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Abstract 

Interpretation of genetic variation is required for understanding genotype-phenotype associations, 

mechanisms of inherited disease, and drivers of cancer. Millions of single nucleotide variants (SNVs) 

in human genomes are known and thousands are associated with disease. An estimated 20% of disease-

associated missense SNVs are located in protein sites of post-translational modifications (PTMs), 

chemical modifications of amino acids that extend protein function. ActiveDriverDB is a 

comprehensive human proteo-genomics database that annotates disease mutations and population 

variants using PTMs. We integrated >385,000 published PTM sites with ~3.8 million missense SNVs 

from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and inter-individual 

variation from human genome sequencing projects. The database includes interaction networks of 

proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted 

network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. 

ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying 

PTM-associated SNVs. Users can upload mutation datasets interactively and use our application 

programming interface for pipelines. Integrative analysis of SNVs and PTMs helps decipher molecular 

mechanisms of phenotypes and disease, as exemplified by case studies of disease genes TP53, BRCA2 

and VHL. The open-source database is available at https://www.ActiveDriverDB.org. 
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Introduction 

Genome-wide association and DNA sequencing studies have enabled large-scale characterisation of 

human genomes and revealed millions of single nucleotide variants (SNVs), copy number alterations, 

and other types of genetic variants. Interpreting these vast datasets and identifying genotype-phenotype 

associations, molecular mechanisms, causal disease variants and cancer driver mutations remain major 

challenges of current biomedical research (1,2). To date, tens of thousands of genomes of healthy 

individuals and cancer samples have been analysed with DNA sequencing to catalogue protein-coding 

variation in large-scale genomics projects such as The Cancer Genome Atlas (TCGA )(3), the 

Interactional Cancer Genome Consortium (ICGC) (4), the 1,000 Genomes Project (5), The Exome 

Aggregation Consortium (ExAC) (6), and others. Further, comprehensive open-access databases such 

as ClinVar (7) collect clinically annotated disease genes and mutations. The functional impact of SNVs 

is studied using a family of scoring and machine learning methods such as PolyPhen2 (8), SIFT (9) and 

CADD (10) that distinguish benign and deleterious variants by analysing evolutionary sequence 

conservation and other genomic features. These tools and resources are used to prioritize candidate 

SNVs. However information about protein signalling and interactions is not routinely applied to 

understand the genetic basis of human variation and disease.  

Post-translational modifications (PTM) are chemical modifications of amino acids that act as 

molecular switches and expand the functional repertoire of proteins. Post-translational regulation of 

proteins is carried out by modular reader-writer-eraser networks where specific enzymes induce PTMs 

in target proteins, remove PTMs, and interact with modified sites (11). There are more than 400 known 

types of PTMs that can be mapped systematically with high-throughput proteomics technologies 

(12,13). Four types of PTMs have the currently largest experimental datasets available: 

phosphorylation, ubiquitination, acetylation and methylation, with nearly 400,000 sites available in 

public databases (14-16). PTMs are involved in various aspects of cellular organization, including 

protein-protein interactions, protein activation and degradation, regulation of chromatin state, 

organismal development, and signaling pathways associated with human disease and cancer (17-20). 

Further, PTMs are increasingly targetable by drugs and used in precision cancer therapies (21-23). 

Thus PTM information helps interpret genetic variation, map genotype-phenotype associations, and 

investigate molecular mechanisms of disease.  

PTM sites are enriched in known disease mutations, cancer driver mutations, and rare 

population variants (24-29). Sequence motifs in PTM sites recognized by enzymes such as kinases are 

also frequently mutated in disease (25,30), leading to losses of existing sequence motifs and acquisition 

of new motifs, with potential rewiring of cellular signaling networks (27,31). However, common 
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methods for predicting functional impact of SNVs such as PolyPhen2 (8), SIFT (9) and CADD (10) do 

not directly account for PTMs and often underestimate the impact of variants in PTM sites, including 

known disease mutations (25). The PhosphositePlus database maintains downloadable datasets with 

PTM site variation (14), however a dedicated comprehensive database of genetic variation in PTM sites 

does not exist to our knowledge.  

To address this limitation, we developed the ActiveDriverDB database, a proteo-genomics 

resource for interpreting human genome variation using information on post-translational modification 

sites in proteins (24-27). The database integrates experimental evidence about PTMs from recent 

studies of somatic cancer mutations from large-scale genomics studies (3)[submitted: Automating 

Somatic Mutation calling for Ten Thousand Tumor Exomes. Ellrott K., Covington K. R., Kandoth C., 

Saksena G., McLellan M, Bailey M.H., Sofia H., Hutter, C., the MC3 Working Group and the TCGA 

Network], mutations in known disease genes (7), and human genome variation from population studies 

(5,32). We also display the network context of PTM SNVs by analysing protein-protein interactions 

specific to PTM sites as well as drugs targeting upstream PTM enzymes (33). The database allows 

browsing, visualising and interpreting hundreds of thousands of genome variants predicted to affect 

PTM sites in proteins. Besides comprehensive annotation and visualization of SNVs derived from large 

genomics datasets, users can interactively upload, store and analyze their own custom datasets of 

mutations. The database is designed for interactive study of genes and mutations and hypothesis 

generation for basic and translational biologists, while computational biologists can also take advantage 

of downloadable datasets and access the database automatically through an application program 

interface (API). Our database is open source and can be downloaded for local use.  

 

Genomic and proteomic data in ActiveDriverDB 

For interpreting genome variation using protein PTMs, ActiveDriverDB includes two major types of 

human biomolecular data: genomics data on missense SNVs and proteomics data on PTMs (Table 1). 

The terminology of genes and proteins is used interchangeably in the manuscript, however in most 

cases we refer to the primary protein isoform of the gene defined by the HGNC gene symbol.  

Human genome variation datasets include disease-associated SNVs and those attributed to the 

human population in general. First, ActiveDriverDB includes somatic cancer mutations of nearly 

10,000 tumor samples of 34 types derived from large-scale exome sequencing projects conducted by 

the TCGA. Somatic cancer mutations are derived from the recent MC3 release of the TCGA 

PanCanAtlas project [submitted: Ellrott K., et al.]. Known and putative inherited disease mutations 

from the ClinVar database (7) are also available in ActiveDriverDB. Missense SNVs representing 
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inter-individual human genome variation from large-scale population sequencing projects are also 

integrated into the database, including the 1,000 Genomes Project (5) with more than 2,500 genomes 

and the ESP6500 project (32) with more than 6,500 exomes.  

Proteomics data on post-translational modification sites in human proteins is based on published 

studies and is retrieved from public databases PhosphositePlus(14), Phospho.ELM(15) and HPRD(16). 

The database uses four types of PTMs with the largest number experimentally determined sites 

available – 299,241 phosphorylation sites, 67,933 ubiquitination sites, 21,670 acetylation sites and 

5,666 methylation sites with 385,185 distinct sites in total counted across all protein isoforms. Site-

specific protein-protein interactions of PTM enzymes and their substrate proteins are also derived from 

these databases and comprise experimentally predicted kinase-substrate interactions as only few such 

interactions are known for other enzymes and modification types. We also integrate drugs that target 

upstream PTM enzymes from the DrugBank database (33) to provide translational hypotheses to 

researchers interpreting PTM-associated SNVs. 

In total, the database characterises 540,676 unique missense SNVs in PTM sites across high-

confidence protein isoforms, including 257,333 in cancer genomes, 27,116 in inherited disease and 

more than a hundred thousand variants in population sequencing projects. Above a quarter of unique 

SNVs in high-confidence cancer genes from the Cancer Gene Census database(34) are associated with 

PTM sites (26% or 29,243 SNVs). Among disease genes annotated in the ClinVar database, 27,071 

unique missense SNVs (19%) are associated with PTM sites. These statistics suggest that a large 

fraction of germline and somatic disease mutations can be interpreted using PTM information.  

 

Estimating the impact of mutations on PTM sites 

To discover SNVs in PTM sites, we implemented the analysis pipeline used in our previous studies 

(24-27). In brief, genomic coordinates of mutations were mapped to substitutions in protein sequences 

using the Annovar software and RefSeq genes of human genome assembly version hg19/GRCh37. 

Peptide sequences corresponding to PTM sites were derived from public databases (14-16) and mapped 

to corresponding RefSeq protein sequences using exact sequence matching and by permitting multiple 

matches per sequence. PTM sites extended seven amino acids upstream and downstream of the 

modified protein residue, and multiple clustered PTM sites were merged into consecutive regions. 

Protein domains were retrieved from the InterPro database (35) and mapped into non-redundant 

regions. Disorder predictions were derived using the DISOPRED2 software (36). ActiveDriverDB 

provides information for nearly 30,000 high-confidence isoforms of human genes, however primary 

isoforms according to the Uniprot database (37) are shown by default. 
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Missense SNVs (i.e., substitutions) in PTM sites are annotated with further information 

regarding their position relative to PTMs. PTM SNVs are considered direct if they substitute the central 

amino acid residue that is subject to post-translational modification. Indirect PTM SNVs are classified 

either as proximal or distal (1-2 or 3-7 amino acid residues to the nearest PTM site, respectively). We 

also distinguish variants that affect the four types of PTM sites (phosphorylation, acetylation, 

ubiquitination, methylation) and mutations affecting multiple adjacent PTM sites of different types.  

We also perform sequence motif analysis with our machine learning method MIMP (27) to predict 

impact of mutations on kinase binding sites. MIMP analyses mutations in PTM sites using 476 models 

of sequence motifs bound by 322 kinases and families of kinases derived from public databases and 

experimental datasets (14-16,38,39). It predicts whether SNVs in the motifs cause loss of existing 

kinase-bound motifs or creation of de novo kinase-bound motifs. These predictions suggest the impact 

of missense SNVs on the rewiring of cellular signalling networks.  

 

Searching and browsing PTM mutations in proteins 

The database provides a flexible graphical user interface for finding, visualizing and interpreting SNVs 

in PTM sites and their potential impact on signaling networks.  

Searching for genes, pathways, and diseases. The main search bar available on the front page 

and on the top of each page is a flexible multi-search bar that supports several search objectives. First, 

the user can identify a gene (protein) of interest by either its HGNC symbol that retrieves the primary 

isoform by default (e.g., TP53) or a RefSeq transcript ID that retrieves a specific protein isoform (e.g., 

NM_000546). Second, the database supports search for biological processes of Gene Ontology(40), 

molecular pathways of Reactome (41) (e.g., Wnt signaling pathway). and diseases in the ClinVar 

database (e.g., Noonan syndrome). The latter options retrieve lists of genes ranked by the number of 

PTM SNVs. These search options benefit researchers who are interested in interpreting specific genes, 

pathways, or disease mutations.   

Searching for mutations. The user can search for a gene (protein) according to a mutation of 

interest. This option supports both protein amino acid substitutions (e.g., TP53 R282W) as well as 

missense variants shown in chromosomal coordinates (e.g., chr17 7577094 C T). The latter option is 

supported by our rapid indexing system that covers all potential missense SNVs in the human genome. 

Search for mutations is especially beneficial for genetics researchers who have identified interesting 

missense SNVs in a genome-wide association or DNA sequencing study.  

Browsing top disease-associated genes and pathways. In addition to focused searches, users 

may browse sets of disease-associated genes and pathways with unexpectedly frequent mutations in 
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PTM sites, indicating potential molecular mechanisms of disease. Candidate gene lists are available for 

cancer mutations from TCGA and inherited disease mutations from ClinVar. Disease gene lists are 

ranked according to statistical enrichment of mutations in PTM sites estimated using our ActiveDriver 

method (26). These lists are useful for novice users of the database who are looking for an overview of 

the database through examples of genes and pathways.  

  

Visualisation and analysis of PTM SNVs 

The two primary views in the database, the protein sequence view and the interaction network view, are 

focused on individual genes (proteins). Both views provide detailed visualizations of PTM-associated 

SNVs, tables with additional information, protein descriptions, and external links. The views permit 

filtering of mutations by dataset (inherited disease mutations, somatic cancer mutations, or variants in 

population genomics studies), disease types, and PTM types. All non-PTM mutations can be filtered as 

well. Both views display the primary isoform as default, while alternative isoforms can be selected.  

 

Protein sequence view: sequence features, mutation hotspots, SNV impact on PTMs and network 

rewiring 

The protein sequence view comprises three main components: the needleplot of mutation frequencies 

and predicted impact PTM sites, integrated sequence tracks with protein domains and disorder, and a 

detailed table of mutations with frequencies and predicted impact. The needleplot shows the linear 

view of the protein sequence of interest and provides a detailed overview of SNVs in the protein and 

their impact on post-translational modifications (Figure 2A). Mutations are shown as needles 

extending vertically from the sequence and PTMs are shown as blocks of blue tones on the sequence. 

High-frequency mutations are shown with taller needles, and SNVs with PTM impact are colored. 

Mouse-over motion over needle heads displays information about each individual mutation, its disease 

annotations, known PTM enzymes such as kinases binding the site, predictions of network rewiring 

with mutation-induced gains and losses of sequence motifs (Figure 2B), as well as drugs targeting the 

upstream kinases and other PTM enzymes. The needleplot can be zoomed and searched by amino acid 

position. Mutations are also shown below the needleplot as a table that can be sorted and filtered 

(Figure 2C). The protein view additionally displays integrated sequence tracks with the protein amino 

acid sequence, protein domains from the InterPro database (35), and protein sequence disorder 

predictions from the DISOPRED2 software (36). The needleplot can be exported as a high-resolution 

image in PDF format and the mutation table can be exported as a text file or a spreadsheet.  
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Interaction network view: protein interactions in PTM sites, upstream enzymes and drug targets 

In the interaction network view, the selected protein is displayed with the interactions of enzymes 

known to bind its PTM sites. These sub-networks show the protein of interest, all its enzyme-bound 

PTM sites, and the enzymes binding each site (Figure 2D). Drugs targeting the upstream enzymes are 

also shown. Upstream enzymes and drug targets are useful for generating translational hypotheses for 

follow-up experiments such as drug screens in mutated cell lines. The majority of interactions comprise 

phosphorylation sites and associated kinases, as most site-specific interactions are known for this PTM 

type. To highlight interesting proteins in the interaction network, upstream enzymes are colored 

according to their mutation frequency. The interaction networks are visualized using an automatic 

layout algorithm that emphasizes the hierarchical structure of the network. The network layout is 

interactive and can be zoomed and manually rearranged for clarity. The network can be exported as a 

text file and as a high-resolution PDF image.  

Two interaction networks are available for each protein. The high-confidence experimental 

network comprises site-specific kinase-substrate interactions that have been determined in experimental 

studies. The computationally predicted network is based on sequence motif analysis of experimentally 

derived phosphorylation sites using the MIMP software. The latter network shows kinase-substrate 

interactions that are gained and lost through site-specific mutations in motifs as predicted by the MIMP 

software.  

 

Interactive analysis of custom datasets of mutations  

Users can upload their own datasets of genome variants as VCF or tab-separated files. This option 

allows users to interpret their unpublished and published datasets using PTM sites and to directly 

compare their findings with public datasets. The uploaded variants are stored for short term in a 

password-protected area of the website and most visualization and database features are available for 

analysis. The database supports upload of DNA variants as chromosomal coordinates and amino acid 

substitutions as protein-level coordinates.  

 

Automated database access using the application progamming interface (API) 

ActiveDriverDB includes a simple application programming interface (API) based on the 

Representational State Transfer (REST) pattern. This state-of-the-art interface allows computational 

biologists and data scientists access the data through multiple programming environments like R and 

Python. The queries include protein or DNA-level coordinates of mutations and the ActiveDriverDB 

returns PTM annotations of input variants, after converting DNA coordinates to protein coordinates. 
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Additional options for queries are available, including filters for mutation types (cancer, inherited 

disease, population), querying of mutations by gene symbol or refSeq ID, and others described in 

documentation online. 

 

Software design and availability 

The web application uses the Flask Micro framework and two relational databases: the first for constant 

biological data and the second for dynamic content and user-provided data. Additionally a key-value 

BerkleyDB database is used for mapping of all potential missense SNVs in the human genome. 

Visualisations are implemented in the d3.js framework. Our needleplots are inspired by the original 

muts-needle-plot library (https://zenodo.org/record/14561). All code is available on terms of LGPL 2.1 

license. Detailed technical documentation is available on GitHub at 

https://github.com/reimandlab/ActiveDriverDB.  

 

Frequent cancer mutations in PTM sites in the tumor suppressor protein TP53 

The tumor suppressor TP53 is mutated in 50% of all cancers. The transcription factor TP53 regulates 

the gene expression of numerous cellular processes by binding specifically to DNA. Consistently, most 

cancer mutations in TP53 are located in the DNA-binding domain (DBD) of the protein and one third 

of these mutations are clustered in seven hotspot regions (R175, G245, R248, R249, R273, R282) 

(Figure 2A) (42). Although most of the mutations in TP53 lead to inhibition of its transcriptional 

activity and loss of function, mutations such as R282W lead to gain of function and provide TP53 with 

oncogenic abilities that are distinct from its wild-type roles (reviewed in (42,43)). To date, the 

mechanisms by which R282W leads to this transformation are still unclear (44).  

Interestingly, MIMP analysis of sequence motifs in TP53 predicts that the substitution of R282 

to tryptophan, glycine or glutamine induces a network reviewing effect by abolishing the sequence 

motif of the Aurora B kinase (AURKB) in the phosphosite T284 of TP53 (Figure 2B, 2C) (27). In 

vitro phosphorylation assays as well as immunoprecipitation experiments of TP53 in cells with ectopic 

expression of Aurora B show that the kinase interacts and phosphorylates TP53 on multiple residues, 

including T284 (Figure 2D) (27,45,46). Consistent with a role of the kinase in regulating TP53 

activity, substitution of T284 for a glutamic acid inhibits it ability to promote the transcription of 

CDKN1A (45). According to our analyses, more than 250 mutations in the TCGA dataset have the 

potential to affect phosphorylation at T284 in a direct, proximal or distal manner (Table 2), suggesting 

that these mutations may regulate a common cancer-related function of TP53. As R282W is associated 

with early cancer development (47), it will be interesting to investigate the phenotype induced by these 
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mutations on the transcriptional and oncogenic function of TP53. Furthermore, as the characterisation 

of PTM modifications that enhance tumorigenecity of TP53 mutant protein has emerged in the last 

decade (43), it also raises the possibility that inhibition of T284 phosphorylation in the R282W mutant 

of TP53 contributes to the acquisition of its oncogenic function. By highlighting clusters of mutations 

that impact a common PTM site, our database provides hypotheses to experimentally investigate the 

role of this PTM in regulating the wildtype and the gain-of-function mutant TP53. 

 

Inherited and somatic PTM-associated mutations of BRCA2 and the DNA damage response 

pathway 

Mutations in the tumor suppressor BRCA2 are linked to an elevated risk of breast and ovarian cancers 

as well as with Fanconi Anemia (FA), a rare chromosome instability syndrome characterized by 

aplastic anemia in children and susceptibility to leukemia and other types of cancer (48,49). 

Consistently, disease-associated SNVs of BRCA2 reported in the ClinVar database are associated with 

familial breast cancer and hereditary cancer-predisposing syndrome. At the molecular level, BRCA2 is 

centrally involved in DNA double strand break (DSB) repair by homologous recombination and other 

aspects of genome stability such as DNA replication, telomere homeostasis and cell cycle progression 

(50). To safeguard genomic stability at DSBs and stalled replication fork, BRCA2 relies on its ability to 

interact with RAD51, an interaction that is regulated by cell cycle-dependent kinases (CDKs) (51-54).  

Using the ActiveDriverDB database, we studied PTM-associated SNVs in BRCA2 detected in 

the TCGA project and inherited disease mutations annotated in the ClinVar database. We found that a 

significant number of somatic and inherited cancer mutations coincide with phosphorylation sites (29 

SNVs in ClinVar, FDR=10-47; 15 SNVs in TCGA, FDR=10-6)(Figure 3). One cluster of three 

phosphorylation sites (S3291, S3319, T3323) is located in the C-terminal of BRCA2, a region whose 

deletion is associated with increased radiation sensitivity and early onset of breast and ovarian cancers 

(55-57). The C-terminal domain of BRCA2 also contains nuclear import signals and a TR2 region (a.a. 

3265-3330) that interact with nucleofilaments of RAD51 (52,54). Phosphorylation of TR2 by cyclin 

dependent kinases (CDKs) inhibits its ability to bind RAD51 nucleofilaments and is essential for entry 

into mitosis (51,52,54,58). Interestingly, the substitution of S3291A does not impact the DNA repair 

function of BRCA2 but it abolishes its ability to stabilize stalled replication forks (59). This 

observation suggests that this phosphorylation site plays an additional role during replication fork 

recovery. Substitutions that impact directly conserved phosphorylation sites (S3921, S3319, T3323) 

and CDK PTM consensus sites (P3292L/S, P3320H and P3324L) are associated with familial breast 

cancer and hereditary cancer-predisposing syndrome. Thus, we propose that mutations in this cluster of 
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phosphosites abrogate the ability of BRCA2 to safeguard genomic stability either by inhibiting the 

interaction of BRCA2 with RAD51 nucleofilaments (S3291) or by a yet unknown mechanism. As the 

substitutions of S3319 and T3323 for glutamate do not abolish the interaction of TR2 with RAD51 in 

GST pull down assays (51), it is possible that these mutants interfere with the function of BRCA2 at 

stalled forks. Our analysis also highlights a substitution that potentially rewires phosphorylation events 

in the C-terminus of BRCA2. The mutation Q3321E creates a putative phosphorylation site for PLK1 

(Polo-like kinase 1) that regulates multiple processes during mitosis. Disruption of BRCA2 during 

cytokinesis leads to genomic instability through a yet undefined mechanism (reviewed in (60)). During 

this process, PLK1 promotes the recruitment of BRCA2 to the midbody by phosphorylating its N-

terminal region (S193) (61). As the functions of BRCA2 are differently regulated in a cell cycle 

dependent manner by CDKs and PLK1, aberrant phosphorylation of BRCA2 could impact genomic 

stability by rewiring its activities throughout different phases of the cell cycle. This example illustrates 

the integration of PTM information and genetic mutations to predict novel experimentally testable 

hypotheses of disease mechanisms. 

 

Network-rewiring mutations in the tumor suppressor VHL alter putative binding sites of CDK 

kinases 

VHL is a tumor suppressor protein best known for its role in regulating cellular response to changes in 

tissue oxygen saturation (62). It encodes is the substrate recognition component of an E3 ubiquitin 

ligase complex that functions to constitutively down-regulate proto-oncogenic substrates such as 

protein kinase C, retinol binding protein 1, and hypoxia-inducible transcription factors (HIF) (62,63). 

VHL is frequently inactivated in cancer and up to 90% of all clear cell renal cell carcinomas (ccRCCs) 

harbour gene-silencing mutations (63). In particular, the mutation L169P along with the other p.157–

172 subdomain mutations are considered hotspot mutations in ccRCCs (63) (Figure 4). 

Phosphorylation of VHL at S168 by NIMA Related Kinase 1 (NEK1) has been associated with VHL 

degradation and cilliary homeostasis (64). The mutation L169P is adjacent to the phosphosite S168 and 

another NEK1 phosphorylation site at Y175 and thus may impact the phoshposignalling of VHL.  

Given the mutation and kinase-network information in ActiveDriverDB, we propose that three 

L169P mutations observed in TCGA kidney cancers may cause gains of phosphorylation sites bound 

by the cyclin dependent kinase 1 (CDK1) or related kinases CDK2, CDK5, CDK7 and MAPK1, 

MAPK3 and MAPK14. While little is known about direct interactions between the oncogenic CDKs 

and VHL, VHL inactivation has been clinically linked to increased levels of CDK1 and CDK2 (65). 

CDK1 is also known to stabilize members of the HIF family, which are targets of VHL (66). 
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Investigating the role of the L169P mutation in the context of VHL phosphorylation and upstream 

kinases may reveal details about disease mechanisms. Since CDK1 is a drug targetable enzyme, assays 

with drugs such as alsterpaullone and alvocidib (33) may also be beneficial for research into targeted 

therapies. 

 

Discussion 

ActiveDriverDB is a comprehensive human proteo-genomics resource that uses information on post-

translational modifications of proteins to interpret disease mutations and inter-individual variation. 

While PTMs are important regulators of protein function with key roles in cellular signaling pathways, 

information about PTM sites is often not used for studying genetic variation and prioritizing candidate 

disease mutations. Our database aims to advance analysis of missense SNVs using PTM information 

and provides tools to users with different interests. Novice users of the database can start from example 

queries of well-annotated genes and browse lists of disease genes with significantly enriched PTM-

associated SNVs. Basic and translational researchers can look up their favorite genes and pathways 

using various search options, and export tables and publication-quality figures stemming from their 

analysis. Geneticists can upload and interpret their candidate variants from DNA sequencing 

experiments and compare their findings with existing public datasets. Computational biologists and 

data scientists can use the ActiveDriverDB API to automatically analyze their variants of interest and 

download entire datasets for advanced studies.  

We plan several important future developments of the database. Maintaining timely biomedical 

data resources is essential as new datasets accumulate rapidly and the use of outdated resources 

hampers scientific advances (67). Thus we aim to provide at least annual updates of our database to 

include recent large-scale genomics and proteomics studies and molecular interaction networks. In 

particular, advances in proteomics technologies enable large-scale characterization of other PTM types 

such as glycosylation (68) and SUMOylation (69) in human proteins and such emerging datasets will 

become available in future releases of the database. Datasets of additional species and genomes will be 

also considered, such as the most recent version of the human genome assembly (GRCh38) and model 

organisms such as mouse and Arabidopsis with abundant genome variation and proteomics data 

(14,70).  

Interpreting inter-individual genetic variation will become an increasingly important challenge 

as we enter the era of personal genomics. Integration of proteomic and genomic information for 

deciphering the impact of variation on cellular systems and organism-level phenotypes is a powerful 

approach that will improve with the emergence of future datasets of increasing magnitude and 
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complexity. We aim to provide an integrated database resource to the research community to 

interrogate these datasets and enable future discoveries.  
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Table and Figure legends 
 
Table 1. Overview of genome variation datasets and post-translational modifications included in 

ActiveDriverDB. Counts of PTMs and missense SNVs reflect all high-confidence protein isoforms 

collected in the database.  

 

Table 2. PTM-associated cancer mutations affecting the phosphosite T284 in the tumor 

suppressor protein TP53. The table shows counts of somatic and germline disease mutations 

potentially affecting the phosphorylation site of Aurora kinase B in TP53. 

 

Figure 1. Overview and workflow of ActiveDriverDB. Our proteo-genomic database resource 

integrates genomic and proteomic data for interpreting human genome variation and disease mutations 

with information on post-translational modifications (PTMs). Genomics datasets (top-left panel) 

include cancer genome sequencing studies (TCGA), disease genes and mutations (ClinVar), and human 

genome variation studies (ESP6500, the 1,000 Genomes Project). Proteomics datasets (top-right panel) 

include PTM sites of four commonly studied PTM types derived from public databases 

(PhosphositePlus, Phospho.ELM, HPRD), site-specific interactions of PTM enzymes and target 

proteins, and drug interactions with PTM enzymes. Our systematic analysis pipeline (middle panel) 

aligns PTM sites with missense single nucleotide variants (SNVs), predicts the impact of SNVs on 

kinase-bound sequence motifs using the MIMP software, and organizes SNVs, PTMs and upstream 

enzymes into site-specific interaction networks. The protein sequence view of the database (bottom left 

panel) shows the distribution of PTMs and SNVs along the protein sequence, while interaction network 

view (bottom right panel) shows the site-specific interactions of mutated proteins with upstream PTM 

enzymes and their associated drugs. The database also provides various exporting, visualization, 

searching and automated analysis tools (bottom middle panel).  

 

Figure 2. PTM-associated cancer mutations in the tumor suppressor protein TP53. (A) Needleplot 

in the protein sequence view shows the distribution of missense cancer mutations from TCGA (vertical 

bars) and their associations with PTM sites (blue boxes) with protein sequence on the x-axis and 

number of mutations on the Y-axis. (B) The substitution R282W disrupts the sequence motif bound by 

the Aurora Kinase B (AURKB). (C) Table of mutations with detailed information, disease associations, 

and impact on SNVs. (D) The experimentally determined interaction network shows the TP53 protein 

(middle node) and its PTM site-specific interactions with upstream PTM enzymes, as well as approved 
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drugs targeting these enzymes. Node shapes indicate types of interacting molecules and sites: protein of 

interest (oval), PTM sites (square), enzymes interacting with PTM site (circle), and drugs targeting the 

enzyme (triangle). Arrows indicate the interaction of TP53 and Aurora kinase B at phosphosite T284 

and the associated substitution R282W.  

 

Figure 3. PTM-associated mutations in the BRCA protein involved in DNA repair and breast 

cancer. (A) Zoomed needleplot shows germline disease mutations from the ClinVar database located 

in three phosphorylation sites in the protein sequence at 3,200-3,400 residues. Only PTM-associated 

mutations are shown. (B) Mutations P3292L and P3292S are predicted to disrupt the sequence motif of 

the CDK2 kinase. (C) Table rows showing additional information on the two mutations. (D) The 

computationally predicted interaction network of BRCA2, its PTM sites, kinases predicted to interact 

with mutant BRCA2 according to the MIMP method, and drugs targeting these kinases. Arrows 

indicate the mutations of the residue P3292 in the protein sequence and interaction network. 

 

Figure 4. PTM-associated mutations in the tumor suppressor protein VHL. (A) Needleplot of 

mutations from the TCGA dataset with the mutation L169P located near two phosphorylation sites. (B) 

The mutations L196P is predicted to disrupt the sequence motif of the CDK1 kinase. (C) Table shows 

additional information on the mutation. (D) The computationally predicted interaction network of 

VHL, its PTM sites, kinases predicted to interact with mutant VHL according to the MIMP method, 

and drugs targeting these kinases. Arrows indicate the mutation L169P in the protein sequence and 

interaction network. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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TCGA ClinVar 1000 ESP6500 Total
PanCanAtlas Genomes

Dataset

Size >11,000 exomes 494,059 records 2504 genomes 6503 exomes -

Description Cancer (somatic) Inherited disease -

Mutations
Total 1,841,901 138,938 1,071,308 1,319,079 3,818,672
in PTM sites 257,333 27,116 143,986 185,920 540,676
with network-rewiring effect 36,393 3,357 20,704 26,678 75,598
Annotated nucleotides (hg19/GRCh37) 2,158,851 155,824 1,211,581 1,486,067 4,401,677

PTM sites affected by mutations*
Total 233,716 16,487 157,772 186,736 309,407
Phosphorylation sites 184,864 12,914 128,372 150,451 244,034
Acetylation sites 12,684 1,251 7,236 8,984 16,779
Ubiquitination sites 38,325 2,641 22,738 28,220 51,320
Methylation sites 3,564 272 2,298 2,577 4,499

Proteins with mutations affecting PTM sites
Total 27,861 3,317 25,149 26,202 29,542
Kinases & PTM enzymes 548 101 516 529 556
Kinase families 127 59 127 126 127

PTM sites
Total - - - - 385,185
Phosphorylation sites - - - - 299,241
Acetylation sites - - - - 21,670
Ubiquitination sites - - - - 67,933
Methylation sites - - - - 5,666

General population

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2017. ; https://doi.org/10.1101/178392doi: bioRxiv preprint 

jreimand
Typewritten Text

jreimand
Typewritten Text

jreimand
Typewritten Text

jreimand
Typewritten Text
Table 1

https://doi.org/10.1101/178392
http://creativecommons.org/licenses/by-nc/4.0/


TCGA ClinVar
R280 T 21 3 distal

I 3 distal
K 17 distal
S 3 distal
G 6 distal

D281 V 4 2 proximal
G 2 proximal
A 2 proximal
H 4 proximal
N 3 proximal
Y 8 proximal
E 6 proximal

R282 W 91 5 network-rewiring
G 4 5 network-rewiring
Q 1 2 network-rewiring
L 2 network-rewiring

R283 H 1 2 proximal
P 9 proximal
C 3 proximal
S 3 proximal

T184 I 1 direct
P 1 direct
A direct
E direct

E285 V 4 2 proximal
K 25 proximal
Q 1 network-rewiring

E286 K 17 1 network-rewiring
A 4 proximal
G 6 proximal
V 1 proximal
Q 1 proximal

Total - - 239 37 -

Mutated a.aReference a.a. Impact on PTMNumber of mutations

T284

Phosphosite 
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