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Abstract (≤150 words) 
 
As technology advances, whole genome sequencing (WGS) is likely to supersede other 
genotyping technologies. The rate of this change depends on its relative cost and utility. 
Variants identified uniquely through WGS may reveal novel biological pathways underlying 
complex disorders and provide high-resolution insight into when, where, and in which cell type 
these pathways are affected. Alternatively, cheaper and less computationally intensive 
approaches may yield equivalent insights. Understanding the role of rare variants in the 
noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine 
which of these two extremes best represents reality. With large cohorts, well-defined risk loci, 
and a compelling need to understand the underlying biology, psychiatric disorders have a role to 
play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 
individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, 
bipolar disorder, and major depressive disorder, along with over 150,000 controls. 
 
Main text 
Genetic variation is a major contributor to neuropsychiatric disorders. The variants responsible 
likely include the complete range of sizes, from single nucleotides to large structural variants, 
and the full spectrum of population frequency, from common variants to rare variants unique to a 
family or individual. For severe, early onset neuropsychiatric disorders, such as autism 
spectrum disorder (ASD) and schizophrenia, natural selection limits the population frequency of 
variants so that variants with larger effect sizes are extremely rare1,2. Over the past decade, 
genomic technologies have advanced our understanding of neuropsychiatric disorders, yet 
remaining limitations in technology and cohort sizes have limited progress in identifying 
inherited rare variants.  

Genome-wide association studies (GWAS) using genotyping arrays have detected over 
100 regions (loci) at which common genetic variants (population frequency ≥2%), are 
associated with a psychiatric diagnosis (Table 1). Individually, these variants exert small effects 
and thus require very large sample sizes for detection (Table 1). Common risk variants can 
provide a window into the molecular architecture of these disorders. For example, common 
variants suggest a previously unrecognized role for the complement cascade in schizophrenia3.  

Exome sequencing, which identifies genetic variants in the ~1% of the genome that 
encodes proteins, has identified over 50 genes in ASD (Table 1). The majority of this discovery 
was through de novo protein truncating variants (PTVs) observed in a patient but not in either 
unaffected parent. Such mutations are very rare, e.g. population frequency ≤0.000002%, but 
they can have large effect sizes, up to a ~50-fold increase in risk. As with common variation, 
these very rare variants have advanced our understanding of the etiology of these disorders, for 
example by implicating chromatin remodeling in ASD4,5. 
 Although much remains to be discovered, these results have yielded critical starting 
points for studies of pathogenesis,6,7 and indicate the feasibility and importance of discovering 
sufficient additional variation to fully delineate the key biological pathways underlying these 
disorders.  
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Study 
design 

Platform 
Variant 

detected 
Disorder Patients Controls 

Genome-
wide hits 

Reference 

Case-
control 

Genotyping 
microarray 

SNP 
(GWAS) 

ASD 16,539 157,234 1 
Anney et al, Mol 
Autism, 20178 

SCZ 36,989 113,075 108 
Ripke et al, 
Nature 20147 

BPD 11,974 51,792 2 
Sklar et al, 
Nature Genetics 
20119 

MDD 121,380 338,101 15 
Hyde et al, 
Nature Genetics 
201610 

CNV 

SCZ 21,094 20,227 8 
Marshall et al, 
Nature Genetics 
201711 

BPD 9,129 81,802 1 
Green et al, Mol 
Psychiatry 
201512 

MDD 2,591 8,842 0 
Rucker et al, Biol 
Psychiatry 
201513 

Exome 
sequencing 

Rare PTV 
mutation 

ASD 5,563 1,881 0 
Sanders et al, 
Neuron 20156 

SCZ 2,536 2,543 0 
Purcell et al, 
Nature 201414 

Ultra rare 
PTV 

mutation 
SCZ 4,877 6,203 0 

Genovese et al 
Nature 
Neuroscience 
201615 

Family-
based 

Genotyping 
microarray 

CNV ASD 4,687 2,100 8 
Sanders et al, 
Neuron 20156 

Exome 
sequencing 

De novo 
PTV 

mutation 

ASD 5,563 1,881 65 
Sanders et al, 
Neuron 20156 

SCZ 617 731 0 
Fromer et al, 
Nature 201416 

Meta-
analysis 

Exome 
sequencing 

Rare and 
de novo 

PTV 
mutations 

SCZ 7,776 13,028 1 

Singh et al, 
Nature 
Neuroscience 
201617 

Table 1. The largest genomic studies to date in autism spectrum disorder, schizophrenia, 
bipolar disorder, and major depression. SNP, single nucleotide polymorphism; CNV, copy 
number variant; PTV, protein-truncating variant. ASD, autism spectrum disorder; SCZ, 
schizophrenia; BPD, bipolar disorder; MDD, major depressive disorder.  
 
 
Insights from whole genome sequencing 
By assaying most of the genome at single nucleotide resolution, WGS holds the potential to 
extend rare variant discovery to the ~99% of the genome that is noncoding (Box 1). While 
GWAS identifies common noncoding variants, the rare noncoding variants assayed by WGS 
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might have substantially higher effect sizes1, increasing tractability for biological 
experimentation. WGS also enables detection of most structural variation including 
translocations, inversions, and copy number variants (CNVs)18,19. Furthermore, WGS can 
improve detection of common variants in existing GWAS by statistically inferring SNPs not 
directly genotyped (imputation) and identifying the specific risk variants within a risk region (fine 
mapping). Similarly, WGS data may allow detection of common structural variants, including 
CNVs, that can be missed by current SNP-based approaches20, facilitating common CNV 
association studies.   

. 
The role of noncoding variation 
There is considerable evidence that noncoding variation influences brain function and 
neuropsychiatric disorders. Over 90% of disease-associated GWAS loci discovered by assaying 
common variants map to noncoding regions21,22. In humans, at least 4% of the noncoding 
genome has been under strong purifying selection23. Additionally, epigenomic studies have 
identified many functional noncoding elements involved in regulation of gene expression 
underlying neurogenesis, cell differentiation, and neurodevelopment24. 
 
Noncoding variation influences which exons are expressed within a gene, in which cells, and 
under what circumstances. While such insights can be gained from gene association25, 
noncoding variation studies should increase the resolution of such analyses by identifying 
regulatory regions of genes restricted to fewer cell types, developmental periods, or brain 
regions. Given the multiple biological roles (pleiotropy) of genes implicated in psychiatric 
disorders, such WGS-derived hypotheses may be critical for biological follow-up.  
 

Box 1: Types of genetic variation reliably detected by genomic technologies 
 
Karyotype (≤1% common; ≤1% rare): Chromosomal aneuploidies, massive structural 
variation (e.g. translocations, inversions, CNVs of millions of nucleotides), some fragile sites 
with special protocols. 
Microarray (~90% common; ~1% rare): Protein coding and noncoding common SNVs, 
large rare CNVs (over ~20,000 nucleotides). 
Exome sequencing (~1% common; ~1% rare): Protein coding common SNVs and indels, 
protein coding rare SNVs and indels, some CNVs. 
Low coverage WGS (~95% common; ~85% rare): Protein coding and noncoding common 
SNVs, most protein coding and noncoding rare SNVs. 
Deep coverage WGS (~99% common; ~99% rare): Protein coding and noncoding common 
SNVs and indels, protein coding and noncoding rare SNVs and indels, rare and common 
CNVs (over ~1,000 nucleotides), multi-allelic CNVs (e.g. over 3 copies), mobile element 
insertions, other structural variation (e.g. translocations, inversions) 
Long-read (>10,000bp), deep coverage WGS (100% common; 100% rare): As for deep 
coverage WGS plus: small CNVs (50-1,000 nucleotides), complex structural variation, 
variants in repetitive DNA, direct assessment of phasing (whether two variants are on the 
same allele) 
 
SNV: Single nucleotide variant 
Indel: Insertion/Deletion (gain or loss of ≤50bp) 
CNV: Copy number variant (gain or loss of >50bp) 
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The role of rare noncoding variation 
While common noncoding variation clearly plays a role in neuropsychiatric disorders, the role of 
rare noncoding variation is less clear. A pessimist could note that in Mendelian disorders few 
linkage peaks were resolved to noncoding causal variants and that systematic deletion of 
noncoding regions proximate to the HPRT1 gene (Lesch–Nyhan syndrome) had little impact on 
protein activity26. In contrast, an optimist could argue that Fragile X, the first psychiatric linkage 
peak resolved to a gene, is a triplet repeat expansion in the 5` untranslated region (UTR) of the 
FMRP gene, and that there are several clear examples of Mendelian traits (e.g. OCA2 enhancer 
in eye color) and disorders (e.g. TBX5 enhancer in congenital heart disease) with penetrant 
noncoding variants27.  

The role and utility of rare variation in the noncoding genome is likely to be a function of 
the number of noncoding regions that, when mutated, disrupt gene expression or function to a 
high degree. While this can be estimated in model systems, there will be experimental 
confounds (e.g. species, cell type, developmental stage) that limit interpretation. Direct analysis 
of WGS offers a complementary and irreplaceable approach to identify and characterize the role 
of rare noncoding variants in human disease.  

WGS technology is sufficiently novel that we cannot accurately evaluate its potential in 
neuropsychiatric disorders without generating pilot data in human cohorts. It may implicate 
novel biological pathways missed by previous genomic efforts and identify disease-associated 
regulatory elements specific to certain cell types, developmental stages, or brain regions. 
Alternatively, WGS may prove less efficient than cheaper methods in identifying experimentally 
actionable disease-associated variation. Optimal allocation of future resources rests on efforts, 
such as the WGSPD, that seriously test the utility of WGS.    
 
Estimating our ability to find rare noncoding variants 
Finding disease-associated loci or variants by WGS will prove more challenging than with 
GWAS or WES. With WGS there are two orders of magnitude more sites to consider (~3 billion) 
compared to potential loci in GWAS (~20 million) or variants in WES (~30 million). Furthermore, 
we cannot predict functional changes, e.g., to transcriptional rate, in the straightforward way we 
can predict changes to amino acids from coding variation. 
 To evaluate our power to detect noncoding variants in WGS data, we estimated the 
power to detect de novo protein truncating variants that contribute to risk in ASD4,28,29 if they 
were in the noncoding genome. Without any additional information to help us distinguish signal 
from noise, for every one risk-mediating variant in the WGS data there would be about 25,000 
non-risk variants (a ratio of 1:25000, Table S2). By only considering variants with some 
evidence of functional effect (e.g. conservation) or proximity to a gene with genome-wide 
significant association to ASD, we would expect to reduce the noise of non-risk variants, making 
the risk-mediating variant signal easier to detect. We considered a range of annotation 
scenarios, from an optimistic 1:5 to a pessimistic 1:500 (see Table S2). Moreover, we do not 
know what penetrance to expect for these noncoding variants so we considered a wide range, 
shown as relative risk. For context, the highest relative risks for common variants and de novo 
mutations in psychiatric disorders are about 1.3 and 50, respectively.  

We first considered our ability to detect an overall excess of noncoding variants between 
cases and controls (a burden analysis). Such an analysis could identify a class of variants that 
mediate risk in psychiatric disorders, for example promoters in proximity to ASD-associated 
genes, providing insight into regions of the noncoding genome most likely to yield specific risk 
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variants for neuropsychiatric disorders. Since there is no clear category of noncoding variation 
equivalent to de novo protein truncating variants, we adjusted for testing 1,000 annotation 
categories. The results for de novo and case-control analyses are shown in Figure 1a and 1b 
respectively (see Supplemental Methods).  

We next considered our ability to identify a specific genetic variant, functional element, 
or group of functional elements (e.g. enhancers that regulate one gene) associated with risk that 
could be assessed in larger patient cohorts. The results for de novo and case-control analyses 
are shown in Figure 1c and 1d respectively (see Supplemental Methods).  

From these analyses, it is clear that we will need: 1) large cohorts, and 2) methods to 
decrease background noise (to obtain a high risk to non-risk ratio), e.g. through predicting 
functional effects or regulation of known risk loci.  
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Figure 1. Statistical power in the noncoding genome. We estimated the power at a 
significance threshold (alpha) of 5 x 10-5, to account for 1,000 categories of noncoding variants, 
to detect an excess of 122,500 noncoding variants in cases vs. controls as we varied the 
relative risk and risk:non-risk ratio, which represents annotation quality (Table S2). In a) we 
assessed the power for detecting an excess of de novo mutations in 5,000 cases vs. 5,000 
controls as the relative risk increases. With a risk:non-risk ratio of 1:20, approximately 
equivalent to assessing protein truncating variants in the coding genome, we achieve >80% 
power with a relative risk of 5. In b) the power to detect an excess burden of rare variants (allele 
frequency ≤0.1%) is assessed in 20,000 cases vs. 20,000 controls. In c) we assessed the 
power to identify an excess of de novo mutations at a specific genomic locus, e.g. the 
noncoding region regulating a single gene. Consequently, we set the significance threshold 
(alpha) at 2.5x10-6. In d) we assessed the power to identify an excess of rare variants (allele 
frequency ≤0.1%) at a specific nucleotide (alpha = 3.3x10-11), since this yielded better power 
than testing for burden at a locus (alpha = 2.5x10-6).  
 
Why perform WGS in psychiatric disorders? 
Given current uncertainty over the utility of WGS, we could wait until WGS for non-psychiatric 
phenotypes provide sufficient insight to enable better power analyses. However, even large 
case-control cohorts may not be informative of the utility of WGS in ASD, for which de novo 
mutations have provided a more efficient approach to identifying specific genes and genetic 
loci6,30 (Figure 1). Additionally, there is a pressing need to identify specific cell types, tissues, 
and developmental stages involved in brain-based disorders due to the complexity of the 
nervous system, limited understanding of how molecular changes lead to disorder, and difficulty 
in interpreting model systems. In short, the potential benefits of WGS in psychiatric disorders 
may be greater than in other phenotypes and the availability of family-based cohorts may offer 
insights otherwise unobtainable.  
 
Implications for neuroscientists 
Interpreting the biology downstream of variants identified by existing WES and GWAS analyses 
remains a challenge; this is especially true in neuroscience due to the inaccessibility and 
complexity of neural tissue. 

The interface of human genetics and neuroscience has typically focused on rare, highly 
penetrant variants that permit generation of transgenic animals with a robust phenotype5,31–34. 
Neuroscientists now face the challenge of obtaining biological insights through investigation of 
the multiple weakly penetrant variants, identified through modern genomics, that act through 
unknown neurological mechanisms, in a manner highly dependent on genetic background35. 
Noncoding variants will pose yet harder challenges. Their effect sizes are likely to be small, and 
the relevant biology likely to be restricted to specific cell types, developmental stages, or cell 
states. Analysis of 3D chromatin structure must often be performed to identify the genes that a 
noncoding variant regulates. Finally, a proportion of noncoding variants may have human-
specific functions absent in model organisms. For example, human accelerated regions (HARs), 
which are conserved across multiple species but differ within humans, are enriched for 
homozygous variants in consanguineous ASD cases36. 

Notwithstanding such challenges, many variants identified by genomic technologies 
have strong evidence of association with the disorders, creating a foundation for investigating 
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pathogenesis. Furthermore, the presence of numerous variants allows systems analyses that 
identify biological convergences5, thus generating mechanistic hypotheses.  
 
Strategies to improve locus discovery in WGS  
 
Sample selection: As with other genomic technologies, large sample sizes will be key (see 
Figure 1 and S2); the simplest way to achieve large cohorts will be through case-control studies, 
see Table 2.  
 Several recent studies have shown an excess of deleterious variants in isolated 
populations that have expanded rapidly following recent bottlenecks37–40, including deletions of 
the TOP3B gene, associated with schizophrenia and intellectual disability39, in ~3% of 
individuals in Northern Finland compared to 0.05% in other European populations. Large 
multiplex pedigrees with multiple affected individuals may be enriched for rare, inherited 
variants with high effect sizes41,42. Simplex pedigrees, with only one affected individual, are 
enriched for de novo mutations with very high effect sizes given the lack of exposure to natural 
selection. This strategy has succeeded in severe early-onset disorders, including ID and 
ASD4,6,29,43. Finally, consanguineous pedigrees may be enriched for homozygous variants 
that, like de novo mutations, are extremely rare with very high relative risks36,44,45. Homozygous 
variants may also play a role in non-consanguineous cases (Table S4) and have been found to 
contribute to risk in some outbred ASD families46,47. Determining which of these sample 
selection strategies will be most successful will require WGS pilot projects under each strategy. 
 
Integrating phenotypic data: Broadly, two contrasting approaches have been employed in 
integrating phenotypes in genomic studies, both with the aim of improving statistical power: 1) 
Combining clinically- or genetically-related diagnoses to increase sample size; and 2) 
Subdividing cohorts by shared phenotypes to decrease heterogeneity of the underlying genetics 
(subtyping). GWAS data demonstrate substantial common variant sharing across current 
conventional diagnostic categories, e.g., bipolar disorder and schizophrenia48. Similarly, genes 
identified by de novo mutations are frequently shared between ASD, intellectual disability, and 
developmental delay4,29. Thus, combining data from related diagnoses, can increase sample 
size, hastening variant discovery9. 
 The alternative approach, subtyping phenotypes, was critical for discovery of Mendelian 
disorders by linkage methods, in which mis-classifying one individual could prevent discovery. 
However, such an approach is risky for common, non-Mendelian psychiatric disorders given: 1) 
current lack of insight into relevant subtypes; and 2) reduced sample size. A GWAS based on 
~2,500 cases in the Simons Simplex Collection ASD cohort showed no improvement in the 
proportion of genetic heritability explained by the top SNPs accounting for changes in sample 
size for over 10 phenotypic characteristics49. In contrast, a GWAS of a nonpsychiatric 
phenotype, bone mineral density, showed benefits of subgrouping, leading to the identification 
of 16 new loci50.  

Phenotypic subtyping also poses practical challenges. Genetic analysis is comparatively 
cheap, while deep phenotyping is cumbersome and costly, effectively diminishing sample size. 
The relative ease of using pre-existing cohorts and registries to inexpensively boost sample size 
has favored “phenotype-light” sample collection. This balance could be shifted by the adoption 
of consistent phenotyping schema51,52, identification of reliable neuropsychiatric biomarkers, or 
utilization of electronic medical records. Several large-scale initiatives are already working in 
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this direction, for example deCODE53, UK biobank54, Geisinger55, and the All of Us Research 
Program (formerly the Precision Medicine Initiative). 
 
Identifying functional variants: Our assessment of statistical power (Figure 1) shows that 
distinguishing variants that are likely to be functional and risk-mediating (i.e. high risk to non-risk 
ratio) will maximize discovery of specific noncoding variants. Several strategies might help. 
 Annotating the noncoding genome: Annotations may predict functional variants, 
including: 1) Conservation of DNA sequence across species; 2) Regions of open chromatin, 
where DNA is exposed allowing proteins to bind (detected by DNase-Seq or ATAC-Seq); 3) 
Regions of active chromatin, where epigenetic marks suggest transcription of a nearby gene 
(detected by ChIP-Seq); 4) Transcription factor binding sites (detected by ChIP-Seq); and 5) 
Predicting the regulatory gene target using proximity to the variant (<40% accurate56) or 
physical interactions with target loci (e.g. ChIA-Pet) or genome-wide (e.g. Hi-C, 5C)56. Of note, 
many of these annotations may be tissue and developmental stage specific57–60. 

Large-scale endeavors such as ENCODE61 and the Roadmap Epigenome Consortium 
(REC)62 have created a reference for human epigenome annotation. Parallel efforts focused on 
brain tissue, such as the PsychENCODE Consortium63, will help extend these resources64.  
 Cataloguing human variation: Building a database of human variation has proven 
invaluable in interpreting the coding genome65 and the Genome Aggregation Database 
(gnomAD, http://gnomad.broadinstitute.org) extends this approach to WGS. Such data can be 
used to estimate regions of constraint, (with less variation than expected), suggesting 
functionality66–68. 

Regions associated with psychiatric disorders: GWAS and WES have defined 
specific regions of the genome that contribute to psychiatric disorders, particularly in ASD4,6,29 
and schizophrenia7. It is plausible that noncoding variation in proximity to these regions will be 
enriched for risk-mediating variants.  

Large variants: On average, large variants, especially deletions, have greater potential 
to mediate risk than small variants6. However, while large indels and small CNVs may have a 
greater impact on noncoding function, there are considerably fewer such variants compared to 
SNVs18. The utility of this strategy will depend on the balance between these two opposing 
effects. 
 Functional validation: Methods have been developed to assess the functional effects 
of large numbers of potential regulatory regions. These Massively Parallel Reporter Assays 
(MPRA)69, including Self-Transcribing Active Regulatory Region Sequencing (STARR-Seq)70, 
assess the function of a regulatory region by its potential to transcribe itself, or a specific 
sequence of DNA (barcode). Of note, this ability to functionally validate noncoding variants en 
masse is a major benefit over interpreting coding missense variants, for which protein-specific 
functional assays are usually required. 
  
The Whole Genome Sequencing Consortium for Psychiatric Disorders (WGSPD) 
The potential for WGS to help understand neuropsychiatric disorders, and the absence of 
insight into the role of rare noncoding variants, prompted the United States National Institute of 
Mental Health (NIMH) to fund four pilot projects aimed at generating WGS data in 
neuropsychiatric disorders to provide a more complete understanding of genomic architecture.  

Big questions in biology are akin to solving problems of similar complexity in other 
disciplines such as particle physics or astronomy and require a ‘Team Science’ approach71. 
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Recognizing the need for large samples sizes to make progress (Table 1, Figure 1), the NIMH, 
the Stanley Center for Psychiatric Research, and researchers at 11 academic institutions across 
the USA that were funded in the four selected projects, have formed a public-private 
partnership: the Whole Genome Sequencing Consortium for Psychiatric Disorders (WGSPD). 
This consortium aims to establish a repository of WGS data, processed in a consistent manner, 
to facilitate large-scale analyses within and across four psychiatric disorders (Figure 2). This 
approach can make more efficient use of funding and resources, for example, by using a central 
data repository, consistent analysis pipelines, and collaborative methods development to help 
all researchers access and use the data. 
The WGSPD will need to expand, both beyond the founding members and these four disorders. 
Investigators with relevant WGS data will be invited to join the WGSPD and participate in 
working groups focused on specific disorders or cross-disorder projects. Given the scale of 
WGS data, the cost of reprocessing the data in a consistent manner and storing the data will be 
substantial. Establishing a suitable funding strategy for such genomic integration is a key 
question that needs to be addressed urgently throughout the genomics community. In a first 
step to improve this, WGS analysis pipelines have been coordinated across several major 
sequencing centers and consortia (e.g. CCDG, TOPMed, WGSPD) to allow direct comparison 
of results. To obtain the sample sizes necessary (Figure 1), a similar consensus will need to be 
established internationally. 
  

 
Figure 2. Overview of the WGSPD. 
 
 
Cloud-based analysis 
The sheer scale of WGS datasets necessitates new models for data analysis, since data 
storage and computation is likely to be beyond the resources at any single institution. 
Fortunately, the development of cloud-based computing has coincided with the generation of 
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WGS data. Under this model, a single cloud-based data repository can be accessed by teams 
at each collaborating site, and cloud-based analysis eliminates the need for cumbersome and 
costly downloads. This approach has the further advantage of facilitating the sharing of 
preinstalled algorithms and pipelines, encouraging consistent consortium-wide analysis.  

The scale of WGS data can make simple analytical tasks overwhelming. Therefore, the 
WGSPD is committed to developing Application Program Interfaces (APIs) and software 
solutions for the wider community to simplify cloud-based data access (e.g. hail72). In doing so, 
computational biologists and analysts can focus on the development and application of methods 
for analysis, rather than on lower level data management and handling.  

The analysis of deidentified genetic data on university-hosted remote servers is common 
practice, with contributing sites being responsible for securing non-genetic identifying 
information. So long as cloud environments meet equivalent security standards to existing 
remote servers, then existing informed consent will cover this use, except in rare instances 
where the consent specifically excludes this approach. Best practice guidelines for secure 
sharing of genomic data have been described by the NIH: 
https://www.ncbi.nlm.nih.gov/projects/gap/pdf/dbgap_2b_security_procedures.pdf. There is an 
urgent need for methods that allow such guidelines to be easily adopted and readily vetted 
across cloud providers and institutions. 

 
 
The WGSPD projects and data 
The four WGSPD projects, developed by independent sets of investigators, encompass the 
diverse strategies for improving locus discovery and therefore will provide some of the earliest 
opportunities to assess their relative utility in complex disorders. The four projects are: 

1) Case-control analysis of schizophrenia and bipolar disorder in individuals of African 
American ancestry. 

2) Family-based analysis of ASD in families with a single affected child, allowing the 
detection of de novo mutations. 

3) Case-control analysis of schizophrenia or bipolar disorder in isolated populations with 
recent population bottlenecks. 

4) Family-based analysis of schizophrenia, bipolar disorder, or major depression in families 
with multiple affected individuals. 

 
Combining these WGS cohorts with consistently processed WGS data from other consortia will 
yield an initial dataset of 183,000 individuals, including 18,000 cases and 165,000 controls 
(Table 1). In addition to the genotype data, we are collating phenotype data that are comparable 
across projects, disorders, and ages to allow in-depth genotype-phenotype analysis. 
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Data being generated by the WGSPD 

Project Disorder Cases Controls Details 

1 Schizophrenia 3,333 1,667 Case-control analysis; African American 
ancestry 

1 Bipolar Disorder 3,333 1,667 Case-control analysis; African American 
ancestry 

2 ASD  378 1,512 Simplex families with two parents, affected child, 
unaffected child 

2 Schizophrenia 281 843 Families with two parents and one or more 
affected children 

3 Schizophrenia 1,000 1,400 Case-control analysis of individuals from Finland 

3 Bipolar Disorder 1,000 500 Case-control analysis of individuals from Finland 

3 Schizophrenia 650 325 Case-control analysis of individuals from 
Netherlands 

3 Bipolar Disorder 650 325 Case-control analysis of individuals from 
Netherlands 

3 Bipolar Disorder 62 138 Multiplex families with affected and unaffected 
from Colombia 

3 Bipolar Disorder 83 170 Multiplex families with affected and unaffected 
from Costa Rica 

4 Schizophrenia 271 280 Multiplex families with affected and unaffected 

4 Bipolar Disorder 299 309 Multiplex families with affected and unaffected 

4 Major depression 476 492 Multiplex families with affected and unaffected 

Data being generated by other funding mechanisms with consistent analysis pipelines 
 Disorder Cases Controls Details 
 ASD* 5,302 15,856 Families with two parents, affected child, +/- 

unaffected child 

 ASD* 150 150 Multiplex families with affected and unaffected 

 Schizophrenia 118 198 Multiplex families with affected and unaffected 

 Bipolar Disorder 118 198 Multiplex families with affected and unaffected 

 Major depression 478 804 Multiplex families with affected and unaffected 

 TOPMed† 0 68,950 Heart, lung, blood and sleep disorders 

 CCDG† 0 63,950 Heart, vascular, lung, bowel, neurological, and 
endocrine disorders 

 Totals 17,957 165,834  

Table 1. Individuals with WGS data generated by, or accessible to, the WGSPD. 
*ASD samples are being generated by several groups: Centers for Common Disease Genomics 
(CCDG) of the National Human Genome Research Institute (NHGRI), Simons Foundation 
Autism Research Initiative (SFARI)73, Autism Sequencing Consortium (ASC)74. 
†6,100 samples are shared between Trans-Omics for Precision Medicine (TOPMed) of the 
National Heart, Lung, and Blood Institute (NHLBI) and CCDG, therefore the total number of 
samples was reduced by 3,050 for each cohort. These cohorts are composed of individuals 
ascertained for non-psychiatric disorders and for whom their psychiatric disorder status is 
generally unknown. 
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Conclusion 
The noncoding genome remains largely unexplored and major discoveries undoubtedly await 
intrepid explorers. Whole genome sequencing of neuropsychiatric cases and controls provides 
an important avenue in this exploration, potentially offering high resolution insight into the 
developmental stages, brain regions, cell types, and biological functions that underlie these 
disorders. If the cost of sequencing continues to fall, it is inevitable that WGS will ultimately 
replace both microarray and WES – the key question is at what price point this transition offers 
a good return for investment. Pooling preliminary WGS data between researchers and across 
disorders offers the most efficient mechanism to make this determination.  
 
The creation of the WGSPD has allowed numerous researchers to pursue diverse scientific 
approaches on multiple psychiatric disorders, while simultaneously working towards a 
harmonized data set for integrated analysis. The pooling of expertise, methods, and data will 
accelerate progress towards understanding genetic contributions to brain development, 
function, and pathology and create a resource that will continue to yield scientific and clinical 
insights for years to come. 
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