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Summary 25 

The amygdala plays a critical role in detecting potential danger through sensory input [1, 2]. In 26 

the primate visual system, a subcortical pathway through the superior colliculus and the pulvinar 27 

is thought to provide the amygdala with rapid and coarse visual information about facial emotions 28 

[3 6]. A recent electrophysiological study in human patients supported this hypothesis by 29 

showing that intracranial event-related potentials discriminated fearful faces from other faces very 30 

quickly (within ~74 ms) [7]. However, several aspects of the hypothesis remain debatable [8]. 31 

Critically, evidence for short-latency, emotion-selective responses from individual amygdala 32 

neurons is lacking [9 12], and even if this type of response existed, how it might contribute to 33 

stimulus detection is unclear. Here, we addressed these issues in the monkey amygdala and found 34 

that ensemble responses of single neurons carry robust information about emotional faces35 

especially threatening ones within ~50 ms after stimulus onset. Similar rapid response was not 36 

found in the temporal cortex from which the amygdala receives cortical inputs [13], suggesting a 37 

subcortical origin. Additionally, we found that the rapid amygdala response contained excitatory 38 

and suppressive components. The early excitatory component might be useful for quickly sending 39 

signals to downstream areas. In contrast, the rapid suppressive component sharpened the rising 40 

phase of later, sustained excitatory input (presumably from the temporal cortex) and might 41 

therefore improve processing of emotional faces over time. We thus propose that these two 42 

amygdala responses that originate from the subcortical pathway play dual roles in threat detection. 43 

 44 
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Results and Discussion 49 

We recorded extracellular action potentials from face-responsive neurons in the amygdala (mostly 50 

the lateral and basal nuclei; Figure 1A and Figure S1A) while monkeys were engaged in a 51 

fixation task. Stimuli were nine images of monkeys faces, with each of three monkeys providing 52 

three different expressions aggressive (open-mouth), neutral, and affiliative (pout-lips) [14] 53 

(Figure 1B). Because the fastest that monkey pulvinar neurons can respond to faces and face-like 54 

patterns is 30 ms [15], if they exist, early amygdala responses would necessarily occur at a slightly 55 

greater latency. We thus focused exclusively on a 50-ms time window centered at 55 ms after 56 

stimulus onset (the early window ; 30 80 ms), and found that responses of amygdala neurons 57 

demonstrated marginally differential responses to the facial expressions during this time. The 58 

responses of the two example amygdala neurons shown in Figure 1C and 1D (see also Figure 59 

S1B and S1C for spike waveforms, raster plots, and peri-stimulus time histograms) exhibited 60 

statistically significant differences in firing rate around 55 ms after stimulus onset, which 61 

depended on facial expression (Figure 1C: Friedman test, n = 10 trials, df = 2, 2 = 9.30, p = 62 

0.0096; Figure 1D: Friedman test, n = 10 trials, df = 2, 2 = 8.16, p = 0.017). During this time 63 

period, the neuron in Figure 1C responded best to open-mouth faces (the red line is the highest), 64 

while that in Figure 1D responded least to open-mouth faces (the red line is the lowest). Across 65 

the 104 amygdala neurons tested, the number of neurons with differential responses to the facial 66 

expressions (Friedman test , p < 0.05) increased slightly around 55 ms after stimulus 67 

onset (Figure 1E). To evaluate the statistical significance of this increase, we shuffled the data to 68 

create a null distribution (n = 1,000 simulations) and then determined its 95th and 99th percentiles. 69 

The number of expression-selective neurons was significant at a 0.05 or 0.01 level if it was greater 70 

than these respective values (Figure 1E: 0.05, dashed line; 0.01, dotted line). In the early window, 71 

the number surpassed the 0.05 level, indicating that a significant minority of the amygdala 72 

neurons discriminated the facial expressions during this time. Around the 55-ms time point, the 73 

number of selective neurons reached a significance level of 0.05 in several windows, and a 74 
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significance level of 0.01 in a few windows. The number dropped to a pre-stimulus level for a 75 

few tens of milliseconds and then increased substantially beginning 100 ms after stimulus onset. 76 

Similar results were obtained for a smaller subset of neurons that were judged to be differentially 77 

responsive to the facial expressions with more stringent criteria (Friedman test , p < 78 

0.01 and p < 0.005; Figure S2), suggesting that early facial-expression signals were carried by a 79 

subset of neurons with highly significant individual responses (such as those shown in Figure 80 

1C). In contrast, for the 116 temporal cortex neurons recorded from the same animals (Figure 1A 81 

and Figure S1A), the number of facial-expression selective neurons continuously grew and 82 

surpassed significant levels around 70 ms after stimulus onset, slightly later than the initial 83 

increase, but earlier than the second buildup in the amygdala population (compare Figure 1E and 84 

Figure 1F). 85 

 86 

Although facial expression selectivity appeared around 55 ms after stimulus onset in a significant 87 

minority of the amygdala neurons, how amygdala neurons as a whole robustly encode facial 88 

expressions with such short latency is unclear. To investigate this issue, we applied a linear 89 

classification approach to population activity [16, 17], which allowed us to evaluate information 90 

about the facial expressions that was encoded by ensembles of amygdala neurons (see STAR 91 

Methods). This approach assessed how linear hyperplanes discriminated different stimulus 92 

categories (i.e., three facial expressions) within a high dimensional space that was spanned by the 93 

response strength of each neuron (Figure 2A). We constructed three classifiers, each for a 94 

different facial expression (Figure 2B). Each classifier collected the responses of neurons with 95 

different connection weights and produced a variable (the weighted sum of responses), which 96 

represented the likelihood of an assigned facial expression. We analyzed discrimination 97 

performance of the classifiers as a function of time, using a 50-ms sliding window with 1-ms 98 

steps. 99 

 100 
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Linear classifiers constructed for the amygdala were able to read out information about the open-101 

mouth faces in an early window around 50 ms after stimulus onset. The time course of the overall 102 

performance averaged across the classifiers (Figure 2C) revealed a small early peak (filled 103 

arrowhead; window center, 51 ms) as well as a later, global peak (arrow, 163 ms). The two peaks 104 

were separated by a trough (open arrowhead, 84 ms) during which performance dropped to chance 105 

level. At the early peak, performance was higher for the open-mouth and pout-lips classifiers than 106 

for the neutral classifier (Figure 2D; Mann Whitney U test, n = 100 simulations, open-mouth vs. 107 

neutral: p = 8.3 × 10-27, pout-lips vs. neutral: p = 1.3 × 10-11, Bonferroni correction). We applied 108 

Bonferroni correction in Figure 2D and 2F using the total number of the comparisons (n = 9; the 109 

combinations of the three pair-wise comparisons at the three representative windows). Receiver-110 

operating characteristic (ROC) analysis [18] also indicated that the discrimination of open-mouth 111 

faces occurred at the early time window around 50 ms after stimulus onset (Figure S3A). At the 112 

trough and the global peak, performance was higher for the neutral classifier than for the others 113 

(Mann Whitney U test, n = 100 simulations, neutral vs. open-mouth: p = 5.9 × 10-8 for trough, p 114 

= 5.9 × 10-11 for global peak, Bonferroni correction; Mann Whitney U test, n = 100 simulations, 115 

neutral vs. pout-lips: p = 7.0 × 10-8 for trough, p = 4.9 × 10-19 for global peak, Bonferroni 116 

correction). Higher performance for the two emotional faces was thus prominent only at the early 117 

peak. Moreover, performance was highest for the open-mouth classifier at the early peak (Mann118 

Whitney U test, n = 100 simulations, open-mouth vs. pout-lips: p = 1.6 × 10-12, Bonferroni 119 

correction). Brain areas downstream of the amygdala, such as the hypothalamus and midbrain 120 

periaqueductal gray, may rapidly read out information about threat faces, triggering fast 121 

autonomic or hormonal responses, or defensive behaviors. 122 

 123 

In contrast, linear classifiers for neurons in the anterior temporal visual cortex (primarily 124 

cytoarchitectonic area TE, Figure S1A) recorded in the same animals did not exhibit better 125 

performance for open-mouth faces (Figure 2E and 2F, see also Figure S3B for the result of ROC 126 
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analysis). In the early window, performance for the open-mouth classifier was comparable with 127 

that of the neutral classifier (Mann Whitney U test, n = 100 simulations, open-mouth vs. neutral: 128 

p = 0.28, Bonferroni correction), or only slightly better than that of the pout-lips classifier (Mann129 

Whitney U test, n = 100 simulations, open-mouth vs. pout-lips: p = 0.041, Bonferroni correction). 130 

Because visual cortical projections to the amygdala originate exclusively from area TE [13], these 131 

results are consistent with the idea that rapid detection of threat faces in the amygdala is mediated 132 

by signals from the pathway that bypasses visual cortex [3, 4, 19, 20].  133 

 134 

At the trough and the global peak, the neutral classifier performed better than the emotional 135 

classifiers both in the amygdala (Figure 2D, middle and right) and temporal cortex (Figure 2F, 136 

middle and right). The similar profiles at the later periods suggest that the amygdala and the 137 

temporal cortex may share the results of processing along the ventral cortical pathway. 138 

 139 

The dynamics of the classifier output (weighted sum of responses) indicated that both excitatory 140 

and suppressive responses contributed to the early discrimination of open-mouth faces from the 141 

other faces (Figure 3A and 3B). Neurons with a positive weight contributed to the discrimination 142 

by responding more strongly to the open-mouth faces than to the other faces, while neurons with 143 

a negative weight exhibited weaker responses to the open-mouth faces than to the other faces 144 

(Figure S4A). Given this qualitative difference, we divided the amygdala neurons into positive-145 

weight (n = 51) and negative-weight (n = 48) groups. We then separately plotted the time course 146 

of their outputs to see how well they discriminated different facial expressions as a function of 147 

time after stimulus onset. Note that one neuron had a zero weight and was excluded from the 148 

analysis. At the early peak (arrowheads in Figure 3A and 3B), the weighted sum was stronger in 149 

response to the open-mouth faces than to the other faces in the positive-weight group (Mann150 

Whitney U test, n = 100 simulations, open-mouth vs. neutral: p = 1.3 × 10-33, open-mouth vs. 151 

pout-lips: p = 1.0 × 10-33, Bonferroni correction) and weaker in the negative-weight group (Mann152 
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Whitney U test, n = 100 simulations, open-mouth vs. neutral: p = 7.8 × 10-34, open-mouth vs. 153 

pout-lips: p = 7.8 × 10-34, Bonferroni correction). In Figure 3A and 3B, we used Bonferroni 154 

correction (n = 3) based on the three pair-wise comparisons at the early peak. The weighted sum 155 

in response to the open-mouth faces at the early peak was stronger than pre-stimulus levels 156 

(excitation) in the positive-weight group (Mann Whitney U test, n = 100 simulations, 51-ms 157 

window vs. 1-ms window: p = 2.1 × 10-31, Bonferroni correction) and weaker (suppression) in the 158 

negative-weight group (Mann Whitney U test, n = 100 simulations, 51-ms window vs. 1-ms 159 

window: p = 1.7 × 10-33, Bonferroni correction) (see Figure S4B for single neuron correlation 160 

between the sign of the weight and the sign of the early response). Thus, both excitation and 161 

suppression in the amygdala contributed to the early discrimination of open-mouth faces by its 162 

neuronal population. 163 

 164 

An analysis of spatial frequency (SF) selectivity suggested that early excitation and suppression 165 

might have different roles in detecting open-mouth faces (Figure 3C 3E). We previously 166 

examined reference frames for SF in face-responsive neurons by testing the effects of stimulus 167 

size on SF selectivity (Figure 3C) [14]. We showed that a population of amygdala neurons has 168 

retina-based SF (cycles/degree) tuning that is predicted by the limited SF bandwidth of the 169 

subcortical pathway [21]. Other populations have image-based SF (cycles/image) tuning that 170 

requires broad SF bandwidth, which is a common property of the temporal cortex neurons [14]. 171 

Retina-based SF tuning is possibly related to social distance computation [22] because the tuning 172 

retains sensitivity to stimulus size (Figure 3D, upper panel), and hence viewing distance. Image-173 

based SF tuning (Figure 3D, lower panel) is consistent with size-independent performance for 174 

recognizing spatially filtered faces in human observers [23, 24]. For the amygdala open-mouth 175 

classifier, weight strength at the early peak correlated with the SF-tuning type across neurons 176 

(retina-based vs. image-based, characterized by shift index; see STAR Methods) (177 

rank correlation, n = 35, rs = 0.48, p = 0.0036; Figure 3E). The positive-weight neurons (early 178 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/174037doi: bioRxiv preprint 

https://doi.org/10.1101/174037


 

8 

excitation type) tended to have retina-based SF tuning and the negative-weight neurons (early 179 

suppression type) had image-based SF tuning. This trend was not observed in the temporal cortex 180 

population (51 ms, open-mouth classifier, n = 37, rs = 0.037, p = 0.83) or at the global peak within 181 

the amygdala population (163 ms, open-mouth classifier, n = 35, rs = 0.24, p = 0.16). 182 

 183 

Because of its link with retina-based SF tuning, the early excitation that we observed in some 184 

amygdala neurons is likely mediated by subcortical processing. Supporting this is the dissimilarity 185 

in performance profiles for the amygdala and temporal cortex at the early peak (Figure 2D and 186 

2F). Thus, even if fast signals from the temporal cortex exist, they likely provide only a minor 187 

contribution to early discriminatory signals in the amygdala. Rapid subcortical processing might 188 

send threat-face information further downstream (Figure 4). Assuming local inhibition within the 189 

amygdala [25], the fast subcortical processing could initiate early suppression of another group 190 

of amygdala neurons. If so, the link between early suppression and the temporal cortex-like 191 

property (i.e., image-based SF tuning) that we found suggests a convergence of subcortical and 192 

cortical processing in single amygdala neurons with a time delay (Figure 4). Slower sustained 193 

excitatory responses (most likely corresponding to cortical inputs) rebound from the suppression 194 

and sharply rise in their response time course (Figure 3B, red line). We speculate that this 195 

potentially improves detection of facial information by downstream areas because of the enhanced 196 

temporal contrast [26].  197 

 198 

Our results, based on single-neuron responses in the amygdala and the temporal visual cortex to 199 

the same stimuli in the same animals, thus provide strong evidence for a rapid, subcortically 200 

mediated response of amygdala neurons to emotional faces that is independent from cortical input 201 

via visual areas in the temporal cortex. Although we used a relatively small stimulus set (e.g., no 202 

appeasing grimace  faces) that may result in an underestimation of the neural selectivity for 203 

facial expressions, and repeated presentations of the same fixed set to the monkeys that may lead 204 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/174037doi: bioRxiv preprint 

https://doi.org/10.1101/174037


 

9 

habituation [7], we found rapid discrimination of facial expressions by amygdala neurons, which 205 

has not been observed in previous studies [9 12]. Our success in detecting this rapid response 206 

might be related to the choice of a proper time window for analysis (50 ms), given the dynamics 207 

of the selectivity profiles in the amygdala (compare the profiles at different time windows in 208 

Figure 2D). The 50-ms window avoids merging the heterogeneous profiles along the time axis, 209 

while it gains statistical power by virtue of temporal averaging. 210 

 211 

In LeDoux s [20] original proposal, fast threat detection by the primate amygdala may be 212 

inaccurate at times because the tradeoff between speed and accuracy in visual processing favors 213 

speed (e.g., quick detection of a snake-like object is more important than accurately 214 

discriminating real snakes from snake-like ropes). Here, we demonstrated the speed of threat 215 

detection by the amygdala, but not its accuracy. Clarifying the accuracy and its relation to the 216 

speed requires further studies that analyze the detailed selectivity of face-responsive neurons 217 

during the early time window. 218 

 219 

Finally, we propose a -  model by incorporating local inhibitory interaction within 220 

the amygdala into - model. The temporal asynchrony of the subcortical 221 

and cortical processing, in addition to the transmission speed within the subcortical route, may be 222 

a key for achieving reliable threat detection. 223 

  224 
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Figure Legends 302 

Figure 1. Selectivity for facial expression in individual neurons. (A) Recording sites. A coronal 303 

section of a magnetic resonance image at A23 in monkey S. We recorded from the amygdala 304 

(orange circles) and the temporal visual cortex (purple circles). See Figure S1A for histological 305 

verification. (B) Visual stimuli. The stimulus set consisted of nine face images with three different 306 

facial expressions (open- -lips) displayed by three different monkeys. 307 

(C and D) Time course of responses for different facial expressions in two examples of amygdala 308 

neurons (mean ± SEM, 50-ms sliding window). Dashed lines represent the mean firing rate 309 

immediately before stimulus presentation (-50 to 0 ms). The early window (30-80 ms) is indicated 310 

by the filled arrowhead. (E and F) Time course of the number of facial-expression selective cells 311 

(Friedman test, p < 0.05, 50-ms sliding window) in the amygdala (E) and temporal cortex (F). 312 

Dashed and dotted lines represent 95 and 99 percentiles of the null distribution made by shuffling 313 

the data, respectively. The early window (30-80 ms) is indicated by the filled arrowhead. 314 

 315 

Figure 2. Population discriminability assessed by linear classification. (A) Discriminability 316 

of facial expressions by population responses. Each symbol indicates the response of a population 317 

of neurons to a given image in a given trial, and different symbol types denote responses to 318 

different facial expressions. A linear hyperplane (dotted line) that effectively separates a response 319 

cluster from the others was determined for each facial expression by a support vector-machine 320 

procedure (see STAR Methods). (B) Implementation of classifiers based on the weighted sum of 321 

responses. The linear hyperplane in (A) is defined by weights on each axis (determining the 322 

hyperplane orientation) and an offset from the origin. The weights are zero, positive, or negative. 323 

The final decision is made by selecting the classifier with the largest output. (C) Time course of 324 

discrimination performance for the amygdala population. Average performance across 100 325 

repetitions is plotted along the time axis. The gray line represents chance performance estimated 326 

by shuffling the data. Representative time windows are indicated by the filled arrowhead (early 327 
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peak), open arrowhead (trough), and arrow (global peak). (D) Performance profiles of the 328 

amygdala population at the representative windows. Performance accuracy (mean ± SEM across 329 

100 repetitions) is plotted for the open-mouth (O), neutral (N), and pout-lips (P) faces. Gray lines 330 

indicate chance level estimated by shuffling the data. *, Mann Whitney U test, p < 0.05, 331 

Bonferroni correction; **, Mann Whitney U test, p < 0.01, Bonferroni correction. (E and F) Time 332 

course and profiles for discrimination performance in the temporal cortex population. 333 

Conventions are the same as in C and D. 334 

 335 

Figure 3. Performance of the open-mouth classifier constructed for the amygdala 336 

population at the early peak. (A and B) Time course for the weighted sum of responses across 337 

amygdala neurons having positive (A) and negative weights (B). One neuron had a weight of 0 338 

and was excluded from the analysis. The weighted sums were averaged across 100 repetitions. 339 

SEMs are shaded, but are too small to visualize. (C) Visual stimuli for testing the effects of 340 

stimulus size on spatial frequency (SF) tuning. A stimulus set consisted of 35 images (all 341 

combinations of 7 SFs and 5 sizes; for details, see STAR Methods) in actual experiments. (D) 342 

SF tuning curves of neurons ideally tuned for retina-based SF (cycles/degree) (upper panel, shift 343 

index = 1) and for image-based SF (cycles/image) (lower panel, shift index = 0). Shift index was 344 

calculated from the effects of stimulus size on SF tuning and thus represents SF-tuning type (for 345 

details, see STAR Methods). (E) Relationship between weight strength and shift index. Mean 346 

values across 100 repetitions are plotted for weight strength. 347 

 348 

Figure 4. The dual-roles model for processing threat faces. Early excitation through the 349 

subcortical pathway in a group of amygdala neurons mediates rapid signaling of threats. Early 350 

suppression in another group of neurons that originates from the subcortical pathway and is 351 

mediated by local inhibition enhances late-arriving excitatory inputs from the cortical pathway 352 

via temporal contrast. 353 

354 
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STAR METHODS 355 

Contact for reagent and resource sharing 356 

Further information and requests for resources and reagents should be directed to and will be 357 

fulfilled by the Lead Contact, Ichiro Fujita (fujita@fbs.osaka-u.ac.jp). 358 

 359 

Experimental model and subject details 360 

We used two adult Japanese monkeys (Macaca fuscata; monkey S, male, 9 kg; monkey K, female, 361 

7 kg). All animal care and experimental procedures were approved by the Animal Experiment 362 

Committee of Osaka University in compliance with the National Institutes of Health Guide for 363 

the Care and Use of Laboratory Animals [DHEW Publication No. (NIH) 85-234, Revised 1996, 364 

Office of Science and Health Reports. DRR/NIH, Bethesda, MD 20205]. 365 

 366 

Method details 367 

Surgery 368 

A head holder and a recording chamber were attached to each monkey with the aid of magnetic 369 

resonance images for positioning. To record from the amygdala and temporal cortex, the chamber 370 

was centered at 20 or 21 mm anterior and 10 mm lateral to the ear canals with a 10° lateral tilt 371 

relative to the midline. All surgical procedures were performed under anesthesia with isoflurane 372 

(Forane, Abbott, Tokyo, Japan, 1 3%; in 70% N2O and 30% O2) and aseptic conditions. Local 373 

anesthesia was applied with lidocaine (2% Xylocaine; AstraZeneca, Osaka, Japan) as needed. 374 

Arterial oxygen-saturation level, body temperature, heart rate, and an electrocardiogram were 375 

continuously monitored. Monkeys were treated with an antibiotic (Pentcilin, 40 mg/kg, i.m.; 376 

Toyama Chemical, Tokyo, Japan), an anti-inflammatory/analgesic agent (Voltaren, 1 mg/kg, 377 

Novartis Pharma, Tokyo, Japan; or Menamin, 0.8 mg/kg i.m., Chugai, Tokyo, Japan), and a 378 

corticosteroid (Decadron, 0.1 mg/kg i.m., MSD, Tokyo, Japan) for the first postoperative week. 379 
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After a recovery period (more than 2 weeks), we started to train the monkeys on a fixation task 380 

(see below). 381 

 382 

Visual stimuli and task 383 

Nine images of three monkeys, each displaying three different facial expressions (open-mouth, 384 

neutral, pout-lips), were used as face stimuli (Figure 1B). Open-mouth is an aggressive 385 

expression and pout-lips is an affiliative expression [27]. After isolating faces from body features 386 

and background scenes, the mean luminance and two-dimensional amplitude spectrum were 387 

equalized across the face images to minimize differences in low-level visual features [14]. Visual 388 

stimuli were presented on a Gamma-corrected CRT monitor (HM903D-A, Iiyama, Tokyo, Japan; 389 

screen size, 32.8° × 25.5° in visual angle; resolution, 1600 pixels × 1200 pixels; refresh rate, 85 390 

Hz) with an OpenGL program running on a PC (Precision 330, Dell, Kawasaki, Japan). 391 

Luminance ranged from 0.02 cd/m2 to 46 cd/m2, and the background luminance was 22 cd/m2. 392 

All face images were sized 7.7° × 7.7° on the monitor. For each neuron tested, we presented the 393 

face images to the monkeys at least 6 times in a pseudo-random order (mean: 9.9 times). Although 394 

monkeys were able to expect the timing of stimulus appearance, they were not able to expect 395 

which face image would appear in the upcoming trial. 396 

 397 

During recording experiments, the monkeys performed a fixation task while sitting in a primate 398 

chair. After the monkeys fixated a small dot (0.18° × 0.18°) at the center of the screen for 500 ms, 399 

a face image was presented for 500 ms at the center of the screen. The monkeys obtained liquid 400 

reward for maintaining fixation within the fixation window throughout the trial. If the monkeys 401 

failed to maintain fixation, the trial was terminated without any reward and the data were 402 

discarded. The inter-trial interval was at least 500 ms. Gaze direction was monitored with an 403 

infrared camera system. The size of the fixation window was 2° × 2° for monkey S and 3.5° × 404 

3.5° for monkey K.  405 
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 406 

Electrophysiology 407 

We used stainless steel guide tubes and tungsten electrodes (0.2 -Haer, 408 

Bowdoin, ME) for recording extracellular single-neuron (unit) activity. After penetrating the dura 409 

mater with the aid of a guide tube, an electrode was inserted into the brain through the guide tube. 410 

The tip of the guide tube was positioned at approximately 10 mm above the recording sites. The 411 

voltage signals were amplified (×10,000) and filtered (band pass: 500 Hz to 3 kHz) by an 412 

amplifier (MEG-6116, Nihon Kohden, Tokyo, Japan) and stored on a computer (sampling rate: 413 

20 kHz) for off-line spike sorting. All results shown in this paper are based on data from off-line 414 

spike sorting: spikes were extracted using the template-matching method and then classified into 415 

unit(s) based on their amplitude. For on-line monitoring, we isolated extracellular action 416 

potentials with a spike-sorting system (Multi Spike Detector, Alpha-Omega, Nazareth, Israel). 417 

We maintained the spike amplitude of target neurons higher than that of other units as well as 418 

higher than the noise levels by continuously adjusting the electrode position with the aid of an 419 

electrode manipulator (MO95, Narishige, Tokyo, Japan) throughout the recording session. This 420 

helped us to clearly classify target neurons in later off-line analysis. 421 

 422 

Data analysis 423 

We recorded from 104 and 116 face-responsive neurons in the amygdala (77 from monkey S, 27 424 

from monkey K) and temporal cortex (68 from monkey S, 48 from monkey K), respectively. Face 425 

responsiveness was determined by comparing the firing rate during the 500 ms before stimulus 426 

onset with that during the 500 ms after stimulus onset. Neurons were considered face responsive 427 

if at least one of the nine face images elicited a significant increase in activity (two-sided 428 

Wilcoxon signed-rank test, p < 0.05). 429 

 430 
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We first tested the statistical significance of selectivity for facial expressions (Friedman test, main 431 

factor: facial expression) in a 50-ms time window centered at 55 ms after stimulus onset (the 432 

early window ; 30 80 ms). Because the shortest response latency of pulvinar neurons to faces 433 

and face-like patterns is 30 ms [15], we focused on this specific time window. Across the 434 

population of recorded cells, we counted the number of facial-expression selective cells (criterion: 435 

p < 0.05). To estimate false positives, we made a null distribution of the number of selective 436 

neurons by shuffling the stimulus-response relationships (1,000 repetitions). This determined the 437 

95 and 99 percentiles of the null distribution, allowing false positive estimation at p = 0.05 and p 438 

= 0.01 statistical criteria. 439 

 440 

We then examined the time-course of the selectivity for facial expression using a 50-ms sliding 441 

time window for each individual neuron. We moved the window at 1-ms increments and tested 442 

the statistical significance of the selectivity with the Friedman test (main factor: facial expression). 443 

This yielded a time course of the p value for the effect of facial expression. We counted the number 444 

of facial-expression selective cells (criterion: p < 0.05) at each point in time (Figure 1C 1F). We 445 

estimated false positives at p = 0.05 and p = 0.01 statistical criteria from the null distribution made 446 

by shuffling the stimulus-response relationships (1,000 repetitions) as described above. Because 447 

no systematic changes were present in the false positive estimations along the time course, we 448 

merged and averaged the percentile values across time windows. Additionally, we performed the 449 

same Friedman test analysis with more conservative criterion of p < 0.01 and p < 0.005 in Figure 450 

S2. 451 

 452 

We quantified the degree to which the response distributions differed across the facial expressions 453 

with a receiver-operating characteristic (ROC) analysis [18]. ROC analysis produces a metric 454 

called the area under the curve (AUC) that represents the degree of separation between 455 

distributions (e.g., 0.5, totally overlapped; 1.0, perfectly separated). Note that AUC values smaller 456 
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than 0.5 were converted to values greater than 0.5 by reflecting the values with respect to 0.5 (e.g., 457 

an AUC value of 0.45 was converted to 0.55). We performed this analysis with a one-versus-rest 458 

style (e.g., open-mouth vs. the other faces) using a 50-ms time window (Figure S3). 459 

 460 

We applied a linear classification approach [16, 17] to the population activity of the amygdala 461 

and the temporal cortex to assess how well they discriminated the facial expressions. This 462 

approach constructs multiple classifiers, each for a different stimulus category (the three different 463 

facial expressions). Each classifier has a set of weight parameters that determines the contribution 464 

of individual neurons. During training, the classifiers are optimized to discriminate the three facial 465 

expressions by adjusting the weights. After training, for a given image, each classifier 466 

independently computes a weighted sum of responses to the image for individual neurons. At the 467 

decision stage, the classifier with the largest weighted sum is chosen as the category prediction 468 

for the image. All neurons, even those that are not statistically selective for facial expressions, 469 

can contribute to discrimination performance at varying strengths. We used a sliding time window 470 

(50-ms width, 1-ms step) to examine the time course of the discrimination performance. For cross-471 

validation purposes (see below), we needed a set of the responses for 10 trial repetitions. Among 472 

all face-responsive neurons, 100 amygdala neurons and 113 temporal cortex neurons met this 473 

criterion and were subjected to the analysis. 474 

 475 

For each time window, we independently made different sets of classifiers. To implement them 476 

for a particular time window, we first counted the number of spikes in the time window for a 477 

given trial for each neuron, and produced an array of spike counts for a population of neurons 478 

(response vector). For each stimulus, the response vector x can be plotted as a single point in a 479 

high-dimensional space, in which each axis represents the response strength of different neurons 480 

(Figure 2A). The spike counts were separately normalized within each neuron (the maximum 481 

response was set to 1; e.g., actual spike counts of [0, 1, 2, 3, 4] became response vector of [0, 0.25, 482 
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0.5, 0.75, 1]) to compensate for differences in firing rates across neurons. For other trials using 483 

the same stimulus, additional data points were plotted near the first one with some fluctuations. 484 

Likewise, other clusters might appear for other stimuli. Then, we searched for a linear hyperplane 485 

that separated the set of clusters corresponding to a particular facial expression from those 486 

corresponding to the others (one-versus-rest classification). The computation of a linear classifier 487 

took the following form: 488 

 489 

 490 

 491 

where x is a response vector, w is a weight vector that defines the hyperplane, and b is the offset 492 

of the hyperplane from the origin. We applied a support vector-machine procedure to determine 493 

the weight vector and the offset so that distances between the hyperplane and its nearest data 494 

points were maximized. We used the LIBSVM library [28] to search for the optimal parameters. 495 

The settings of the library were a linear kernel, the C-SVC algorithm, and a cost parameter of 496 

0.125. We employed a portion of the neuronal data (8 out of 10 trials) for this training. Thus, a 497 

total of 72 samples (8 trials × 9 face images) of the response vector were used to determine the 498 

parameters. The remaining 18 samples (2 trials × 9 face images) were used to test classification 499 

performance (the 5-fold cross validation, see below). 500 

 501 

After training different classifiers for each different facial expression, we assessed performance 502 

of the classifiers as a whole using the unused part of the neuronal data. For each classifier (open-503 

mouth, neutral, and pout-lips), a weighted sum was separately computed for a response vector of 504 

a particular sample. After adding an offset, a positive/negative weighted sum indicated that the 505 

data point was inside/outside the hyperplane in the high-dimensional response space. A large 506 

weighted sum was computed for data points that were far from the hyperplane (i.e., a large 507 

positive value corresponded to robustly correct classification). Thus, the weighted sums were 508 
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compared and the classifier with the largest output was chosen as the answer for the population. 509 

Performance was assessed by calculating the proportion of correct answers across the 18 samples 510 

for cross-validation. To determine the temporal evolution of the performance, we repeated this 511 

procedure along the time axis by moving a 50-ms time window. Note that the performance does 512 

not reflect the effects of response covariation in the neurons (noise correlation) because the 513 

neuronal responses were not simultaneously recorded. 514 

 515 

We equalized the number of neurons used for the classification between the two areas because a 516 

greater number generally results in higher performance [17]. In a single simulation, all 100 517 

amygdala neurons were used, and 100 neurons were randomly selected from the 113 temporal 518 

cortex neurons. We repeated this simulation 100 times and the 100 samples were used for 519 

statistical tests (comparisons of correct rates, weighted sums). Chance levels of performance were 520 

estimated with null distributions made by shuffling the stimulus-response relationships. 521 

 522 

For a subset of amygdala neurons (n = 35), we tested effects of stimulus size on neuronal tuning 523 

for image-based spatial frequency (SF) by presenting a series of bandpass-filtered faces (center 524 

SF: 2.0, 2.8, 4.0, 5.7, 8.0, 11.3, 16.0 cycles/image) with different sizes (3.8° × 3.8°, 5.4° × 5.4°, 525 

7.7° × 7.7°, 11.0° × 11.0°, 15.3° × 15.3°). Details of the analysis are described in our previous 526 

paper [14]. In short, we exploited the difference in SF bandwidth between the subcortical and 527 

cortical pathways [21, 29] and evaluated the relative contribution of the two pathways to the 528 

responses. We calculated a shift index from SF tuning curves at different stimulus sizes to 529 

characterize how the preferred image-based SF (cycles/image) changes across stimulus sizes. 530 

When the shift index is 0, the preferred image-based SF does not change across stimulus sizes 531 

(i.e., ideally tuned for image-based SFs). When the shift index is 1, the preferred image-based SF 532 

changes so as to be proportional to the stimulus size. Because dividing image-based SF 533 

(cycles/image) by stimulus size (degrees) produces retina-based SF (cycles/degree), a shift index 534 
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of 1 means that the preferred retina-based SF does not change across stimulus size (i.e., ideally 535 

tuned for retina-based SFs). 536 

 537 

Histology 538 

We performed histological analysis in monkey S to verify the recording sites in the temporal 539 

540 

electrode negative) in these areas, the monkey was deeply anesthetized with an overdose of 541 

sodium pentobarbital (100 mg/kg, i.p.) and transcardially perfused with 4% paraformaldehyde. 542 

The brain was immersed in a graded series of sucrose solutions (10% 30%), frozen, and cut into 543 

80- ained for Nissl substance with cresyl violet. 544 

Recording sites were reconstructed using the position of the lesions (for photomicrographs, see 545 

[14]) and the readings of the electrode manipulator. 546 

 547 

Quantification and statistical analysis 548 

We used non-parametric statistical tests (two-sided Wilcoxon signed-rank test, two-sided Mann549 

550 

data. Error bars and shaded areas denote standard errors of the mean (SEMs). We made null 551 

distributions of the data by shuffling the stimulus-response relationships (1,000 repetitions) and 552 

estimated confidence intervals of the null distributions. 553 

 554 

Data and software availability 555 

We performed all analyses in MATLAB (MathWorks, Natick, MA). The LIBSVM library is 556 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 557 

 558 
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Figure  2
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Figure  3
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Supplemental Information 
 
 
Supplemental Figures 
 

 
 
Figure S1. Detailed information of the recorded neurons. Related to Figure 1. 
(A) Reconstructed recording sites in the right hemisphere of monkey S. Open circles represent recording 
sites where we recorded from face-responsive neurons. The recording sites were primarily in the lateral 
and basal nuclei of the amygdala and in deep portions of the upper and lower banks of the superior 
temporal sulcus. The filled orange circle at level A24 indicates the recording site of the example neuron 
shown in C, which was recorded from monkey S. H, hippocampus; L, lateral nucleus of the amygdala; B, 
basal nucleus of the amygdala; AB, accessory basal nucleus of the amygdala; C, central nucleus of the 
amygdala; sts, superior temporal sulcus; amts, anterior middle temporal sulcus; rs, rhinal sulcus. 
Cytoarchitectonic areas of the temporal cortex are based on [S1]. (B and C) Spike waveforms, raster plots, 
and peri-stimulus time histograms (PSTHs) of two example neurons in the amygdala. Insets; waveforms 
of spikes (n = 100) are superimposed for each neuron. Yellow traces are mean waveforms averaged across 
the spikes. For raster plots and PSTHs, each panel corresponds to responses to each face image (the 
layout of the panels matches Fig. 1B). 
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Figure S2. Time course for the number of facial-expression selective neurons in the amygdala with 
criteria of p < 0.01 (A) and p < 0.005 (B). Related to Figure 1E. 
Conventions are the same as Figure 1E. Note that the statistical criteria of the Friedman test are 0.01 and 
0.005 in this figure, while 0.05 was used in Figure 1E. 
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Figure S3. Time course for changes in the area under curve (AUC) in the amygdala (A) and 
temporal cortex (B). Related to Figure 2C 2F. 
The AUC values calculated by the receiver-operating characteristic analysis represents the separation of 
two response distributions one for a single facial expression (red, open-mouth; black, neutral; blue, pout-
lips) and the other for the other two facial expressions (mean ± SEM). The arrowhead indicates the early 
peak window (51 ms). 
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Figure S4. Relationships between weight of the open-mouth classifier (51 ms window) and response 
properties of the amygdala neurons. Related to Figure 3. 
(A) Relationship between the weight and preference for open-mouth faces. Difference in mean firing 
rates (FRs) for open-mouth and the other faces was calculated at 51-ms time window (early peak) and 
plotted along the y-axis. (B) Relationship between the weight and firing increase/decrease relative to pre-
stimulus levels. Difference in mean firing rates for open-mouth faces at 51-ms (early peak) and 1-ms time 
window (pre-stimulus level) is plotted along the y-axis. 
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