






exposures that were not used in constraining P !( ) ; there was a significant correlation 

between experimentally estimated population average (Pearson r2 ~ 0.97, p < 10-10) as 

well as heterogeneity (quantified as the standard deviation in cell to cell variability) 

(Pearson r2 ~ 0.98, p < 10-10) in pAkt levels and the corresponding predictions (see SI 

Figure 3 in SI section IV). 

 
Figure 5. Experimentally measured distributions (filled circles) and maximum entropy 
predictions (dashed black lines) of cell to cell variability in pAkt levels at 10 minutes (a and b) 
and 180 minutes (c and d) after exposure to extracellular EGF 3.16 ng/ml and 10 ng/ml 
respectively. e) and f) Cell to cell variability in steady state sEGFR levels (180 minutes after EGF 
exposure) at EGF doses 0.25 ng/ml and 0.5 ng/ml respectively.  
 

The abundance of surface EGF receptors determines cells’ ability to 

phosphorylate signaling components downstream of EGFRs in response to EGF 

stimulation25. Steady state sEGFR abundances after prolonged stimulation with EGF are 

thus crucial in quantifying the sensitivity of EGF/EGFR signaling cascade within 

individual cells31. Using the inferred parameter distribution, in addition to cell to cell 

variability in pAkt levels, we can also predict the distribution of cell surface receptor 

levels at steady state (180 minutes after EGF exposure) across different doses of EGF. In 

Figure 5 e and f, we show the agreement between experimentally measured cell to cell 

variability in sEGFR levels (black lines) at different doses of EGF along with the 

predictions (red lines). Notably, only two steady state sEGFR levels (1 ng/ml and 100 
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ng/ml) were used to constrain the parameter distribution . Similar to pAkt, the ME 

framework predicted with great accuracy the experimentally estimated population 

average (Pearson r2 ~ 0.98, p ~ 10-5) and cell to cell variability (Pearson r2 ~ 0.96, p ~ 8 

x10-5) in steady state sEGFR levels (see SI Figure 4 in SI section IV).  

 

Extensions of the framework  
A straightforward modification allows us to use the developed framework for 

cases when the time evolution of species abundances  is intrinsically stochastic, for 

example, transcriptional networks and prokaryotic signaling networks1. To that end, we 

can modify the definition of the predicted fraction 
 
ψ b = P x t,θ( ) = x θ( )∫ i Ib x( )dx !of a 

chemical species x where  is the distribution of x values at time t when 

parameters are fixed at . The distributions can be obtained numerically using 

Gillespie's stochastic algorithm32 or approximated using moment closure techniques33. 

The presented framework can also be used to infer parameter distributions when 

instead of the entire distribution of cell to cell variability only a few moments of that 

distribution are available, for example, when average protein abundances are measured 

using techniques such as quantitative western blots or mass spectrometry. For simplicity 

we elucidate the case where population mean m and the variance v of one species are 

measured at a fixed time point t. Instead of constraining fractions that represent cell to 

cell variability in different bins, we constrain the population mean µ1 = x t,θ( )P θ( )dθ∫  

and the squared mean  to their experimentally measured values m 

and v+m2 respectively. Entropy maximization can then be carried out with these 

constraints. We have  

!!! ! (7) 

Lastly, we can use the ME framework to infer parameters from experiments 

where dynamical changes in abundances of chemical species within single cells are 

measured using live cell tracking5. Consider that the time evolution of a species is 

P θ( )

X

P x t,θ( ) = x θ( )
θ

ψ b

µ2 = x t,θ( )∫
2
P θ( )dθ

P θ( ) = 1Ω q θ( )exp −λ1x t,θ( )− λ2x t,θ( )2( )

x t( )
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measured in nc cells from time t=0 to t = T. For individual cells, we can estimate features 

of the trajectory x(t), for example, the maximum response, the time taken to reach the 

maximum, the rate of signal decay, or the steady state value. We can then use the 

distributions of these features obtained from the data to constrain the parameters.  

Alternatively, we can discretize the nc continuous time observations into K 

discrete times .!At each time point ti, we can then divide the range of 

observed abundances in Bi bins. Then, each individual dynamical trajectory can be 

characterized by a vector of discrete indices where is 

the index of the bin through which the trajectory  passed at time point ti. If we have 

sufficiently large number of trajectories, similar to constraining trajectories that 

populated individual bins, we then can constrain the fraction of trajectories that populate 

a given sequence of bins and infer . 

 

Discussion  
In this work we presented a maximum entropy based framework to estimate the 

joint distribution over parameters of a signaling network based on measured cell to 

cell variability in signaling network dynamics. Notably, the parameter distribution 

allowed us to accurately predict the time evolution of cell to cell variability in species 

abundances.  

The inferred parameter distribution comprises both the non-identifiability and the 

true cell to cell variability in parameters. The effect of parameter non-identifiability can 

be minimized by explicitly incorporating constraints related to population averages as 

well as cell to cell variability of rate parameters in the inference27. Notably, the maximum 

entropy framework naturally avoids over-constraining the parameter distribution; 

Lagrange multipliers corresponding to redundant constraints automatically evaluate to 

zero15. 

In this work, we employed the developed inference framework to signaling 

network data. However, the theoretical development can also be used in a more general 

 t = t1, t2,…,tK{ }
x t( )

 
x t( ) ~ B1a1 , B2a2 , B3a3 ,…,BKaK{ } Biai

x t( )

P θ( )

P θ( )
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setting. For example, the framework can be applied to computationally reconstruct the 

distribution of longitudinal behaviors in a population from cross-sectional time-snapshot 

data in other fields such public health, economics, and ecology or to estimate parameter 

distributions from lower dimensional statistics34. 

!

References!
1.! Raj,! A.! &! van! Oudenaarden,! A.! Nature,! nurture,! or! chance:! stochastic! gene!

expression!and!its!consequences.!Cell!135,!216B226!(2008).!
2.! Chastanet,!A.!et!al.!Broadly!heterogeneous!activation!of!the!master!regulator!

for! sporulation! in! Bacillus! subtilis.! Proceedings- of- the- National- Academy- of-
Sciences-of-the-United-States-of-America!107,!8486B8491!(2010).!

3.! Spencer,! S.L.,! Gaudet,! S.,! Albeck,! J.G.,! Burke,! J.M.! &! Sorger,! P.K.! NonBgenetic!
origins! of! cellBtoBcell! variability! in! TRAILBinduced! apoptosis.! Nature! 459,!
428B432!(2009).!

4.! Wu,!M.!&!Singh,!A.K.!SingleBcell!protein!analysis.!Curr-Opin-Biotechnol!23,!83B
88!(2012).!

5.! Meyer,!R.!et!al.!Heterogeneous!kinetics!of!AKT!signaling!in!individual!cells!are!
accounted!for!by!variable!protein!concentration.!Front-Physiol!3,!451!(2012).!

6.! Niepel,!M.,!Spencer,!S.L.!&!Sorger,!P.K.!NonBgenetic!cellBtoBcell!variability!and!
the! consequences! for! pharmacology.! Curr- Opin- Chem- Biol! 13,! 556B561!
(2009).!

7.! Snijder,! B.! et! al.! Population! context! determines! cellBtoBcell! variability! in!
endocytosis!and!virus!infection.!Nature!461,!520B523!(2009).!

8.! Raue,! A.! et! al.! Structural! and! practical! identifiability! analysis! of! partially!
observed! dynamical! models! by! exploiting! the! profile! likelihood.!
Bioinformatics!25,!1923B1929!(2009).!

9.! Eydgahi,! H.! et! al.! Properties! of! cell! death!models! calibrated! and! compared!
using!Bayesian!approaches.!Mol-Syst-Biol!9,!644!(2013).!

10.! Transtrum,! M.K.! et! al.! Perspective:! Sloppiness! and! emergent! theories! in!
physics,!biology,!and!beyond.!J-Chem-Phys!143,!010901!(2015).!

11.! Zechner,!C.!&!Koeppl,!H.!Uncoupled!analysis!of!stochastic!reaction!networks!
in!fluctuating!environments.!PLoS-Comput-Biol!10,!e1003942!(2014).!

12.! Zechner,! C.! et! al.! MomentBbased! inference! predicts! bimodality! in! transient!
gene!expression.!Proc-Natl-Acad-Sci-U-S-A!109,!8340B8345!(2012).!

13.! Hasenauer,!J.!et!al.!Identification!of!models!of!heterogeneous!cell!populations!
from!population!snapshot!data.!BMC-Bioinformatics!12,!125!(2011).!

14.! Dixit,!P.D.!Quantifying!extrinsic!noise!in!gene!expression!using!the!maximum!
entropy!framework.!Biophys-J!104,!2743B2750!(2013).!

15.! Presse,! S.,!Ghosh,!K.,! Lee,! J.!&!Dill,!K.A.!Principles!of!maximum!entropy!and!
maximum!caliber!in!statistical!physics.!Rev-Mod-Phys!85,!1115B1141!(2013).!

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/137513doi: bioRxiv preprint first posted online May. 12, 2017; 

http://dx.doi.org/10.1101/137513


16.! Weigt,! M.,! White,! R.A.,! Szurmant,! H.,! Hoch,! J.A.! &! Hwa,! T.! Identification! of!
direct! residue! contacts! in! proteinBprotein! interaction! by! message! passing.!
Proc-Natl-Acad-Sci-U-S-A!106,!67B72!(2009).!

17.! Mora,!T.,!Walczak,!A.M.,!Bialek,!W.!&!Callan,!C.G.,!Jr.!Maximum!entropy!models!
for!antibody!diversity.!Proc-Natl-Acad-Sci-U-S-A!107,!5405B5410!(2010).!

18.! Schneidman,! E.,! Berry,! M.J.,! 2nd,! Segev,! R.! &! Bialek,! W.! Weak! pairwise!
correlations!imply!strongly!correlated!network!states!in!a!neural!population.!
Nature!440,!1007B1012!(2006).!

19.! Dixit,!P.D.,!Jain,!A.,!Stock,!G.!&!Dill,!K.A.!Inferring!Transition!Rates!of!Networks!
from! Populations! in! ContinuousBTime! Markov! Processes.! J- Chem- Theory-
Comput!11,!5464B5472!(2015).!

20.! Dixit,! P.D.! &! Dill,! K.A.! Inferring! Microscopic! Kinetic! Rates! from! Stationary!
State!Distributions.!J-Chem-Theory-Comput!10,!3002B3005!(2014).!

21.! Tiwary,! P.! &! Berne,! B.J.! Spectral! gap! optimization! of! order! parameters! for!
sampling! complex!molecular! systems.!Proc-Natl-Acad-Sci-U- S-A!113,! 2839B
2844!(2016).!

22.! Presse,!S.,!Ghosh,!K.!&!Dill,!K.A.!Modeling!stochastic!dynamics!in!biochemical!
systems! with! feedback! using! maximum! caliber.! J- Phys- Chem-B! 115,! 6202B
6212!(2011).!

23.! Presse,! S.,! Ghosh,! K.,! Phillips,! R.! &! Dill,! K.A.! Dynamical! fluctuations! in!
biochemical!reactions!and!cycles.!Phys-Rev-E-Stat-Nonlin-Soft-Matter-Phys!82,!
031905!(2010).!

24.! Manning,!B.D.!&!Toker,!A.!AKT/PKB!Signaling:!Navigating! the!Network.!Cell!
169,!381B405!(2017).!

25.! Herbst,!R.S.!Review!of!epidermal!growth!factor!receptor!biology.!Int-J-Radiat-
Oncol-Biol-Phys!59,!21B26!(2004).!

26.! Soule,! H.D.! et! al.! Isolation! and! characterization! of! a! spontaneously!
immortalized!human!breast!epithelial!cell! line,!MCFB10.!Cancer-research!50,!
6075B6086!(1990).!

27.! Caticha,! A.! &! Preuss,! R.! Maximum! entropy! and! Bayesian! data! analysis:!
Entropic! prior! distributions.! Phys- Rev- E- Stat- Nonlin- Soft- Matter- Phys! 70,!
046127!(2004).!

28.! Chen,! W.W.! et! al.! InputBoutput! behavior! of! ErbB! signaling! pathways! as!
revealed!by!a!mass!action!model!trained!against!dynamic!data.!Mol-Syst-Biol!
5,!239!(2009).!

29.! Broderick!T.,!D.M.,!Tkacik!G.,!Schapire!R.!E.,!Bialek!W.!Faster!solutions!of!the!
inverse!pairwise!Ising!problem.!arXiv!0712.2437!(2007).!

30.! Vivanco,!I.!&!Sawyers,!C.L.!The!phosphatidylinositol!3BKinase!AKT!pathway!in!
human!cancer.!Nat-Rev-Cancer!2,!489B501!(2002).!

31.! Sorkin,!A.!&!Goh,!L.K.!Endocytosis!and!intracellular!trafficking!of!ErbBs.!Exp-
Cell-Res!315,!683B696!(2009).!

32.! Gillespie,!D.T.!Stochastic!simulation!of!chemical!kinetics.!Annu-Rev-Phys-Chem!
58,!35B55!(2007).!

33.! Gillespie,! C.S.! MomentBclosure! approximations! for!massBaction!models.! IET-
Syst-Biol!3,!52B58!(2009).!

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/137513doi: bioRxiv preprint first posted online May. 12, 2017; 

http://dx.doi.org/10.1101/137513


34.! Das,! J.,! Mukherjee,! S.! &! Hodge,! S.E.! Maximum! Entropy! Estimation! of!
Probability! Distribution! of! Variables! in! Higher! Dimensions! from! Lower!
Dimensional!Data.!Entropy-(Basel)!17,!4986B4999!(2015).!

!

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/137513doi: bioRxiv preprint first posted online May. 12, 2017; 

http://dx.doi.org/10.1101/137513

