiquantitatively from 0 to 4 as described previously. Scores from proximal, mid, and distal sites were averaged to obtain inflammation scores for the entire colon.

Cell isolation for RNA-seq experiment

To induce colitis, both HH7-2tg;Mat^Treg and HH7-2tg;Foxp3^cre mice were colonized with *H. hepaticus*. HH7-2tg;Foxp3^cre mice were further I.P. injected with 1mg anti-IL10RA (clone 1B1.3A, Bioxcell) antibody weekly from the day of colonization. HH7-2 T effector T_Eff cells (CD3^+CD4^+TCRβ6^+Foxp3-YFP^+) were sorted from the LILP two weeks after colonization. Homeostatic IL-23R-GFP^+ T cells (CD3^+CD4^+IL-23R-GFP^+) were sorted from both SILP and LILP of Il23r^gfp/+ mice stably colonized with SFB.

RNA-seq library preparation

Total RNA was extracted using TRIzol (Invitrogen) followed by DNase I treatment and cleanup with RNeasy MinElute kit (Qiagen). RNAseq libraries were prepared using Nugen Ovation Ultralow Library Systems V2 (cat # 7102 and 0344) and sequenced on the Illumina NextSeq.

Data processing of RNA-seq experiment

RNA-seq reads were mapped to the *Mus musculus* genome Ensembl annotation release 87 with STAR (v2.5.2b). Uniquely mapped reads were
counted using featureCounts37 with parameters: -p -Q 20. DESeq238 was used to identify differentially expressed genes across conditions with experimental design: \textasciitilde\text{Condition} + Gender. Read counts were normalized and transformed by function VarianceStabilizingTransformation (VST) in DESeq2 with the following parameter: blind=FALSE. Gender differences were considered as batch effect, and were corrected by ComBat39. Downstream analysis and data visualization were performed in R40.

Statistical analysis

For animal studies, two-sided *Welch t-test* with Holm-Sidak correction for multiple comparisons was used. Error bars represent +/- 1 standard deviation. Final sample sizes matched predicted sample sizes calculated using power analysis. No samples were excluded from analysis. Variance between KO samples tended to be greater than controls. For RNA-seq analysis, genes were considered differentially expressed when DESeq238 adjusted P values were < 0.1. Enriched disease pathways were determined using Ingenuity Pathway Analysis (www.Ingenuity.com).

Data Availability
cDNA sequences of *H. hepaticus*-specific TCRs data that support the findings of this study have been deposited in GenBank with the accession codes KY964547-KY964570. RNA-seq data that support the findings of this study can be accessed here:
http://voms.simonsfoundation.org:50013/hywulth4D4N0X PuO7v sLY7ea04g k19f/cMaf_fastq

Acknowledgements

We thank S.Y. Kim and the NYU Genome Engineering Core for generating TCR transgenic mice, A. Heguy and colleagues at the NYU School of Medicine’s Genome Technology Center (GTC) for timely preparation of RNA-seq libraries and RNA-sequencing, the NIH Tetramer Core Facility for generating MHC II tetramers, K. Murphy for providing the 58α−β− hybridoma line, P. Dash and P.G. Thomas for suggestions on single cell TCR cloning, and J.A. Hall, J. Muller and J. Lafaille for suggestions on the manuscript. The Experimental Pathology Research Laboratory of NYU Medical Center is supported by National Institutes of Health Shared Instrumentation Grants S10OD010584-01A1 and S10OD018338-01. The GTC is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center. This work was supported by the Irvington Institute fellowship program of the Cancer Research Institute (M. X.); Training program in Immunology and Inflammation 5T32AI100853 (M.P.); the Helen and Martin Kimmel Center for Biology and Medicine (D.R.L.); the Colton Center for Autoimmunity (D.R.L.); and National Institutes of Health grant R01DK103358 (R.B. and D.R.L.). D.R.L. is an Investigator of the Howard Hughes Medical Institute.
Author Contributions

M.X. and M.P. designed and performed all experiments and analyzed the data. Y.D. performed blinded histology scoring on colitis sections. C.A and C.G. assisted with in vivo and in vitro experiments. R.Y. and M.P. performed RNA-seq analysis. R.B. supervised RNA-seq analysis. M.X., M.P., and D.R.L. wrote the manuscript with input from the co-authors. D.R.L. supervised the research and contributed to experimental design.

FIGURE LEGENDS

Figure 1. *H. hepaticus* induces RORγt⁺ Treg and TFH responses under steady state conditions. a, Experimental scheme for co-transfer and analysis of HH7-2tg and 7B8tg cells in wild type (WT) mice colonized with both *H. hepaticus* and SFB. b, Representative flow cytometry plots of RORγt, Foxp3, Bcl-6 and CXCR5 expression in donor-derived T cells in different tissues (n=15). c, Frequencies of Treg (Foxp3⁺), TH17 (Foxp3⁻RORγt⁺) and TFH (Bcl-6⁺CXCR5⁺) among 7B8tg and HH7-2tg donor cells in indicated tissues. Data are from one of 3 experiments, with total of 15 mice in the 3 experiments. d, Representative flow cytometry plots of RORγt, Foxp3 and Bcl-6 expression in total CD4⁺ (red) and HH-E2 tetramer⁺ (blue) T cells from the large intestine of WT mice (n=6) colonized with *H. hepaticus* for 3-4 weeks. e, Frequencies of Treg (Foxp3⁺), TH17 (Foxp3⁻RORγt⁺) and TFH (Bcl-6⁺) among HH-E2 tetramer⁺ T cells in the indicated tissues of WT mice (n=6) colonized with *H. hepaticus* for 3-4 weeks. Data are a summary of two
independent experiments. SILP: small intestinal lamina propria; LILP: large intestinal lamina propria; PP: Peyer’s patches and CP: cecal patch.

Figure 2. *H. hepaticus* induces inflammatory T_H17 cells in IL-10 deficiency-dependent colitis. **a,** Representative flow cytometry plots of Foxp3, ROR_γt and T-bet expression in HH7-2tg donor-derived cells in the LILP of *Il10^{+/−}* (n=8) and *Il10^{−/−}* (n=10) mice. **b,** Frequencies of T_{reg} (Foxp3⁺) and T_H17 (Foxp3[−]ROR_γt⁺) cells among LILP HH7-2tg donor-derived cells in *Il10^{+/−}* (n=8) and *Il10^{−/−}* (n=10) mice. Data are from four independent experiments. Error bars: mean ± 1 SD. Statistics were calculated by unpaired *Welch t*-test, *** p<0.001. **c,** Frequencies of T-bet expression among LILP HH7-2tg donor-derived T_H17 (Foxp3[−]ROR_γt⁺) cells in *Il10^{+/−}* (n=10) mice, and SILP 7B8tg donor-derived T_H17 cells in *Il10^{+/−}* (n=10) and *Il10^{−/−}* (n=8) mice. Data are a summary of four independent experiments. Error bars: mean ± 1 SD. Statistics were calculated by unpaired *Welch t*-test, N.S. (P≥0.05, not significant), *** p<0.001. **d,** Representative flow cytometry plots of IL-17A and IFN_γ expression among LILP HH7-2tg donor-derived cells in *Il10^{+/−}* (n=5) and *Il10^{−/−}* (n=6) mice after in vitro re-stimulation. **e,** Frequencies of IL-10, IL-17A and IFN_γ expression among LILP HH7-2tg donor-derived cells in *Il10^{+/−}* (n=5) and *Il10^{−/−}* (n=6) mice after re-stimulation. Data are a summary of two independent experiments. **f,** Representative flow cytometry plots of ROR_γt and Foxp3 expression in HH-E2 tetramer⁺ T cells in the LILP of *Il10^{+/−}* (n=4) and *Il10^{−/−}* (n=4) mice colonized with *H. hepaticus* for 3-4 weeks. **g,** Frequencies of T_{reg} (Foxp3⁺) and T_H17 (Foxp3[−]ROR_γt⁺) cells among HH-E2
tetramer$^{+}$ T cells in the LILP of Il10$^{−/−}$ (n=4) and Il10$^{+/−}$ (n=4) mice colonized with *H. hepaticus* for 3-4 weeks. Data are a summary of two independent experiments. Error bars: mean \pm 1 SD. Statistics were calculated by unpaired *Welch* t-test, *** $p<0.001$.

Figure 3. c-Maf is required for the differentiation of induced T$_{reg}$ cells in the gut. **a,** Expression of c-Maf in the indicated CD4$^{+}$ T cell subsets in the LILP. **b,** Transcription factor staining in CD4$^{+}$ T cells from the LILP of mice with T$_{reg}$ cell-specific inactivation of ROR$_{γt}$ and c-Maf. Top panels, representative flow cytometry plots of ROR$_{γt}$ and Foxp3 expression. Bottom panels, frequencies of ROR$_{γt}^{+}$ and ROR$_{γt}^{-}$ T$_{reg}$ (Foxp3$^{+}$) cells and T$_{H17}$ (Foxp3$^{−}$ROR$_{γt}^{+}$) cells among total CD4$^{+}$ T cells. Data are a summary of 3 independent experiments for RorcΔTreg (n=7) and littermate controls (n=7) and 4 independent experiments for MafΔTreg (n=10) and littermate controls (n=8). Error bars: mean \pm 1 SD. Statistics were calculated by unpaired *Welch* t-test, * $p<0.05$, *** $p<0.001$. **c,** Transcription factor staining in HH-E2 tetramer positive cells in the LILP. Top panels, representative flow cytometry plots of ROR$_{γt}$ and Foxp3 expression. Lower panels, frequencies of T$_{reg}$ (Foxp3$^{+}$) and T$_{H17}$ (Foxp3$^{−}$ROR$_{γt}^{+}$) among tetramer positive cells. Data are a summary of 3 independent experiments for RorcΔTreg (n=7) and littermate controls (n=6) and 4 independent experiments for MafΔTreg (n=10) and littermate controls (n=8). Error bars: mean \pm 1 SD. Statistics were calculated by unpaired *Welch* t-test, ** $p<0.01$, *** $p<0.001$. **d,** Co-transfer of MafΔTreg and control HH7-2tg T cells into WT *H. hepaticus*-colonized mice. Left,
schematic of experimental design. Center, representative flow cytometry plots of donor and recipient cell composition in LILP of recipient mice, indicated by CD45.1 and CD45.2. Right, RORγt and Foxp3 expression in $\text{Maf}^{\Delta \text{Treg}}$ and control HH7-2tg donor-derived cells (n=8). e, Ratios of control and $\text{Maf}^{\Delta \text{Treg}}$ HH7-2tg donor-derived cells (n=8). Dashed line represents ratio of co-transferred cells prior to transfer. Error bars: mean ± 1 SD. f, Frequencies of T_{reg} (Foxp3$^+$) and T_{H17} (Foxp3$^-$RORγt$^+$) cells among donor-derived cells (n=8). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant), *** p<0.001.

Figure 4: Deletion of c-Maf in T_{reg} cells leads to spontaneous colitis. a, Table representing frequency of rectal prolapse by genotype. b, Spleens and mesenteric lymph nodes from $\text{Maf}^{\Delta \text{Treg}}$ and littermate controls (left). Total cell numbers in mLNs (right). Data are a summary of 3 independent experiments for $\text{Rorc}^{\Delta \text{Treg}}$ (n=6) and littermate controls (n=10), and 4 independent experiments for $\text{Maf}^{\Delta \text{Treg}}$ (n=9) and littermate controls (n=8). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant), ** p<0.01. c, Number of leukocytes in the LILP. Data are a summary of 3 independent experiments for $\text{Rorc}^{\Delta \text{Treg}}$ (n=7) and littermate controls (n=8), and 4 independent experiments for $\text{Maf}^{\Delta \text{Treg}}$ and littermate controls (n=9). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant), ** p<0.01. d, Representative histology of large intestine sections from mice with indicated genotypes, colonized with *H. hepaticus* for 4-6 weeks.
Scale bar represents 50 µm. Right, colitis scores (0-4 scale) in mice with \(T_{\text{reg}} \)-specific inactivation of transcription factors. \(Rorc^{\Delta Treg} \) (n=8) and littermate controls (n=9). \(Maf^{\Delta Treg} \) (n=11) and littermate controls (n=9). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch \(t \)-test, N.S. (P≥0.05, not significant), *** P<0.001. e, Comparison of transcriptomes of \(H. hepaticus \)-specific \(T_H17 \) cells from mice treated with IL-10Ra blockade or \(Maf^{\Delta Treg} \) and conventional \(T_H17 \) cells (predominantly SFB-specific). Scatter plot depicting log fold change of gene expression. Blue, red and purple dots indicate significant difference (FDR < 0.1). f, Heatmap depicting the 347 shared genes differentially expressed (Pval<0.1) between pathogenic HH7-2 and conventional \(T_H17 \) cells. Data for each condition are the mean of 2 biological replicates. Heatmap depicting the 347 shared differentially expressed genes between pathogenic HH7-2 and conventional \(T_H17 \) (purple dots in Fig 4e). Scale bar represents z-scored variance stabilized data (VSD) counts. Data for each condition is the mean of 2 biological replicates.

EXTENDED DATA FIGURE LEGENDS

Extended Data Figure 1: Cloning and characterization of \(H. hepaticus \)-specific \(T_H17 \) TCRs, and generation of TCR transgenic (TCRtg) mice and MHC-II tetramers. a, IL-23R-GFP expression in CD4\(^+\) T cells from the large intestines of mice with and without \(H. hepaticus \) colonization and after IL-10Ra
blockade. b, Experimental scheme for cloning *H. hepaticus*-induced single T_{H17} cell TCRs under IL-10Ra blockade. c, Summary of the twelve dominant *H. hepaticus*-induced T_{H17} TCRs. d, *In vitro* activation of CFSE-labeled naive HH7-2tg and HH5-1tg cells by indicated stimuli in the presence of antigen-presenting cells. e, Expansion of donor-derived HH7-2tg (CD45.2) cells in the large intestine (LI) of *H. hepaticus*-colonized or -free CD45.1 mice, gated on total CD4⁺ T cells. f, Expansion of donor-derived HH5-1tg (CD45.2) cells in the LI of *H. hepaticus*-colonized or -free (CD45.1) mice, gated on total CD4⁺ T cells. g, HH-E2 tetramer staining of CD4⁺ T cells from the LI of *H. hepaticus*-colonized or -free mice.

Extended Data Figure 2: Enrichment and differentiation of HH7-2tg and 7B8tg T cells in distinct anatomical sites in WT recipient mice colonized with SFB and *H. hepaticus*. a, Representative flow cytometry plots of donor-derived HH7-2tg (CD45.1/45.2) and 7B8tg (CD45.1/45.1) T cells in indicated tissues of mice colonized with SFB and *Helicobacter hepaticus*, gated on total CD4⁺ T cells. b, Proportions of donor-derived HH7-2tg and 7B8tg T cells among total CD4⁺ T cells in indicated tissues. Data are from one of 3 experiments, with total of 15 mice in the 3 experiments. c, Representative flow cytometry plots of ROR_{γt}, Foxp3, Bcl-6 and CXCR5 expression in CD4⁺ T cells from the host and from HH7-2tg and 7B8tg donors in different tissues (n=15). d, Frequencies of T_{reg} (Foxp3⁺), T_{H17} (Foxp3[−]ROR_{γt}⁺) and T_{FH} (Bcl-6⁺CXCR5⁺) cells in donor-derived HH7-2tg and 7B8tg cells in different tissues. Data are from one of 3 experiments, with total of 15 mice in the 3 experiments. SILP: small intestinal lamina propria;
LILP: large intestinal lamina propria; PP: Peyer’s patches; CP: cecal patches; mLNs: mesenteric lymph nodes; and Spl: spleen.

Extended Data Figure 3: Characterization of HH7-2tg;Rag1+/− mice. a, Representative flow cytometry plots of Treg (Foxp3+CD25+) frequency in indicated tissues of H. hepaticus-free HH7-2tg;Rag1+/− (n=3) or HH7-2tg;Rag1−/− (n=3) mice. b, Development of co-transferred congenic isotype-labeled HH7-2tg Rag1+/− (CD45.1/45.1) and Rag1−/− (CD45.1/45.2) naïve T cells in the LI of H. hepaticus-colonized WT B6 mice. Representative flow cytometry plots of donor and recipient T cell frequency (left), and RORγt and Foxp3 expression (right). c, Frequencies of Treg (Foxp3+), TH17 (Foxp3−RORγt+) and TFH (Bcl-6−CXCR5+) cells among HH7-2tg Rag1+/− (CD45.1/45.1) (n=6) and Rag1−/− (CD45.1/45.2) (n=6) donor-derived T cells. Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant).

Extended Data Figure 4: Differentiation of adoptively transferred naïve HH5-1tg T cells in H. hepaticus-colonized mice. a,b, 2000 naïve HH5-1tg cells (CD45.1/45.2) were adoptively transferred into WT B6 mice (CD45.2/45.2) colonized with H. hepaticus. Cells from LI and CP were analyzed two weeks after transfer. Representative flow cytometry plots are shown for RORγt, Foxp3, Bcl-6 and CXCR5 expression in donor-derived and recipient CD4+ T cells in indicated tissues. Frequencies of Treg (Foxp3+), TH17 (Foxp3−RORγt+) and TFH (Bcl-6−CXCR5+) among HH5-1tg donor T cells (n=8). Data are a summary of two
independent experiments. c, Naïve HH5-1tg cells were adoptively transferred as above into Il10+/− and Il10−/− mice (CD45.2/45.2) colonized with H. hepaticus. Cells from LI were analyzed two weeks after transfer (n=5). Representative flow cytometry plots of RORγt and Foxp3 expression in HH5-1tg donor cells in LILP (left), and a compilation of frequencies of Treg (Foxp3+) and TH17 (Foxp3−RORγt+) among HH5-1tg donor cells (right). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, ** p<0.01, *** p<0.001.

Extended Data Figure 5: Differentiation of transferred HH7-2tg and 7B8tg T cells in Il10+/− and Il10−/− mice. a, Representative flow cytometry plots of Foxp3, RORγt and T-bet expression in 7B8tg cells in the SILP of Il10+/− (n=10) and Il10−/− (n=8) recipient mice. b, Frequencies of Treg (Foxp3+) and TH17 (Foxp3−RORγt+) cells among SILP 7B8tg donor-derived cells in Il10+/− (n=10) and Il10−/− (n=8) mice. Data are a summary of four independent experiments. Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant). c, Representative flow cytometry plots of IL-10, IL-17A and IFNγ expression in transferred 7B8tg and HH7-2tg cells from LILP and SILP of Il10+/− and Il10−/− mice after re-stimulation (n=5 or 6). d, Proportions of transferred 7B8tg and HH7-2tg cells in the SILP and LILP of Il10+/− and Il10−/− mice that express IL-10, IL-17A and IFNγ after re-stimulation (n=5 or 6). Data are a summary of two independent experiments.
Extended Data Figure 6: Extended characterization of $\text{Maf}^{\Delta\text{Treg}}$ and $\text{Rorc}^{\Delta\text{Treg}}$ animals. a, Left, representative flow cytometry plots of RORγt and Helios expression in the T$_{reg}$ compartment. Right, summary of frequencies from two independent experiments. Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test. b, Incomplete depletion of c-Maf protein in RORγt$^+$ Tregs in $\text{Maf}^{\Delta\text{Treg}}$ mice shown by a representative flow cytometry graph (upper) and a compilation of frequencies (lower). c, Absolute numbers of indicated CD4$^+$ T cell populations in the LILP of $\text{Rorc}^{\Delta\text{Treg}}$ (left) and $\text{Maf}^{\Delta\text{Treg}}$ (right) mice. Data are a summary of 3 independent experiments for $\text{Rorc}^{\Delta\text{Treg}}$ (n=7) and littermate controls (n=7) and 4 independent experiments for $\text{Maf}^{\Delta\text{Treg}}$ (n=11) and littermate controls (n=8). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P\geq0.05, not significant), * p<0.05, ** p<0.01, *** p<0.001. d, Absolute numbers of indicated HH-E2 tetramer$^+$ T cell populations in the LILP of $\text{Rorc}^{\Delta\text{Treg}}$ (left) and $\text{Maf}^{\Delta\text{Treg}}$ (right) mice. Data are a summary of 3 independent experiments for $\text{Rorc}^{\Delta\text{Treg}}$ (n=7) and littermate controls (n=6) and 4 independent experiments for $\text{Maf}^{\Delta\text{Treg}}$ (n=11) and littermate controls (n=8). Error bars: mean ± 1 SD. Statistics were calculated by unpaired Welch t-test, N.S. (P\geq0.05, not significant), * p<0.05, ** p<0.01, *** p<0.001. e, Flow cytometry plot depicting ratio of co-transferred cells. f, Representative flow cytometry plot of c-Maf expression in Th17 cells (Foxp3$^-$ RORγt$^+$) from LILP of control (black) and $\text{Maf}^{\Delta\text{Treg}}$ (red) mice (left). The c-Maf negative population is defined by gating on Foxp3$^+$RORγt$^-$ T$_{reg}$ from $\text{Maf}^{\Delta\text{Treg}}$ mice (solid grey). Below, summary of frequencies of c-Maf expression in Th17 cells for control (n=6) and for $\text{Maf}^{\Delta\text{Treg}}$
(n=9) mice from 3 independent experiments. g, Spleens and mLNs of RorcΔTreg and control mice colonized by H. hepaticus for 5-6 weeks.

Extended Data Figure 7: Transcriptional profiling of conventional and H. hepaticus-specific T effector cells. a, Flow cytometry analysis of donor-derived HH7-2tg T effector cells from H. hepaticus-colonized mice and conventional IL-23R-GFP+ T\textsubscript{H}17 cells from SFB-colonized mice. Gates in the lower panel were used for sorting to perform RNA-seq. b, Principal component analysis of RNA-seq data from sorted cell populations. c, Venn diagram depicting differentially expressed genes (FDR < 0.1) between indicated comparisons identified by DESeq2. d, Significantly enriched disease pathways in the set of 149 shared genes upregulated in HH7-2tg MafΔTreg and HH7-2tg anti-IL-10ra compared to conventional L\textsubscript{H}17. e, Scatter plots of Variance Stabilized Data (VSD) counts. Green dots represent differentially expressed genes identified by DESeq2 (FDR < 0.1). R2 calculated by linear regression.

Extended Data Figure 8: c-Maf-deficient nT\textsubscript{reg} cells retain suppressive function. a, Equivalent inhibitory function of nT\textsubscript{reg} cells from MafΔTreg and control mice in the \textit{in vitro} proliferative response of CD4+ T cells (T\textsubscript{Eff}). Three data points are from one of two independent replicates. b, Activity of nTreg cells in the transfer-mediated colitis model. Percentage weight change and colitis histology scores (right) of Rag1−/− mice adoptively transferred with naïve T cells alone (n=8), or naïve T cells in combination with nT\textsubscript{reg} cells from MafΔTreg (n=10) or
control (n=9) mice. Data are a summary of two independent experiments. Statistics were calculated by unpaired Welch t-test, N.S. (P≥0.05, not significant), ** p<0.01, *** p<0.001.

REFERENCES

6 Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune

Figure 1

(a) Day 0:
co-transfer 2,000 naive
HH7-2tg (CD45.1/45.2) (H. hepaticus specific)
7B8tg (CD45.2/45.2) (SFB specific)
Colonize mice
w/ H. hepaticus
and SFB
CD45.1 WT
mice

(b) 7B8tg in SILP
HH7-2tg in LILP

(c) 7B8tg in SILP
7B8tg in PP
HH7-2tg in LILP
HH7-2tg in CP

(d) Total CD4+
HH-E2 Tetramer+

(e) LILP
CP
Figure 2
Figure 3
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Frequency of rectal prolapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rorc^{fl/+} Foxp3^{cre}</td>
<td>0/21</td>
</tr>
<tr>
<td>Rorc^{fl/fl} Foxp3^{cre}</td>
<td>0/19</td>
</tr>
<tr>
<td>Maf^{+/+} Foxp3^{cre}</td>
<td>0/21</td>
</tr>
<tr>
<td>Maf^{fl/fl} Foxp3^{cre}</td>
<td>6/21</td>
</tr>
</tbody>
</table>

Figure 4
Extended data figure 1
Extended data figure 2
Extended data figure 3
Extended data figure 4
Extended data figure 5
Extended data figure 6
Extended data figure 7

a

<table>
<thead>
<tr>
<th></th>
<th>HH7-2</th>
<th>HH7-2 anti-IL10RA</th>
<th>WT</th>
<th>SILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>43.4</td>
<td>31.8</td>
<td>10.6</td>
<td>20.8</td>
</tr>
<tr>
<td>IL23R-GFP</td>
<td>90.2</td>
<td>85.6</td>
<td>8.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>

b

![Graph showing data distribution](image)

c

![Venn diagram showing overlaps](image)

d

Diseases and Disorders

<table>
<thead>
<tr>
<th>Name</th>
<th>p-value range</th>
<th># Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory Response</td>
<td>3.82E-04 - 1.87E-12</td>
<td>49</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>3.46E-04 - 1.65E-09</td>
<td>40</td>
</tr>
<tr>
<td>Connective Tissue Disorders</td>
<td>3.55E-04 - 1.80E-09</td>
<td>36</td>
</tr>
<tr>
<td>Immunological Disease</td>
<td>3.56E-04 - 1.80E-09</td>
<td>42</td>
</tr>
<tr>
<td>Inflammatory Disease</td>
<td>3.56E-04 - 1.80E-09</td>
<td>34</td>
</tr>
</tbody>
</table>

e

![Scatter plots showing data correlation](image)
Extended data figure 8