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exposures that were not used in constraining P(! ); there was a significant correlation

between experimentally estimated population average (Pearson r*~ 0.97, p < 10") as
well as heterogeneity (quantified as the standard deviation in cell to cell variability)
(Pearson *~ 0.98, p < 10"°) in pAkt levels and the corresponding predictions (see SI
Figure 3 in SI section IV).

Figure 5. Experimentally measured distributions (filled circles) and maximum entropy
predictions (dashed black lines) of cell to cell variability in pAkt levels at 10 minutes (a and b)
and 180 minutes (c and d) after exposure to extracellular EGF 3.16 ng/ml and 10 ng/ml
respectively. e) and f) Cell to cell variability in steady state SEGFR levels (180 minutes after EGF
exposure) at EGF doses 0.25 ng/ml and 0.5 ng/ml respectively.

The abundance of surface EGF receptors determines cells’ ability to
phosphorylate signaling components downstream of EGFRs in response to EGF
stimulation®. Steady state SEGFR abundances after prolonged stimulation with EGF are
thus crucial in quantifying the sensitivity of EGF/EGFR signaling cascade within
individual cells’'. Using the inferred parameter distribution, in addition to cell to cell
variability in pAkt levels, we can also predict the distribution of cell surface receptor
levels at steady state (180 minutes after EGF exposure) across different doses of EGF. In
Figure 5 e and f, we show the agreement between experimentally measured cell to cell
variability in SEGFR levels (black lines) at different doses of EGF along with the
predictions (red lines). Notably, only two steady state SEGFR levels (1 ng/ml and 100
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ng/ml) were used to constrain the parameter distribution P(é ) . Similar to pAkt, the ME
framework predicted with great accuracy the experimentally estimated population

average (Pearson 7~ 0.98, p ~ 10®) and cell to cell variability (Pearson r*~ 0.96, p ~ 8
x10?) in steady state SEGFR levels (see SI Figure 4 in SI section IV).

Extensions of the framework
A straightforward modification allows us to use the developed framework for

cases when the time evolution of species abundances X is intrinsically stochastic, for

example, transcriptional networks and prokaryotic signaling networks'. To that end, we

can modify the definition of the predicted fraction y, = IP (x(t,§ ) = x‘é )-I ,(x)dx of a

chemical species x where P (x(t,é ) = x|§ ) is the distribution of x values at time ¢ when

parameters are fixed at @ . The distributions can be obtained numerically using
Gillespie's stochastic algorithm® or approximated using moment closure techniques™.
The presented framework can also be used to infer parameter distributions when
instead of the entire distribution of cell to cell variability only a few moments of that
distribution are available, for example, when average protein abundances are measured
using techniques such as quantitative western blots or mass spectrometry. For simplicity
we elucidate the case where population mean m and the variance v of one species are

measured at a fixed time point 7. Instead of constraining fractions y, that represent cell to

cell variability in different bins, we constrain the population mean p, = J.x(t,g )P(é )d§

—\2 — —
and the squared mean (U, = Jx(t,@) P (9)d9 to their experimentally measured values m

and v+m’ respectively. Entropy maximization can then be carried out with these

constraints. We have

-~ 1 /= — —\2
P(G):Eq(e)exp(—llx(tﬁ)—lzx(t,e) ) (7)
Lastly, we can use the ME framework to infer parameters from experiments

where dynamical changes in abundances of chemical species within single cells are

measured using live cell tracking’. Consider that the time evolution of a species x(t) is
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measured in 7, cells from time #=0 to ¢t = T For individual cells, we can estimate features
of the trajectory x(¢), for example, the maximum response, the time taken to reach the
maximum, the rate of signal decay, or the steady state value. We can then use the
distributions of these features obtained from the data to constrain the parameters.

Alternatively, we can discretize the n. continuous time observations into K
discrete times = {tl,tz,...,tK}. At each time point #;,, we can then divide the range of

observed abundances in B; bins. Then, each individual dynamical trajectory x(t) can be
characterized by a vector of discrete indices x(z)~ {Bla] s B,y s By, s By, } where B, is

the index of the bin through which the trajectory x(t) passed at time point 7,. If we have

sufficiently large number of trajectories, similar to constraining trajectories that

populated individual bins, we then can constrain the fraction of trajectories that populate

a given sequence of bins and infer P(g ) .

Discussion

In this work we presented a maximum entropy based framework to estimate the
joint distribution P(é ) over parameters of a signaling network based on measured cell to

cell variability in signaling network dynamics. Notably, the parameter distribution
allowed us to accurately predict the time evolution of cell to cell variability in species
abundances.

The inferred parameter distribution comprises both the non-identifiability and the
true cell to cell variability in parameters. The effect of parameter non-identifiability can
be minimized by explicitly incorporating constraints related to population averages as
well as cell to cell variability of rate parameters in the inference”’. Notably, the maximum
entropy framework naturally avoids over-constraining the parameter distribution;
Lagrange multipliers corresponding to redundant constraints automatically evaluate to
zero"”.

In this work, we employed the developed inference framework to signaling

network data. However, the theoretical development can also be used in a more general
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setting. For example, the framework can be applied to computationally reconstruct the
distribution of longitudinal behaviors in a population from cross-sectional time-snapshot
data in other fields such public health, economics, and ecology or to estimate parameter

distributions from lower dimensional statistics™.
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