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The dynamics of intracellular signaling networks can vary substantially among cells in a 
population. Predictive models of signaling networks are key to our understanding of 
cellular function and in design of rational interventions in disease. However, using 
network models to predict heterogeneity in signaling network dynamics is challenging 
due to cell to cell variability of network parameters, such as reaction rates and species 
abundances, and parameter non-identifiability. In this work, we present an inference 
framework based on the principle of maximum entropy (ME) to estimate the joint 
probability distribution over network parameters that is consistent with experimentally 
measured cell to cell variability in abundances of network species. We apply the 
framework to study the heterogeneity in the signaling network activated by the epidermal 
growth factor (EGF) resulting in phosphorylation of protein kinase B (Akt); a central 
signaling hub in mammalian cells. Notably, the inferred parameter distribution allows us 
to accurately predict population heterogeneity in phosphorylated Akt (pAkt) levels at 
early and late times after EGF stimulation as well as the heterogeneity in the levels of cell 
surface EGF receptors (sEGFRs) after prolonged stimulation with EGF. We discuss how 
the developed framework can be generalized and applied to problems beyond signaling 
networks.  
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Introduction 
!

Signaling networks within individual cells in a cell population often respond to 

extracellular stimuli in a heterogeneous manner even if the cells are isogenic1. Cell to cell 

variability in signaling network parameters is directly responsible for this observed 

heterogeneity. Notably, network heterogeneity has important functional consequences, 

for example, in aiding stochastic transitions in development2 or in fractional killing of 

cancer cells treated with chemotherapeutic drugs3. 

Several experimental techniques such as flow cytometry4, immunofluorescence4, 

and live cell assays5 have been developed to probe cell to cell variability in abundances of 

species participating in signaling networks. However, it is often challenging to 

computationally estimate the distribution over network parameters that is consistent with 

these experimental measurements. The reasons are twofold. First, parameters such as 

protein abundances and various biochemical rates, can themselves vary substantially 

from cell to cell in a population1. For example, the coefficient of variation of protein 

abundances ranges between 0.1 to 0.66. Similarly, reaction rate constants may vary 

between cells by a couple of orders of magnitude7. Second, many network parameters are 

non-identifiable given limited experimental measurements of a few species at a few time 

points8-10 --- network dynamics are likely to be insensitive to coupled variations in related 

parameters, such as association rates and the corresponding dissociation rates.  

Over the last decade, computational methods have been developed to estimate the 

joint distribution of network parameters consistent with experimentally measured 

variability in network species11-13. However, these methods rely on several simplifying 

assumptions. For example, the parameter distributions are restricted to a pre-defined 

functional family, such as the multivariate log-normal distribution13. Or, data collected at 

different time points and experimental conditions are assumed to be statistically 

independent of each other thus simplifying the likelihood of observing multiple 

experimental conditions as a product of the likelihoods of observing individual 

experiments12. However, while cell to cell variability estimated at different time points 

for different species is measured in independent experiments, the data are statistically 

correlated through the parameters of the underlying signaling network13. Consequently, 
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the assumption of probabilistic independence of individual experimental measurements is 

likely to substantially over-constrain the parameter distribution. 

Here, building on our previous work9, 14, we present a maximum entropy (ME) 

based framework to infer the joint distribution over network parameters. Notably, our 

approach circumvents the aforementioned simplifying assumptions. ME is a tool first 

introduced more than a century ago in statistical physics15. Among all candidate 

distributions that agree with imposed constraints, ME chooses the one with the least 

amount of bias. ME has been successfully used in a variety of biological problems 

including protein structure prediction16, protein sequence evolution17, collective firing of 

neurons18, molecular dynamics simulations19-21, and simulation of bimolecular reaction 

networks14, 22, 23. 

We apply the developed framework to study heterogeneity in the signaling 

network leading to phosphorylation of protein kinase B (Akt) induced by the epidermal 

growth factor (EGF)-dependent activation of its receptor (EGFR); a central mammalian 

signaling cascade implicated in diseases. Notably, EGF induced Akt phosphorylation 

governs key intracellular processes24 including metabolism, apoptosis, and cell cycle 

entry. Concomitantly, aberrations in the pathway are implicated in many diseases24, 25. 

We infer the distribution over network parameters in a model of the 

EGF/EGFR/Akt signaling network using experimentally measured cell to cell variability 

in phosphorylated Akt (pAkt) levels and cell surface EGFR (sEGFR) levels in MCF 10A 

cells26. The parameter distribution allows us to accurately predict the cell to cell 

variability in pAkt levels at early and late time points as well as cell to cell variability in 

cell surface EGFRs at steady state in response to a constant stimulation with EGF. We 

also discuss how to generalize the framework to other types of biological systems and 

experimental data.  
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Results 
 

Consider a signaling network comprising N chemical species whose intracellular 

abundances are denoted by  X = X1,X2,…,XN{ } .! We assume that the molecular 

interactions among the species within the network are described by a system of ordinary 

differential equations  

d
dt
X t,θ( ) = f X,θ( )           (1)  

where f X,θ( )  is a function of abundances X . Here, is a vector of 

parameters that describe the dynamics of the signaling network.  xa t,θ( )  denotes the 

solution of Equation 1 for species a at time t when parameters are fixed at θ .   

 Our approach is schematically shown in Figure 1. Consider that we have 

experimentally measured the cell to cell variability in a protein species xa in the signaling 

network at multiple time points. First, we quantify the measured cell to cell variability by 

estimating fraction φik of cells that belong to a particular ‘bin’ in the histogram of 

abundances for each measurement (i for time, k for bin number) by dividing the observed 

abundances at time every ti in Bi bins. As shown in Figure 1, every dynamical trajectory 

xa t,θ( )  (generated by parameters θ ) passes through a unique set of bins corresponding 

to the different time points. Using the ME framework, we then find P θ( ) !such that the 

corresponding distribution over trajectories P xa t,θ( )⎡⎣ ⎤⎦  is consistent with all measured 

bin fractions. Notably, because we simultaneously identify all temporal bins crossed by 

any trajectory xa t,θ( )  the approach naturally accounts for statistical correlations in the 

data and avoids over-constraining the probability distribution.  

 Below we deriveP θ( )  for networks whose dynamics can be effectively modeled 

using ordinary differential equations. Later, we discuss how to treat networks that are 

inherently stochastic. 

 

 θ = θ1,θ2,…{ }
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!
Figure 1. In an illustration of our approach, cell to cell variability in protein x is measured at 4 
time points t1, t2, t3, and t4. From the experimental data, we determine the fraction φik of cells that 
populated kth abundance bin at the ith time point by binning the cell to cell variability data in Bi 

bins. The horizontal histograms show the bin fractions φik at multiple time points. We find P θ( )
with the maximum entropy while requiring that the distribution P xa t,θ( )⎡⎣ ⎤⎦  of simulated 

trajectories of xa t,θ( )  simultaneously reproduces all φiks. 
 
 
Derivation of P θ( ) consistent with experimental data  
 

For simplicity, consider the case when the distribution of cell to cell variability in 

one species x is measured at a single fixed time t (for example, t = t1 in Figure 1). We 

first estimate the experimentally determined fractions  φ = φ1, φ2,…,φB{ }  by dividing the 

range of observed abundances in B bins. Here, φk is the fraction of cells whose 

experimental measurement of x lies in the kth bin.  

Next, given a parameter distribution P θ( ) , the predicted fractions ψk can be 

obtained as follows. Using Markov chain Monte Carlo (MCMC), we generate multiple 

parameter sets  θ1,θ2,θ3,! from P θ( ) . For each parameter set θ , we solve Eq. (1) and 

find the value of xa t,θ( ) . ψk is the fraction of parameter sample points where xa t,θ( )  

belonged to the kth bin. Mathematically, 

 
ψ k = Ik xa t,θ( )( ) i P θ( )dθ∫ .!! ! ! ! (2)  
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In Equation 2, Ik(x) is an indicator function; Ik(x) is equal to one if x lies in the kth 

bin and zero otherwise.  

The central idea behind our approach is to find a joint distributionP θ( )  over 

parameters such that all predicted fractions ψk agree with those estimated from 

experiments φk. Following the maximum entropy principle, we seek  with the 

maximum entropy,  

 
S = − P θ( ) i log P θ( )

q θ( )∫ dθ      (3) 

subject to constraints ψk = φk and normalization, P θ( )∫ dθ = 1 !
15. Here, q θ( ) !is 

equivalent to the prior distribution in Bayesian approaches27. In this work, we choose 

q θ( ) !as a uniform distribution over a literature-derived range of parameters, but other 

choices are possible as well. 

Using Lagrange multipliers to impose aforementioned constraints, we carry out 

the entropy maximization. To that end, we write an unconstrained optimization function  

 
L = S + β P θ( )dθ∫ −1( )− λb Ib xa t,θ( )( ) i P θ( )dθ −φb∫( )

b=1

B

∑ ! (4) 

Here, β is the Lagrange multiplier associated with normalization and λb are the 

Lagrange multipliers associated with fixing the fraction ψb to their experimentally 

measured value φb in bins  b∈ 1, 2,…, B{ } . Differentiating Equation 4 with respect to 

 and setting the derivative to zero, we have 

P θ( ) = 1Ω q θ( )exp − λbIb xa t,θ( )( )
b=1

B

∑⎛
⎝⎜

⎞
⎠⎟
! ! ! ! (5) 

Here, Ω = q θ( )exp − λbIb xa t,θ( )( )
b=1

B

∑⎛
⎝⎜

⎞
⎠⎟
dθ∫ is the partition function that normalizes the 

probabilities.  

The generalization of Equation 5 when abundances of multiple species are 

measured at multiple time points is straightforward. If we constrain distributions of cell to 

P θ( )

P θ( )
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cell variability of abundances of n species (x1, x2, x3, … xn) measured at times tij (i for 

species, j for time point) the probability distribution over parameters P θ( )  is 

P θ( ) = 1Ω q θ( )exp − λbij Ibij xi tij ,θ( )( )
bij=1

Bij

∑
j=1

Ti

∑
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟    (6) 

Here, xi tij ,θ( )  is the solution of Equation 1 for the ith species measured at the jth time 

point. The experimentally measured distributions of cell to cell variability for species i at 

time j are split into Bij bins. λbij are the Lagrange multipliers corresponding to the bij
th bin 

where bij  = {1, 2, 3, …, Bij) and! Ibij x( ) !are the corresponding indicator functions.  

The ME method derives the functional form of the maximum entropy distribution. 

The Lagrange multipliers λs need to be optimized numerically so that the predicted bin 

counts are equal to the experimentally estimated ones.  

Below, we first discuss the computational model of the EGF/EGFR pathway and 

the experimental data used in this work. Next, we discuss the specific numerical 

procedure to estimate the Lagrange multipliers that were implemented in this work. 

 

Computational model of the EGF/EGFR signaling network and 

experimental data  
Briefly, the EGF/EGFR signaling network operates as follows. Upon introduction 

of EGF in the extracellular environment, EGF binds to cell surface EGF receptors 

(sEGFRs). Ligand-bound receptors dimerize with other ligand-free as well as ligand-

bound receptors. Dimerized EGFRs phosphorylate each other. Phosphorylated receptors 

(pEGFRs) on the cell surface lead to downstream phosphorylation of Akt (pAkt). Both 

monomeric and dimeric receptors are internalized from the cell surface through receptor 

endocytosis. Upon addition of EGF in the extracellular medium, pAkt levels increase 

transiently within minutes, and as a result of receptor endocytosis, both pAkt and surface 

EGFR (sEGFR) levels reach steady state within hours of constant EGF stimulation28.  See 

Figure 2 for a simplified schematic of the network. 

We constructed a dynamical model of EGF/EGFR dependent Akt 

phosphorylation based on Chen et al. 28. The model includes detailed description of EGF 
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binding to EGFR and subsequent dimerization, phosphorylation, dephosphorylation, 

internalization, and degradation of the receptors. We simplified pEGFR-dependent 

phosphorylation of Akt, by assuming a single step activation of pAkt by pEGFR with an 

effective rate constant. See SI section I for details of the model.  

 
Figure 2. A schematic of the EGF/EGFR pathway leading to phosphorylation of Akt. 
Extracellular EGF binds to EGFR leading to its dimerization. Dimerized EGFRs are 
phosphorylated and in turn lead to phosphorylation of Akt. Receptors are also removed from cell 
surface through internalization into endosomes. See supplementary materials for details of the 
model.  

 

We applied the developed framework to investigate the dynamical changes in cell 

to cell variability in pAkt levels in MCF10A cells26 after stimulation with a constant dose 

of extracellular EGF. We measured the distribution of cell to cell variability in pAkt 

levels at 7 time points ranging between 5 to 180 minutes after EGF stimulation at 8 

different doses of EGF (between 0.01 ng/ml to 100 ng/ml) covering the entire range of 

pAkt responses in 9 x 7 = 63 independent experiments using immunofluorescence. We 

also measured the cell to cell variability in pAkt levels in the absence of EGF stimulation. 

Finally, we measured the cell to cell variability in the abundance of cell surface EGFRs in 

the absence of EGF exposure and at 180 minutes after exposure to 9 different EGF doses 

(from 0.0078 ng/ml to 1 ng/ml along with a saturating dose of 100 ng/ml). We note that 

the distribution of cell to cell variability at each time point and at each EGF dose was 

measured in independent sets of cells. See SI section II for details of the experimental 

procedure.  
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Numerical inference of the joint parameter distribution P θ( ) using 

experimental data 

We inferred P θ( ) given by Equation 6 by fitting 20 out of the 63 distributions of 

experimentally measured cell to cell variability in pAkt levels, specifically, the 

distribution of pAkt levels at 5, 15, 30, and 45 minutes after stimulation with 0.1, 0.31, 

3.16, 10, and 100 ng/ml of EGF. In addition, we also used the measured distribution of 

pAkt and sEGFR levels without EGF stimulation and 2 distributions of sEGFR variability 

measured after 180 minutes of constant EGF exposure at 1 ng/ml and 100 ng/ml. The 20 

pAkt distributions captured essential features of Akt phosphorylation dynamics such as 

the rapid increase in pAkt response within 5-10 minutes of EGF stimulation and the 

subsequent down-regulation due to receptor endocytosis.  

In summary, we used 24 out of the 74 measured distributions of pAkt and sEGFR 

levels to infer the distribution of model parameters. We used 11 bins to represent each 

distribution. The bin sizes and locations were chosen to cover the entire range of 

observed variability while allowing reliable numerical estimates of φ . There were a total 

of 24 x 11 = 264 Lagrange multipliers that constrained experimentally estimated bin 

fractions φ .  

Determination of values of the Lagrange multipliers in Equation 6 is a convex 

optimization problem29 and we solved it by closely following an iterative algorithm 

proposed by Broderick et al29. We started from a randomly chosen point in the space of 

Lagrange multipliers. In the nth iteration, using the Lagrange multipliers λn , we estimated 

the predicted bin fractions ψ n  using Markov chain Monte Carlo (MCMC). Next, we 

estimated the error vector Δn =ψ n −φn  for the nth iteration. For the n+1st iteration, we 

update the multipliers as λn+1 = λn +α nΔn  (see Figure 3) where αn is a real number 

chosen randomly.  
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Figure 3. The workflow to numerically determine the values of the Lagrange multipliers. In 
every iteration we evaluated the error between predicted bin fractions and the experimentally 
measured bin fractions. We proposed a new set of Lagrange multipliers based on the error. We 
repeated until the error reached below a predefined accuracy cutoff.

  
Once the Lagrange multipliers were determined with sufficient accuracy, we 

sampled multiple parameter points from the inferred distribution P θ( )  for further 

analysis. The inferred distribution captured with high accuracy the bin fractions φijs of the 

distributions that were used to constrain it (r2 ~ 0.91, p < 10-10). In Figure 4, we show the 

time evolution of cell to cell variability in pAkt levels at 5, 15, 30, and 45 minutes after 

exposure to 10 ng/ml EGF. The dashed black lines represent the fitted bin fractions 

calculated using P θ( )  and filled circles represent the corresponding experimental data. 

Notably, fitted bin fractions obtained in two independent calculations agreed with each 

other with a high degree of accuracy as expected for a convex optimization problem (r2 ~ 

0.94, p < 10-10, see SI Figure 2). See SI section III for details of the numerical procedure. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137513doi: bioRxiv preprint 

https://doi.org/10.1101/137513


 
Figure 4. Distribution of pAkt levels at 0, 5, 15, 30, and 45 minutes after exposure to 10 ng/ml 
EGF. The colored circles represent the experimental data used in the inference of the parameter 
distribution. The dashed black lines represent the fitted pAkt distributions using the inferred 
P θ( ) . The inset shows population average pAkt levels at multiple time points. In the inset, filled 
circles are experimentally measured population averages. Error bars represent the experimentally 
measured standard deviation of the distributions of pAkt levels.  
 

Predictions of network dynamics 
 Akt phosphorylation results in upregulation of metabolic activities such as protein 

synthesis and glycolysis and in cell proliferation24. Indeed, high pAkt levels are 

implicated in many types of cancers30. Consequently, the fraction of cells with high pAkt 

levels near the maximum of the phosphorylation as well as at steady state could serve as 

predictive markers for abnormal behavior. Using the estimated parameter distribution, we 

predicted the cell to cell variability in pAkt at 10 minutes and three hours after EGF 

stimulation. Importantly, these two time points were not used to constrain the parameter 

distribution P θ( ) . In Figure 5 a, b, c, and d we show the agreement between predicted 

(dashed black lines) and measured (filled circles) distributions of cell to cell variability in 

pAkt levels after stimulation with EGF. In fact, the ME framework predicted with great 

accuracy the cell to cell variability in pAkt levels across all time points and EGF 
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exposures that were not used in constraining P θ( ) ; there was a significant correlation 

between experimentally estimated population average (Pearson r2 ~ 0.97, p < 10-10) as 

well as heterogeneity (quantified as the standard deviation in cell to cell variability) 

(Pearson r2 ~ 0.98, p < 10-10) in pAkt levels and the corresponding predictions (see SI 

Figure 3 in SI section IV). 

 
Figure 5. Experimentally measured distributions (filled circles) and maximum entropy 
predictions (dashed black lines) of cell to cell variability in pAkt levels at 10 minutes (a and b) 
and 180 minutes (c and d) after exposure to extracellular EGF 3.16 ng/ml and 10 ng/ml 
respectively. e) and f) Cell to cell variability in steady state sEGFR levels (180 minutes after EGF 
exposure) at EGF doses 0.25 ng/ml and 0.5 ng/ml respectively.  
 

The abundance of surface EGF receptors determines cells’ ability to 

phosphorylate signaling components downstream of EGFRs in response to EGF 

stimulation25. Steady state sEGFR abundances after prolonged stimulation with EGF are 

thus crucial in quantifying the sensitivity of EGF/EGFR signaling cascade within 

individual cells31. Using the inferred parameter distribution, in addition to cell to cell 

variability in pAkt levels, we can also predict the distribution of cell surface receptor 

levels at steady state (180 minutes after EGF exposure) across different doses of EGF. In 

Figure 5 e and f, we show the agreement between experimentally measured cell to cell 

variability in sEGFR levels (black lines) at different doses of EGF along with the 

predictions (red lines). Notably, only two steady state sEGFR levels (1 ng/ml and 100 
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ng/ml) were used to constrain the parameter distribution . Similar to pAkt, the ME 

framework predicted with great accuracy the experimentally estimated population 

average (Pearson r2 ~ 0.98, p ~ 10-5) and cell to cell variability (Pearson r2 ~ 0.96, p ~ 8 

x10-5) in steady state sEGFR levels (see SI Figure 4 in SI section IV).  

 

Extensions of the framework  
A straightforward modification allows us to use the developed framework for 

cases when the time evolution of species abundances  is intrinsically stochastic, for 

example, transcriptional networks and prokaryotic signaling networks1. To that end, we 

can modify the definition of the predicted fraction 
 
ψ b = P x t,θ( ) = x θ( )∫ i Ib x( )dx !of a 

chemical species x where  is the distribution of x values at time t when 

parameters are fixed at . The distributions can be obtained numerically using 

Gillespie's stochastic algorithm32 or approximated using moment closure techniques33. 

The presented framework can also be used to infer parameter distributions when 

instead of the entire distribution of cell to cell variability only a few moments of that 

distribution are available, for example, when average protein abundances are measured 

using techniques such as quantitative western blots or mass spectrometry. For simplicity 

we elucidate the case where population mean m and the variance v of one species are 

measured at a fixed time point t. Instead of constraining fractions that represent cell to 

cell variability in different bins, we constrain the population mean µ1 = x t,θ( )P θ( )dθ∫  

and the squared mean  to their experimentally measured values m 

and v+m2 respectively. Entropy maximization can then be carried out with these 

constraints. We have  

!!! ! (7) 

Lastly, we can use the ME framework to infer parameters from experiments 

where dynamical changes in abundances of chemical species within single cells are 

measured using live cell tracking5. Consider that the time evolution of a species is 

P θ( )

X

P x t,θ( ) = x θ( )
θ

ψ b

µ2 = x t,θ( )∫
2
P θ( )dθ

P θ( ) = 1Ω q θ( )exp −λ1x t,θ( )− λ2x t,θ( )2( )

x t( )
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measured in nc cells from time t=0 to t = T. For individual cells, we can estimate features 

of the trajectory x(t), for example, the maximum response, the time taken to reach the 

maximum, the rate of signal decay, or the steady state value. We can then use the 

distributions of these features obtained from the data to constrain the parameters.  

Alternatively, we can discretize the nc continuous time observations into K 

discrete times .!At each time point ti, we can then divide the range of 

observed abundances in Bi bins. Then, each individual dynamical trajectory can be 

characterized by a vector of discrete indices where is 

the index of the bin through which the trajectory  passed at time point ti. If we have 

sufficiently large number of trajectories, similar to constraining trajectories that 

populated individual bins, we then can constrain the fraction of trajectories that populate 

a given sequence of bins and infer . 

 

Discussion  
In this work we presented a maximum entropy based framework to estimate the 

joint distribution over parameters of a signaling network based on measured cell to 

cell variability in signaling network dynamics. Notably, the parameter distribution 

allowed us to accurately predict the time evolution of cell to cell variability in species 

abundances.  

The inferred parameter distribution comprises both the non-identifiability and the 

true cell to cell variability in parameters. The effect of parameter non-identifiability can 

be minimized by explicitly incorporating constraints related to population averages as 

well as cell to cell variability of rate parameters in the inference27. Notably, the maximum 

entropy framework naturally avoids over-constraining the parameter distribution; 

Lagrange multipliers corresponding to redundant constraints automatically evaluate to 

zero15. 

In this work, we employed the developed inference framework to signaling 

network data. However, the theoretical development can also be used in a more general 

 t = t1, t2,…,tK{ }
x t( )

 
x t( ) ~ B1a1 , B2a2 , B3a3 ,…,BKaK{ } Biai

x t( )

P θ( )

P θ( )
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setting. For example, the framework can be applied to computationally reconstruct the 

distribution of longitudinal behaviors in a population from cross-sectional time-snapshot 

data in other fields such public health, economics, and ecology or to estimate parameter 

distributions from lower dimensional statistics34. 
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