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Abstract 

Bioinformatics is becoming increasingly central to research in the life sciences. However, despite its 
importance, bioinformatics skills and knowledge are not well integrated in undergraduate biology 
education. This curricular gap prevents biology students from harnessing the full potential of their 
education, limiting their career opportunities and slowing genomic research innovation. To advance the 
integration of bioinformatics into life sciences education, a framework of core bioinformatics 
competencies is needed. To that end, we here report the results of a survey of life sciences faculty in the 
United States about teaching bioinformatics to undergraduate life scientists. Responses were received 
from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate 
hundreds of thousands of students every year. Results indicate strong, widespread agreement that 
bioinformatics knowledge and skills are critical for undergraduate life scientists, as well as considerable 
agreement about which skills are necessary. Perceptions of the importance of some skills varied with the 
respondent’s degree of training, time since degree earned, and/or the Carnegie classification of the 
respondent’s institution. To assess which skills are currently being taught, we analyzed syllabi of courses 
with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the 
analysis of syllabi, and our collective research and teaching expertise to develop a set of bioinformatics 
core competencies for undergraduate life sciences students. These core competencies are intended to 
serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula. 

Significance Statement 

Bioinformatics, an interdisciplinary field that uses techniques from computer science and mathematics to 
store, manage, and analyze biological data, is becoming increasingly central to modern biology research. 
Given the widespread use of bioinformatics and its impacts on societal problem-solving (e.g., in 
healthcare, agriculture, and natural resources management), there is a growing need for the integration of 
bioinformatics competencies into undergraduate life sciences education. Here, we present a set of 
bioinformatics core competencies for undergraduate life scientists developed using the results of a large 
national survey and the expertise of our working group of bioinformaticians and educators. We also 
present results from the survey on the importance of bioinformatics skills and the current state of 
integration of bioinformatics into biology education. 
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Introduction 

Over the past two decades, the rapid development of high-throughput technologies, data storage capacity, 
and sophisticated algorithms has produced substantial changes in research practices in the life sciences 
and medicine. In order for researchers and practitioners in these areas to take advantage of the changes in 
data availability, they need to have computational and quantitative skills—such as those encompassed by 
bioinformatics—beyond what was required of them in the past. For more than a decade, authoritative 
calls from a variety of professional organizations to update undergraduate life sciences curricula have 
stressed the importance of increasing quantitative and computational education to prepare life sciences 
students for 21st-century careers (1–14). Examples include BIO2010: Transforming Undergraduate 
Education for Future Research Biologists, a report by the National Academy of Sciences (1); Math & Bio 
2010: Linking Undergraduate Disciplines, a joint project of the American Association for the 
Advancement of Sciences, the American Society for Mathematical Biology, and the Mathematical 
Association of America (11); Scientific Foundations for Future Physicians, a publication from the 
Association of American Medical Colleges and the Howard Hughes Medical Institute (12); and Vision 
and Change in Undergraduate Biology Education: A Call to Action (13) and Chronicling Change, 
Inspiring the Future (14). These reports are consistent in their recommendations that life sciences majors 
should receive better training in chemistry, physics, mathematics, and computation because such 
knowledge and skills are necessary to address questions at all levels of biology. In addition, several 
publications have called for life scientists to develop more sophisticated data analysis and programming 
skills so that they can benefit from the bioinformatics revolution (7, 15–20). These include a report from 
the RECOMB Bioinformatics Education Conference (7) and a recent essay in Nature (17). Along these 
lines, it is important to note that in its most recent employment predictions, the United States Bureau of 
Labor Statistics projected that between now and 2024, 75% of new science, technology, engineering, and 
mathematics (STEM) jobs will involve computation (21,22). 

On a national scale, a number of innovative programs have been created to address the need for increased 
quantitative and computational education, including the Science Education Alliance – Phage Hunters 
Advancing Genomics and Evolutionary Science (SEA-PHAGES) program (23), Genomics Education 
Partnership (GEP) (3,24), Genome Consortium for Active Teaching (GCAT) (4), GCAT NextGen 
Sequencing Group (GCAT-SEEK) (25), and Genome Solver (10). On a local scale, we are aware that the 
number of courses and meetings focused on undergraduate bioinformatics is increasing and that many 
existing courses have been modified to include bioinformatics. However, despite these efforts, the 
adoption of bioinformatics is often limited either to a small number of institutions or to particular courses 
within a given biology curriculum. As an example, SEA-PHAGES engages first-year undergraduates in a 
genuine research experience and includes substantial bioinformatics analysis as part of its year-long 
curriculum. As reported in 2014, the SEA-PHAGES program had been used at seventy-three institutions 
by 4,800 students over five years (23). As impressive as the reach of SEA-PHAGES has been, this 
program impacts only a small fraction of the thousands of US institutions that offer a biology degree and 
the approximately 110,000 students who now graduate annually with biological and biomedical sciences 
degrees (not to mention the 220,000 more who graduate from health professions and related programs) 
(26). In addition, because the SEA-PHAGES program is designed for first-year students, it does not 
necessarily impact the rest of the curriculum at a particular institution. The reaches of the other mentioned 
programs are similar to, or not as extensive as, that of SEA-PHAGES. Despite these large-scale efforts 
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and those of independent faculty to build resources for bioinformatics education, bioinformatics is not yet 
a standard component of life sciences education (15). 

Several groups have made independent efforts to develop or describe bioinformatics curricula, but they 
have primarily focused on training undergraduate and graduate bioinformaticians, not undergraduate life 
scientists. For example, the Curriculum Task Force of the Education Committee of the International 
Society for Computational Biology (ISCB) surveyed directors of bioinformatics core facilities in Europe, 
Israel, the United States, and Canada about the skills needed for success in the field of bioinformatics and 
what skills were lacking in the bioinformaticians they recently hired. Based on the results, the Task Force 
developed a set of core competencies for bioinformatics professionals (9,27). They also described three 
professional roles that require bioinformatics training and the different but overlapping competencies 
required for individuals in those roles. As another example, Koch and Fuellen described the 
bioinformatics curricula at various German universities at both the graduate and undergraduate level (28). 
However, a few authors have considered the specific bioinformatics needs of general life scientists. For 
example, Maloney et al. discussed the importance of incorporating bioinformatics into undergraduate 
biology curricula and presented examples of where this has been done successfully (29). The East Asia 
Bioinformation Network developed a bioinformatics skill set for biology students in the developing 
countries that are part of the Association for Southeast Asian Nations (https://eabn.apbionet.org/3eabn08/
docs.shtml). Finally, Tan et al. proposed a minimum bioinformatics skill set for life sciences curricula 
(graduate and undergraduate) in developed nations, formulated from discussions at a conference focused 
on education in the Asia-Pacific region (8). Thanks to developments such as these, the state of integration 
of bioinformatics into life sciences education is maturing. 

The Network for Integrating Bioinformatics into Life Sciences Education (NIBLSE, pronounced 
“nibbles”) is using an evidence-based approach to expand and promote the integration of bioinformatics 
skills and knowledge into undergraduate life sciences education (30). NIBLSE is a National Science 
Foundation (NSF) Undergraduate Biology Education Research Coordination Network (RCN-UBE) that 
was formed in 2014 to build on and expand the curricular developments mentioned above. Since further 
integration of bioinformatics into undergraduate life sciences education requires the participation of non-
expert faculty, one of the goals of NIBLSE is to provide resources (e.g., curricular materials and 
assessments) and support to faculty interested in expanding the integration of bioinformatics within their 
departments and programs. Note that NIBLSE is focused on the integration of bioinformatics into 
undergraduate life sciences curricula, which is related to, but distinct from, the curricular requirements for 
a “pure” bioinformatics degree. The goals of NIBLSE and the ISCB Task Force mentioned above are thus 
different. 

In order for NIBLSE to provide curricular resources and assessment tools that align with the needs of 
undergraduate life sciences students, a set of core bioinformatics competencies for the training of these 
students is needed as a framework. To that end, NIBLSE recently conducted a survey (hereafter the 
“NIBLSE survey” or just the “survey”) that targeted US biologists. The survey was designed to assess the 
importance of bioinformatics and bioinformatics skills for undergraduate life scientists, and it included 
questions about teaching bioinformatics to this group of students and the challenges involved in doing so. 
In addition, to get a sense of which bioinformatics skills faculty are covering now, respondents were 
asked to submit syllabi from their courses that incorporate bioinformatics. The analyses of the survey 
results and syllabi were the subjects of a national NIBLSE conference in August 2016. Outcomes of the 
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analyses and conference are described below and include a proposed set of core bioinformatics 
competencies for undergraduate life sciences majors. A separate paper now in preparation addresses the 
barriers to integrating bioinformatics into life sciences education and NIBLSE’s recommendations for 
overcoming them. 

The NIBLSE Bioinformatics Core Competencies for Undergraduate Life Scientists proposed here are 
intended to serve as a guide for institutions and departments as they integrate bioinformatics into their 
own life sciences curricula. To facilitate this necessary and important change, NIBLSE is actively 
collecting curricular resources for faculty and will soon be developing assessment tools and faculty 
development resources that are aligned with the core competencies. 

Materials and Methods 

Survey development and dissemination 

The NIBLSE Core Competencies Working Group (CCWG), composed of biologists and 
bioinformaticians from a range of educational institutions and industry, developed the survey using an 
iterative process over the course of several months. Feedback from other NIBLSE members and two 
evaluation specialists, one with expertise in STEM education, was used to improve the questions and 
layout of the survey. The survey was implemented and distributed using Qualtrics 
(https://www.qualtrics.com) with assistance from the Center for New Designs in Learning and 
Scholarship at Georgetown University. Approval for the study was obtained from the University of 
Nebraska at Omaha Institutional Review Board (IRB # 161-16-EX) before it was distributed. 

The survey was branched, with some questions or sections presented or skipped based on responses to 
filtering questions. For example, the survey branched depending on whether the respondent taught at a 
four-year institution, a two-year institution, or provided not-for-credit training (e.g., for a company or 
organization). The branched structure allowed us to formulate targeted questions. The survey in its 
entirety is provided as a supplementary document. 

One section of the survey asked respondents to rate fifteen bioinformatics skills (S1 to S15, hereafter the 
“survey skills”) using a five-level Likert scale. The survey skills are listed below; the text in parentheses 
is the abbreviation of that skill. 
● S1 (Role)—Understand the role of computation and data mining in hypothesis-driven processes within 

the life sciences 
● S2 (Concepts)—Understand computational concepts used in bioinformatics, e.g., meaning of 

algorithm, bioinformatics file formats 
● S3 (Statistics)—Know statistical concepts used in bioinformatics, e.g., e-value, z-scores, t test, type -1 

error, type-2 error, employ R 
● S4 (Access genomic)—Know how to access genomic data, e.g., in NCBI nucleotide databases 
● S5 (Tools genomic)—Be able to use bioinformatics tools to analyze genomic data, e.g., BLASTN, 

genome browser 
● S6 (Access expression)—Know how to access gene expression data, e.g., in UniGene, GEO, SRA 
● S7 (Tools expression)—Be able to use bioinformatics tools to analyze gene expression data, e.g., 

GeneSifter, David, ORF Finder 
● S8 (Access proteomic)—Know how to access proteomic data, e.g., in NCBI protein databases 
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● S9 (Tools proteomic)—Be able to use bioinformatics tools to examine protein structure and function, 
e.g., BLASTP, Cn3D, PyMol 

● S10 (Access metabolomic)—Know how to access metabolomic and systems biology data, e.g., in the 
Human Metabolome Database 

● S11 (Pathways)—Be able to use bioinformatics tools to examine the flow of molecules within 
pathways/networks, e.g., Gene Ontology, KEGG 

● S12 (Metagenomics)—Be able to use bioinformatics tools to examine metagenomics data, e.g., 
MEGA, MUSCLE 

● S13 (Scripting)—Know how to write short computer programs as part of the scientific discovery 
process, e.g., write a script to analyze sequence data 

● S14 (Software)—Be able to use software packages to manipulate and analyze bioinformatics data, e.g., 
Geneious, Vector NTI Express, spreadsheets 

● S15 (Computational environment)—Operate in a variety of computational environments to manipulate 
and analyze bioinformatics data, e.g., Mac OS, Windows, web- or cloud-based, Unix/Linux command 
line 

In addition, a free-response question allowed respondents to specify skills they thought were missing 
from the list. The skills listed in the survey were based on the CourseSource Bioinformatics Learning 
Framework developed in 2014 by members of NIBLSE and refined with feedback from a number of 
groups including GEP and GCAT-SEEK (31). (CourseSource is an open-access journal of peer-reviewed 
teaching resources for undergraduate biological sciences.) In turn, the Learning Framework was informed 
by the core competencies for bioinformaticians developed by the ISCB Curriculum Task Force (9,27). 
Two members of the CCWG serve on the ISCB Task Force, one of whom serves as co-chair.  

A list of more than 11,000 randomly-selected email addresses of biologists at US institutions of higher 
education was purchased from MDR, an education marketing company (http://schooldata.com). The list 
included faculty at both four-year and two-year institutions at an approximately 70:30 ratio. Using 
Qualtrics, unique links to the survey were emailed to the addresses in this list; unique links allowed us to 
tie a given response to an email address and therefore to the home institution of the respondent. A generic 
link to the survey was sent to the members of scientific organizations, including the Society for the 
Advancement of Biology Education Research, GEP, and Biology Scholars alumni (American Society for 
Microbiology). (Responses to the generic survey link could not be identified by institution.) In addition, 
the survey was advertised on Twitter and was announced in the CyVerse, Digital World Biology, Bio-
Link, American Society for Cell Biology, and National Association of Biology Teachers newsletters as 
well as on the ScienceBlogs website. Finally, respondents were asked to forward the generic link to 
colleagues. 

Survey results and analysis 

A total of 1,260 responses to the survey were received (n = 1,260), 82% of which came from unique links 
(Fig. S1). Survey results were analyzed by a subset of the NIBLSE CCWG, the interdisciplinary Core 
Competencies Team (CCT). Differences in Likert responses by self-reported demographics were 
determined by applying a two-sample Kolmogorov-Smirnov (KS) test to pairwise comparisons of groups. 
The KS tests were implemented in scripts written in R; these scripts are available from the NIBLSE 
repository on GitHub (32). 
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Using information provided to us by MDR and from publicly available databases (33–35), we estimate 
that there are currently between 75,000 and 100,000 biological sciences faculty in the US. Given our 
overall sample size (1% to 2%) and the number of responses per question (between 970 and 1,009), we 
estimate that the mean margin of error for the survey questions described in this paper is ±3% at the 95% 
confidence interval. 

Syllabi assessment 

Ninety syllabi of courses with bioinformatics content were uploaded by survey respondents. Most (sixty-
nine) were known or inferred to be from departments of biology, with the balance being from computer 
science/engineering (nine), biochemistry (five), math (three), and chemistry (two) departments; the home 
department of two syllabi could not be determined. Each syllabus was assessed independently by two 
CCT members, who determined which of the fifteen skills (S1 to S15) were covered in the course. When 
two assessments did not agree (approximately 25% of the time), the discordance was resolved by a third 
CCT member. Additionally, each member kept track of additional skills (i.e., not one of the S1 to S15 
survey skills) covered in each syllabus. 

Development of the core competencies 

Using an iterative process, the survey skills were refined into a set of nine core competencies based on 
results from the survey, comments from survey respondents, assessment of syllabi, and the collective 
expertise and experience of the authors in both teaching bioinformatics and applying it to research. As 
mentioned previously, the CCT analyzed the survey results and syllabi with respect to the survey skills. 
Based on this work, the CCT developed a set of tentative competencies. Included in this set were items 
that showed up repeatedly in the syllabi and responses to the free-response question but were not in the S1 
to S15 survey skills. On the other hand, some of the S1 to S15 survey skills were revised or dropped from 
the tentative competencies set due to weak support, including S10 (Access metabolomic) and S15 
(Computational environment). Prior to the August 2016 NIBLSE conference, the tentative set of 
competencies was distributed to the conference participants for their review and consideration. 

At the NIBLSE conference, the CCT formally presented the tentative competencies to the conference 
participants and summarized the evidence on which they were based (survey results, syllabi assessment, 
etc.). The conference attendees then broke into small groups, each moderated by a member of the CCT. 
The groups discussed the evidence and revised the competencies based on both their interpretation of the 
evidence and their own expertise and experience. The groups then reconvened into one large group to 
discuss the resulting lists and to develop a consensus set of competencies. During this discussion, 
considerations were made to balance specificity with generalizability. The result of this discussion was a 
set of nine core competencies agreed to by all of the conference participants. Finally, the conference 
attendees voted to allow the NIBLSE leadership team (PI and Co-PIs of the NSF RCN-UBE) to decide on 
the specific final wording of the competencies. The resulting set of competencies, the NIBLSE 
Bioinformatics Core Competencies for Undergraduate Life Scientists (hereafter the “NIBLSE Core 
Competencies” or just the “Core Competencies”), is presented in Table 2. 

Results 

The NIBLSE CCWG developed and disseminated the survey, with the CCT taking the lead in the analysis 
of the results and initial development of the NIBLSE Core Competencies (see Materials and Methods). 
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NIBLSE survey 

The survey assessed Likert-scale responses on the perceived importance of each of fifteen bioinformatics 
skills (Fig. 1, Fig. 2, and Table 1). We refer to the fifteen skills described in the survey as S1 to S15 
and/or by text abbreviation—e.g., S1 (Role)—to distinguish them from the nine Core Competencies (C1 
to C9) ultimately developed (Table 2). Skills that received the highest mean responses overall included S1 
(Role), S3 (Statistics), S4 (Access genomic), and S5 (Tools genomic) (Table 1). As detailed below, the 
perceived importance of some skills varied based on the demographics of the respondents. 

Demographics of survey respondents 

The group of survey respondents was split fairly evenly between males and females, across institutions by 
Carnegie classification, by measurement of institution size (total students, total undergraduates, majors, 
and faculty), and by self-reported minority-serving status versus not minority-serving (Fig. 1). 
Respondents were from all fifty states with the distribution of responses roughly matching the population 
distribution of the country (Fig. S1). The respondents were predominantly white and non-
Latino/Hispanic; for the vast majority, a PhD was the highest earned degree (Fig. 1). The level of 
bioinformatics training varied widely among respondents, including no training, self-taught, short 
courses, undergraduate and graduate classes, and graduate degrees (Fig. 1). 

Analysis of survey results 

The Likert responses on the perceived importance of the survey skills are summarized in Fig. 2. Analysis 
of survey results focused on determining, using the two-sample KS test, whether the Likert responses 
differed significantly across any demographic categories. 

No difference by gender or minority-serving institution status 

Analyzing the results for the fifteen survey skills, responses did not vary based on gender or whether the 
respondent was at a minority-serving institution (see Materials and Methods and [32]). Respondents were 
overwhelmingly white and non-Hispanic/non-Latino (Fig. 1). Individuals who identified as people of 
color (POC) and those who identified as Hispanic/Latino consistently rated the importance of every skill 
higher (and often significantly higher; i.e., indicated that it was more important) than those who did not 
identify as POC or Hispanic/Latino (32). However, given the tremendous disparity in sample sizes (Fig. 
1), and known cultural differences in responses to surveys (36,37), we hesitate to assign much weight to 
these particular differences. 

Higher ratings of some skills at larger institutions 

Respondents gave some skills different scores depending on the size of their institution, whether that is 
determined by total number of students, total number of undergraduates, or number of faculty in the 
department. Respondents at an institution with fewer than 5,000 students or 5,000 undergraduates rated 
the importance of skills S1 (Role), S2 (Concepts), S13 (Scripting), and S15 (Computational environment) 
significantly lower (i.e., indicated that they were less important) than those at institutions with more than 
15,000 students or 15,000 undergraduates (32). Similarly, faculty in larger departments gave significantly 
higher ratings for skills S1 (Role) and S2 (Concepts) than those in smaller departments (S1: p = 
6.73 × 10-3 for a two-tailed KS test; S2: p = 1.49 × 10-3). 

Among the four Carnegie classifications, there were no significant differences in Likert ratings between 
respondents at Baccalaureate and Master’s institutions (Table S1). In contrast, respondents at Associate’s 
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institutions routinely rated every skill lower than did those at other institution types, whereas those at 
Doctoral institutions rated every skill higher than those at institutions with other classifications. In 
general, the rating of S13 (Scripting) increased with Carnegie classification (Fig. 3 and Table S1). 

Higher ratings of categories by year and level of bioinformatics training 

The ratings of almost all of the fifteen skills did not depend significantly on the year in which the 
respondents earned their degree. However, skills S3 (Statistics) and S13 (Scripting) were rated 
significantly higher by respondents who earned their degree in 2010 or after than by those who earned 
their degree prior to 2010 (Fig. 3 and [32]). Furthermore, the majority of respondents had a PhD, and 
those with a PhD consistently rated every skill higher than those with a master’s degree, often 
significantly higher (Table 1). Those with no training in bioinformatics routinely rated every skill 
significantly lower than respondents with training, formal or not (Fig. 3 and [32]). Notably, S13 
(Scripting) was rated significantly higher by respondents with a graduate degree in bioinformatics than by 
those with any other type of training (Fig. 3 and [32]). 

Coverage of skills varies across syllabi 

To analyze the ninety syllabi submitted by survey respondents (see Materials and Methods), the fifteen 
survey skills were divided into two groups—those that required students to be familiar with a concept 
(i.e., to “know” about it; survey skills S1 to S4, S6, S8, and S10), and those that required direct 
engagement (i.e., to be able to use the skill in “practice”; skills S5, S7, S9, and S11 to S15). More of the 
“knowing” skills were rated as being either “extremely important” or “very important” than the “practice” 
skills and were more frequently covered in the syllabi; conversely, the “practice” skills were less likely to 
be covered in syllabi (Fig. 4). There were two exceptions to these trends. Few survey respondents thought 
students should be expected to be familiar with metabolomic and systems biology data (S10, a “knowing” 
skill), nor was it frequently covered in the submitted syllabi. (As mentioned above, this skill was dropped 
from the Core Competencies.) On the other hand, a majority of respondents indicated that undergraduate 
life scientists should “be able to use bioinformatics tools” (S5). In addition, evidence of this was present 
in approximately 70% of the submitted syllabi (Fig. 4, Fig. S2). 

Syllabi also varied substantially in the number of survey skills covered. On average, a syllabus covered 
5.5 skills (with a median of six skills addressed). Although all skills were covered in aggregate across the 
submitted syllabi, no syllabi covered more than thirteen out of the fifteen skills, suggesting the difficulty 
of covering all the skills in a single class (Fig. S2). 

Core Competencies 

The nine NIBLSE Core Competencies, developed using the iterative process described in Materials and 
Methods, are presented in Table 2. During this process, several skills that received lower ratings on the 
survey (S10, S11, S12) were dropped or combined into a more general competency such as C4 (“Use 
bioinformatics tools to examine complex biological problems”) and C6 (“Explore and/or model biological 
interactions, networks, and data integration using bioinformatics”). While scripting and use of the 
command line (S13) received relatively lower scores from survey respondents, the strong support for 
these emerging skills from the most recently trained respondents resulted in their inclusion in the final 
list. As mentioned above, the NIBLSE Core Competencies are intended to serve as a guide for institutions 
and departments as they integrate bioinformatics into their own life sciences curricula. 
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Discussion 

Faculty from a wide range of institutions showed strong support for greater integration of bioinformatics 
into undergraduate life sciences curricula: 95% of the 1,260 respondents agreed with the statement “I 
think bioinformatics should be integrated into undergraduate life sciences education.” However, there are 
some differences among faculty perspectives at different types of institutions. While most respondents 
value the ability to retrieve information from public databases and use existing software tools to analyze 
data, respondents at Doctoral institutions place a higher priority on computational skills, such as being 
able to operate in multiple computational environments and being able to write short programs. A 
possible explanation for this difference is that respondents at research-based institutions are more directly 
exposed to the necessity of using these computational skills on a day-to-day basis, whether by themselves, 
their students, or their colleagues. These findings provide insight into different educational perspectives 
and help us better understand what barriers institutions and departments may face as they integrate 
bioinformatics into their own life sciences curricula. 

It is important to keep in mind the distinctions between the educational needs of bioinformaticians and 
life scientists, as well as the difference between the goals of undergraduate education and graduate or 
professional education. Up to this point, much of the discussion of bioinformatics education in the 
literature has focused on the education of bioinformaticians or on graduate or professional development. 
However, some authors have addressed the question of bioinformatics education for undergraduate life 
sciences students. In particular, attendees of the first and second Workshop on Education in 
Bioinformatics and Computational Biology in 2008 (Taipei, Taiwan) and 2009 (Singapore), held as part 
of the International Conference in Bioinformatics, attempted to identify a minimum skill set for the 
training of bioinformaticians and life scientists with informatics capabilities (8). A consensus list of five 
essential bioinformatics skills was reported. These skill sets overlap considerably with the NIBLSE Core 
Competencies, indicating that there is agreement about the skills that are necessary for modern life 
sciences students. However, the sample size of this effort was small (n = 56, including students) and the 
authors were attempting to find a consensus that could be applied internationally in widely differing 
contexts. 

The NIBLSE Core Competencies include a computational competency, consistent with other reports 
(7,15,18,19). Although many life sciences programs are not currently equipped to provide training in 
basic programming and operating in a command-line environment, these are important skills that enable 
students to manipulate and analyze modern biological data. (As an added benefit, creating classes to teach 
these skills provides an opportunity for interdepartmental course development.) This does not mean that 
we recommend that life sciences students be able to write complex software applications or be trained to 
develop graphical user interfaces, but being able to write short programs and run command-line programs 
gives them flexibility in analyzing data and, perhaps more importantly, provides them with a better 
understanding of the data itself. The pedagogical literature from a variety of fields is clear that students 
learn more when they engage with data more deeply, as opposed to entering data into a “black box” and 
reporting the results (16,38–42). Thus, as with any laboratory technique—e.g., PCR, dissection, or 
microscopy—bioinformatically-literate undergraduates don’t need to be experts but should be expected to 
have basic skills in these areas when they graduate. 

In addition to the survey data, the analysis of syllabi submitted by survey respondents shows that a variety 
of bioinformatics topics are already covered nationwide. The fact that bioinformatics can be performed 
relatively inexpensively with freely available data and software makes it an attractive way for students to 
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engage in research experiences and inquiry-based learning (3,38,39). We would argue that this training 
would ideally occur in an integrated manner throughout a life sciences curriculum, as opposed to being 
isolated in a single course. Thus, there is no need to remove particular topics and replace them with 
“bioinformatics” units. Instead, we encourage faculty to find ways to incorporate bioinformatics 
techniques and applications as a way of exploring existing concepts in their curricula. 

Among the syllabi analyzed, there appears to be a greater emphasis on “knowing” rather than “doing.” 
This gap may reflect the degree of instructor training: if an instructor has little training or experience with 
bioinformatics, it is understandably easier to introduce a technique or concept in a lecture than it is to 
develop and implement an in-depth exercise. This idea is supported by the fact that survey respondents 
frequently referred to the lack of available teaching resources in this area. One effort to address this 
problem was the creation of the Bioinformatics Learning Framework for CourseSource, which publishes 
evidence-based learning resources (31). The issue of training was also raised repeatedly in the open-ended 
comments on the survey, with many respondents indicating that they wanted to integrate more 
bioinformatics in their courses but felt they lacked the necessary training to do so. This training deficit is 
a long-term problem that will be difficult to address. On the one hand, a variety of resources are currently 
available for faculty to receive training in bioinformatics or to educate themselves to address the training 
need. On the other, many faculty in the survey indicated they needed more training. Thus, it’s not clear if 
the lack of training is due to faculty not being aware of the training resources available or if the existing 
resources are not useful to them because they cost too much, require too much time, are too advanced, or 
require too much work to adapt to their specific courses. Barriers to integrating bioinformatics into life 
sciences education, and our suggestions for overcoming them, are the topics of a separate paper, now in 
preparation. Note that NIBLSE was formed in large part to provide resources to faculty to help overcome 
these kinds of barriers. 

To conclude, the analysis presented here provides evidence of strong, widespread agreement that 
undergraduate life sciences students need to be trained in bioinformatics, and it led to the development of 
a framework of topics for this training. Although the results presented here could potentially be skewed—
those interested in this topic could have been more motivated to respond to the survey—given the large 
number of responses and the small margin of error in them (see Materials and Methods), we feel that we 
can take the results of the survey as accurately representing the opinions of the US life sciences education 
community as a whole. The goal of NIBLSE is to integrate existing efforts in bioinformatics education 
and to provide new resources to enable more faculty to infuse bioinformatics into their curricula. The 
NIBLSE Core Competencies presented here are expected to be a valuable guide to these efforts. 
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Figure Legends 

Fig. 1. Survey Demographics. The number of responses for the categories of a given demographic 
variable. The NIBLSE survey asked for information on Gender, Race (People of Color and White), 
Ethnicity (Hispanic-Latino, non-Hispanic/non-Latino), Minority Serving (whether the respondent’s home 
institution is classified as minority-serving or not), Highest Degree (highest degree earned: Bachelor’s, 
Master’s, Professional Degree, PhD), Year Earned (year that the highest degree was earned; responses 
were grouped in the following bins: Before 1980, 1980 to 1989, 1990 to 1999, 2000 to 2009, and After 
2009), Training (level of bioinformatics training: None, Self-taught, Short workshop, 
Undergraduate/PostBacc training, Graduate class, and Graduate degree), Carnegie (Carnegie 
classification of the respondent’s home institution: Associate’s, Baccalaureate, Master’s, Doctoral), Total 
Students (total number of students at the respondent’s home institution), Total Undergraduates (number 
of undergraduates at the respondent’s home institution), Undergraduate Majors (number of undergraduate 
majors in the respondent’s home department), and Faculty (number of faculty in the respondent’s home 
department). Four categories in Training were grouped together into “Undergrad” (undergraduate/ post-
baccalaureate training) due to very small sample numbers for each: Undergraduate course (24), 
Undergraduate certificate (0), Undergraduate degree (5), and Post-baccalaureate certificate (12) for a total 
of 41 responses. 

Fig. 2. Summary of surveyed skills. The total number of Likert-scale responses from 1 to 5—1 being 
“Not at all important” to 5 being “Extremely Important”—for each of the fifteen survey skills. As 
discussed in the narrative, these skills were divided into two broad categories: skills that just required 
familiarity (“knowing” skills: S1 to S4, S6, S8, S10), and those that required direct engagement 
(“practicing” skills: S5, S7, S9, S11 to S15). 

Fig. 3. Mean Likert responses for S3 (Statistics) and S13 (Scripting). Mean Likert responses are shown 
for S3 (Statistics) and S13 (Scripting) for three categories: Carnegie (Carnegie classification of the 
respondent’s home institution: Associate’s, Baccalaureate, Master’s, Doctoral), Year Earned (year that the 
highest degree was earned; responses were grouped in the following bins: Before 1980, 1980 to 1989, 
1990 to 1999, 2000 to 2009, and After 2009), and Training (level of bioinformatics training: None, Self-
taught, Short workshop, Undergraduate/PostBacc training, Graduate class, and Graduate degree). Means 
and P values from pairwise KS tests are reported in (32). 

Fig. 4. Comparison of the fifteen bioinformatics skills as rated by survey respondents versus 
coverage in the syllabi. Skills are shown with the proportion of survey responses rating the skill as either 
“Very Important” or “Extremely Important” (blue bars) and the proportion of submitted syllabi that 
exhibited evidence of the skill (grey bars). Skills requiring familiarity with a concept (“knowing” skills) 
are to the left of the vertical dashed line; skills requiring direct engagement (“practice” skills) are to the 
right. In their respective categories, skills are presented in order of decreasing proportion of survey 
responses rating the skill as Very or Extremely Important. 
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Table 1. Responses by degree. Means of the Likert-scale responses for each survey skill for respondents 
with a Master’s degree (MS) and those with a PhD. Two-sided P value from a Kolmogorov-Smirnov test 
of the Likert-scale responses is shown. In all cases, those with a PhD rated desired skills higher than those 
with an MS; significant differences are in bold. 

Skill MS PhD P value 

S1 (Role) 3.90 4.16 0.188 

S2 (Concepts) 3.12 3.44 0.180 

S3 (Statistics) 3.77 4.02 0.286 

S4 (Access genomic) 3.74 4.32 1.13 × 10-4 

S5 (Tools genomic) 3.51 4.17 3.00 × 10-6 

S6 (Access expression) 3.12 3.43 0.130 

S7 (Tools expression) 2.96 3.34 0.0549 

S8 (Access proteomic) 3.19 3.70 0.0126 

S9 (Tools proteomic) 3.09 3.54 0.0789 

S10 (Access metabolomic) 2.90 3.16 0.0863 

S11 (Pathways) 2.88 3.22 0.0677 

S12 (Metagenomics) 2.80 3.16 0.0329 

S13 (Scripting) 2.44 2.89 3.94 × 10-4 

S14 (Software) 2.82 3.31 8.10 × 10-3 

S15 (Computational 
environment) 

2.88 3.26 0.0122 
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Table 2. The NIBLSE Bioinformatics Core Competencies for Undergraduate Life Scientists. The 
bioinformatics competencies that NIBLSE recommends undergraduate life sciences students have by the 
time they graduate. As discussed in the narrative, they are informed by the results of the national NIBLSE 
survey, analysis of ninety syllabi with bioinformatics content, and the cumulative expertise and 
experience of the authors. Following each competency is a list of three representative examples 
illustrating the competency. 

C1. Explain the role of computation and data mining in addressing hypothesis-driven and 
hypothesis-generating questions within the life sciences. Life sciences students should have a 
clear understanding of the role computing and data mining play in modern biology. Given a 
traditional hypothesis-driven research question, students should have ideas about what types of data 
and software exist that could help them answer the question quickly and efficiently. They should 
also appreciate that mining large datasets can generate novel hypotheses to be tested in the lab or 
field. 

● Compare and contrast computer-based research with wet-lab research. 
● Explain the role of computation in finding genes, detecting the function of protein domains, and 

inferring protein function. 
● Describe the role of various databases in identifying potential gene targets for drug development. 

C2. Summarize key computational concepts, such as algorithms and relational databases, and 
their applications in the life sciences. To make use of sophisticated software and database tools, 
students should have a basic understanding of the principles upon which these tools are based and 
should be exposed to how these tools work.  

● Explain the underlying algorithm(s) employed in sequence alignment (e.g., BLAST). 
● Modify software parameters to achieve biologically meaningful results. 
● Explain how data are organized in relational databases (e.g., NCBI and model organisms 

databases). 

C3. Apply statistical concepts used in bioinformatics. In addition to the basic statistics found in 
many biology curricula, modern life scientists should have an understanding of the statistics of 
large datasets and multiple comparisons. 

● Understand that there is a probability of finding a given sequence similarity score by chance (the P 
value) and that the size of the target database affects the probability that you will see a particular 
score in a particular search (the E-value). 

● Explain the statistical modeling used to identify differentially expressed genes. 
● Interpret data from a well-designed drug trial. 

C4. Use bioinformatics tools to examine complex biological problems in evolution, information 
flow, and other important areas of biology. This competency is written broadly so as to 
encompass a variety of problems that can be addressed using bioinformatics tools, such as 
understanding the evolutionary underpinnings of sequence comparison and homology detection; 
distinguishing between genomic sequences, RNA sequences, and protein sequences; and 
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interpreting phylogenetic trees. “Complex” biological problems require that students should be able 
to work through a problem with multiple steps, not just perform isolated tasks. 

● Using multiple lines of evidence, annotate a gene. 
● Develop and interpret a “tree of life” based on a BLAST search, multiple alignment, and 

phylogenetic-tree building. 
● Explain how a mutation in a gene causes cancer, using a genome browser to identify the gene, 

transcript, and affected protein, and tools such as OMIM, GO, and KEGG to place it in the context 
of a function and pathway important to the disease. 

C5. Find, retrieve, and organize various types of biological data. Given the numerous and varied 
datasets currently being generated from all of the ‘omics fields, students should develop the facility 
to identify appropriate data repositories, navigate and retrieve data from these databases, and 
organize data relevant to their area of study in flat files or small local stand-alone databases. 

● Navigate and retrieve data from a genome browser. 
● Retrieve data from protein and genome databases (e.g., PDB, UniProt, NCBI). 
● Store and interrogate small datasets using spreadsheets or delimited text files. 

C6. Explore and/or model biological interactions, networks, and data integration using 
bioinformatics. Modeling of biological systems at all levels, from cellular to ecological, is being 
facilitated by technological and algorithmic advances. These models provide novel insights into the 
perturbations in systems that can cause disease, interactions of microbes with various eukaryotic 
systems, how metabolic networks respond to environmental stresses, etc. Students should be 
familiar with the techniques used to generate these analyses and should be able to interpret the 
outputs and use the data to generate novel hypotheses. 

● Predict impact of a gene knockout on a cell-signaling pathway. 
● Analyze gene expression data to build an expression network. 
● Analyze metagenomics data from microbial samples obtained from environmental sources. 

C7. Use command-line bioinformatics tools and write simple computer scripts. Most biological 
datasets (e.g., genomic and proteomic sequences, BLAST results, RNASeq and resulting 
differential expression data) are available as text files; the most powerful and dynamic way to 
interact with these datasets is through the command line or shell scripting. Students should be able 
to manipulate their own data and to create and modify complex data processing and analysis 
workflows. 

● Run BLAST using command line options. 
● Build and run statistical analyses using environments such as R or Python scripts. 
● Write simple shell scripts to manipulate files. 

C8. Describe and manage biological data types, structure, and reproducibility. This competency 
addresses two distinct concerns: 1) each of the varied ‘omics fields produces data in formats 
particular to its needs, and these formats evolve with changes in technologies and refinements in 
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downstream software; and 2) all experimental data is subject to error and the user must be 
cognizant of the need to verify the reproducibility of their data. Students need to develop an 
awareness of, and ability to, manipulate different data types given the versioning of formats. They 
also need to exercise caution, to carry out appropriate statistical analyses on their data as part of 
normal operating procedures and report the uncertainty of their results, and to provide the relevant 
information to enable reproduction of their results.  

● Describe the various sequence formats used to store DNA and protein sequences (e.g., FASTA, 
FASTQ). 

● Understand the representation of gene features using Gene Feature Format (GFF) files. 
● Compare reproducibility of biological and technical replicate data (e.g., transcriptomic data) using 

statistical tests (Spearman rank test and false discovery calculations). 

C9. Interpret the ethical, legal, medical, and social implications of biological data. The increasing 
scale and penetration of human genetic and genomic data has greatly enhanced our ability to 
identify disease-related loci, druggable targets, etc. and to identify potential genes for replacement 
with developing techniques. However, with this information also comes many ethical, legal, and 
social questions; suggested resolutions are often outpaced by the technological advances. As part of 
their scientific training, students should debate the medicinal, societal, and ethical implications of 
these information sets and techniques. 

● Explain the implications, good and bad, of being able to walk into a doctor’s office and have your 
genome sequenced and analyzed or of being able to obtain information from direct-to-consumer 
testing services. 

● Be able to discuss different perspectives about who should have access to this data and how it 
should be protected. 

● Describe how the scientific community protects against the falsification or manipulation of large 
datasets. 
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