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Abstract: 

Measures of general deleteriousness, like CADD or PolyPhen, have become indispensable 
tools in the interpretation of genetic variants.  However, these measures say little about where in 
the organism these deleterious effects will be most apparent.  An additional, complementary 
measure is needed to link deleterious variants (as determined by e.g., CADD) to tissues in 
which their effect will be most meaningful. Here, we introduce TiSAn (Tissue Specific 
Annotation), a tool that predicts how related a genomic position is to a given tissue 
(http://github.com/kevinVervier/TiSAn). TiSAn uses machine learning on genome-scale, tissue-
specific data to discriminate variants relevant to a tissue from those having no bearing on the 
development or function of that tissue.  Predictions are then made genome-wide, and these 
scores can then be used to contextualize and filter variants of interest in whole genome 
sequencing or genome wide association studies (GWAS).  We demonstrate the accuracy and 
versatility of TiSAn by introducing predictive models for human heart and human brain, and 
detecting tissue-relevant variations in large cohorts for autism spectrum disorder (TiSAn-brain) 
and coronary artery disease (TiSAn-heart). We find that TiSAn is better able to prioritize genetic 
variants according to their tissue-specific action than the current state of the art method, 
GenoSkyLine. 
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Introduction: 

Whole genome sequencing (WGS) is assuming its role as the technology of choice for an 
increasing number of genetic studies. A vast majority of the information yielded by WGS resides 
in non-coding and less well-characterized regions of the genome. Recent work in the annotation 
of non-coding variation has shown that multiple levels of information, integrated using machine 
learning algorithms, are required to capture the diverse regulatory potentials in these regions(1-
4). However, current state-of-the-art variant annotation methods predict generic pathogenicity, 
and largely avoid the question of which tissues, organs, and systems are likely to be most 
susceptible to a particular genetic variation. Projects such as the Genotype-Tissue Expression 
(GTEx)(5) repository and the NIH Roadmap Epigenomics Mapping Consortium (RME)(6), 
provide clear evidence that a variant will not necessarily have the same impact on gene 
expression in different tissues or cell types. Recently proposed approaches, such as 
GenoSkyline(7), have employed cross-tissue methylation levels to annotate genetic variations. 
However, such methods have limitations because they were trained only using data that was 
uniformly collected across a wide variety of tissues, leaving out potentially informative features 
derived from one-off databases for specific tissues. This results in emphasizing performance 
over many tissues, rather than optimizing for a specific tissue. 

 In this work, we introduce Tissue Specific Annotation (TiSAn), which combines the 
power of supervised machine learning, with tissue-specific annotations, including genomics, 
transcriptomics and epigenomics (Supplementary Software 1 and 
http://github.com/kevinVervier/TiSAn for the latest version). We describe a general statistical 
learning framework in which researchers can derive a nucleotide-resolution score for the tissues 
they focus on. As a proof of principle, we apply our methodology to two human tissues, namely 
brain and heart, and we have made pre-computed scores for these two tissues available.  

 

Materials & Methods  

Training set definition. We identify multiple sources for training examples with respect to a 
given tissue T. One way to build such a training set is to look for positions known to be causal of 
a disease in tissue T. This way, we reduce the risk of training a pathogenicity score and make 
sure we extract a signal orthogonal to deleteriousness. For deriving a genome-wide predictor, 
the training set needs to cover both coding and non-coding loci, but also loci related to T 
(positive examples) and unrelated (negative examples). A complete list of the positions used for 
training brain and heart models is provided in Github vignettes 
(http://github.com/kevinVervier/TiSAn/tree/master/vignettes). Two types of public databases 
were used to derive training sets: 
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Genotype array loci: Disease-related loci could be found in Consortium developed 
arrays, designed for targeting specific disorders, such as the MetaboChip(8) for 
cardiovascular diseases, or Illumina Infinium PsychArray Beadchip for psychiatric 
disorders. These probe sets contain tissue-related variants (positive examples), but also 
backbone/non-psychiatric variants which we consider as negative examples if they meet 
a minimal CADD threshold described below. 

Large intergenic non-coding RNAs: Usually, non-coding variants are less functionally 
characterized than coding ones. Large intergenic non-coding RNAs (lincRNAs) 
represent a well-study group of non-coding elements. Databases, such as LincSNP(9), 
contain disease-related variants that occur in lincRNA loci. After defining a list of tissue-
related disorders, we propose to divide this database in two subsets: one related to 
tissue T (positive examples) and one containing background variants (negative 
examples), i.e., deleterious randomly sampled variants not related to the tissue at hand. 
This way, we enrich the training set with non-coding loci. 

 

Exact number of training examples used for TiSAn brain and heart models can be found in 
Supplementary Table 1. 

Weibull distribution. Following Cherkasov et al. (10), we model the distance between a  given 
locus � and a known annotation, following the Weibull distribution and its Extreme Value Theory 
application. Therefore, in the following paragraphs, the distance is measured as:  
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where anno refers to a known annotation position, α is a scale factor, and β is a shape 
parameter. Parameters fitting was performed separately for each annotation, using MASS R 
package.  

Features extraction. We represent each genomic position in a functional space made of 
hundreds of different annotations. In the following, we describe how such signal can be 
extracted using publically available data sets. More details can be found in Github vignettes 
(http://github.com/kevinVervier/TiSAn/tree/master/vignettes).  

 Nucleotide frequencies are linked to overall regulatory activity (G/C content), and 
patterns in nucleotide k-mers are at the core of transcription factor binding site detection(11). 
Recently, specific patterns have been identified to be tissue-specific(12), and we incorporate 
this information by computing frequencies for all �-nucleotides (� � ��, �, �, ��), found in a +/- 
500 base pair neighborhood around a locus �. 
 Links between disease traits and tissue-specific gene expression have been reported in 
studies using the rich GTEx dataset(13). For each genomic location, we extract features based 
on how close � is to known eQTLs for tissue T, and for other tissues. Weibull distribution was 
used for modeling the minimal distance to a GTEx eQTL (Supplementary Fig. 1). We also derive 
Boolean features for whether or not the genomic position � is at the exact location of a GTEx 
eQTL, which puts more weight for being a known locus. Although some genes expression 
shows variation across tissues, comprehensive resources and exhaustive list of tissue-specific 
genes are limited. It has already been shown that text mining techniques may help to extract 
relationship between genes and disease traits(14). Therefore, we propose to adapt such 
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methods to identify, in the Pubmed database (May 2016 gene2ID database), genes reported to 
be associated with tissue T. Only genes with at least 3 citations were kept. We observed, when 
training the brain model, that around 1,000 tissue-related genes represent enough genome 
coverage to derive a feature based on the proximity between a locus � and a gene, under the 
Weibull distribution assumption (Supplementary Fig. 2).  

 Epigenomics and in particular, methylation profiles have been integrated to explain 
tissue specific regulatory mechanisms(15). Weibull distribution for modeling how the minimal 
distance to a methylated region found in RME database is compared to distance to all the other 
methylated regions (Supplementary Fig. 3). If it happens that the considered position � belongs 
to a methylated region characterized in RME project, we also get the average methylation level 
for T and all the other tissues. 

 Compared to other approaches mostly relying on RME and/or GTEx, we also considered 
tissue-specific data sets made available by the research projects focusing on a single tissue. 
For the brain model, we integrate developmentally differentially methylated positions (dDMPs) 
(16) found in fetal brain. For the heart model, Heart Enhancer Compendium database(17) for 
heart development candidates was used. 

Supervised machine learning model training. Considering the aforementioned training sets, 
we fit several machine learning approaches and compare them based on their 10-folds cross-
validated performances (here, area under the ROC curve, AUC), and selected random 
forest(18) algorithm to train the final model (Supplementary Table 2, AUC = 0.8). Using cross-
validation, we optimize both the number of trees and the number of variables to consider at 
each node in the randomForest R package.  

From class probability to rescaled odd-ratio. Current approaches often consider the raw 
class probability as their functional score, requiring additional tuning step from the user. Here, 
we propose to rescale the classifier output, into a ready-to-use score. First, we define an optimal 
cutoff value on the probability (Supplementary Fig. 4a and 5a), as the smallest value which 
reaches a false discovery rate of 10%. For instance, this threshold is equal to 0.48 for the brain 
model and to 0.67 for the heart model. Then, we rescale the filtered probability to a score 
between 0 and 1, using the formula: 

��� ��, � � ������ � 
���
������


���
������

 �������. 

The main advantage of this step is to standardize predictive models, and push loci not tissue-
related to a score strictly equal to 0 (Supplementary Fig. 4b and 5b). 

Reference genome: Analyses performed in this study used the hg19 reference genome.  

Evaluation framework. In all analyses presented in this study, we carefully removed positions 
that were both found in the TiSAn training and the validation sets, avoiding over-optimistic 
performances. 

GWAS prioritization in coronary artery disease (CAD) cohort. CARDIoGRAM consortium 
GWAS meta-analysis summary statistics for 8,443,810 SNPs were downloaded at 
http://www.cardiogramplusc4d.org/media/cardiogramplusc4d-consortium/data-
downloads/cad.additive.Oct2015.pub.zip. Correlation between functional score and association 
strength (Fig. 3) was obtained by binning in 100 percentile bins on reported association P-value. 
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Then, relative score enrichment is computed for top1% variants and iteratively, until merging all 
the data. We derived confidence interval for both TiSAn and GenoSkyline by random 
permutations on the GWAS p-values. On the purpose of ranking variants, we filtered variants 
not predicted as functional by either TiSAn (zero score), or by GenoSkyline (score < 0.15).  

Variant enrichment in vicinity of ASD genes. Variants found in 960 Simons Simplex 
Collection (SSC) individuals, including probands and parents were filtered based on their 
pathogenicity using CADD score. We estimated two different threshold values for coding (>15) 
and non-coding (>10.7) variants. Those values correspond to the top 10%-ile found in the 1000 
Genomes data. We also focused the analysis on variants found in a +/-50,000bp windows 
around well-supported ASD genes, with more than 20 citations in the June 2016 SFARI gene 
list at http://gene.sfari.org/autdb/HG_Home.do (Supplementary Table 3). The same filters were 
applied to variants found in 1000 Genomes (1KG) European ancestry population (Phase 3). 
Coding and non-coding variants were separated based on their RefSeq(19) function annotation. 
The relative gain in average score (Fig. 2a and b) is calculated by doing the difference between 
average score in SSC and in 1KG, divided by the score in 1KG. Cumulative score enrichment 
for SSC over 1KG variants (Fig. 2c) is obtained by binning all variants from the two datasets 
based on their score, in 5%-ile groups. Then, average score ratio between the two groups is 
computed in each bin, and summed in a cumulative way, from the top 5% to all the data. 

Transcription factor binding site (TFBS) enrichment in tissue and cell type. ENCODE 
project provides a large repository for TFBS location in various cell type contexts. Here, we put 
together two databases, both available as UCSC Genome Browser tracks, factorbookMotif, 
which contains the location of more than 2 million TFBS across the genome, and 
EncodeRegTfbsClustered, which provides information regarding the cell types where TFBS 
were observed. Overlapping the two databases results in 1,514,086 unique TFBS found in 53 
families. For each of those TFBS, we expanded their location using a 1,000 base pairs window, 
and TiSAn heart and brain scores were extracted. Scores were centered and scaled around the 
center value and show the actual score enrichment along the window. An average profile was 
computed for all TFS categories and cell types. 

Software availability  

 - Genome-wide TiSAn score databases are available in bed format (with index) at: 

• http://flamingo.psychiatry.uiowa.edu/TiSAn/TiSAn_Brain.bed.gz  
• http://flamingo.psychiatry.uiowa.edu/TiSAn/TiSAn_Heart.bed.gz 
• http://flamingo.psychiatry.uiowa.edu/TiSAn/TiSAn_Brain.bed.gz.tbi 
• http://flamingo.psychiatry.uiowa.edu/TiSAn/TiSAn_Heart.bed.gz.tbi  
• Tutorial and vignettes are also available at 

http://github.com/kevinVervier/TiSAn.  

 - GenoSkyline approach: we downloaded brain and heart models on the tool website 
(http://genocanyon.med.yale.edu/GenoSkyline), in November 2016. 

 - Combined Annotation Dependent Depletion (CADD): Deleteriousness annotation were 
performed using the CADD v1.0 (published version) at 
http://krishna.gs.washington.edu/download/CADD/v1.0/whole_genome_SNVs.tsv.gz  

Results: 
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Machine learning for predicting tissue-specific functional annotation  

The design of TiSAn models is outlined in Figure 1 (details in Materials & Methods section). 
Taking advantage of publically available datasets(5,6), we extracted more than 350 different 
genome-wide variables which were used to describe two large sets of disease-related loci. 
Training a supervised machine learning model requires positive and negative examples: here, 
positive examples were nucleotide positions that had been previously linked to a tissue-specific 
disease, and negative examples were variants that had no established link to the tissue-specific 
disease in question. Predictive models were trained on the labeled datasets and optimized to 
achieve high discrimination of tissue-specific loci (Sup. Fig. 4-5). Here, a position with a score 
equal to 1 can be considered strongly associated with the tissue, whereas a score of 0 means 
no association at all, and such a position is usually discarded in subsequent analysis. 

 In the following, we demonstrate TiSAn performance in three different settings, i) 
performing tissue-specific enrichment in case-control cohort, ii) enhancing results from a 
genome-wide association study (GWAS), iii) extracting genome-wide tissue-specific 
transcription factors. We also consider a recently proposed tool, GenoSkyline(7) that provides a 
genome partition in terms of functional segments, using methylation data only. Our approach 
aims to provide functional prediction at the single nucleotide resolution, because variants found 
in large predicted functional blocks (as is the case in GenoSkyline) may in fact have different 
functional effects. 

 

Brain-specific variant prioritization in a sample with familial risk for autism  

Genome-wide enrichment for brain-related variations in affected individuals 

 The Simons Simplex Collection (SSC, http://base.sfari.org) provides whole genome 
sequencing for one of the largest autism spectrum disorder (ASD) cohorts currently available. 
We hypothesized that deleterious genetic variation found in the vicinity of ASD-related genes 
would show higher enrichment in terms of brain-related functional consequences (as measured 
by the TiSAn-brain and GenoSkyline-brain scores) in the SSC compared to the 1000 Genomes 
(1KG)(20). We further assessed enrichment using the respective heart-specific scores as a form 
of negative control. In this analysis, the TiSAn-brain score shows the only positive tissue-
specific enrichment, over 50% for coding variants (Fig. 2A) and around 10% for non-coding 
variants (Fig. 2B). Notably, there is a significant difference between TiSAn brain and heart 
scores (Wilcoxon signed-rank test, P < 2x10-16), suggesting effective tissue specificity, whereas 
this was not observed for GenoSkyline models (Wilcoxon signed-rank test, P = 0.351). 

 

Case-control variants filtering with brain-specific annotation 

 Next, we ranked and binned variants according to their tissue-specific scores (i.e., TiSAn 
or GenoSkyline) and calculated the enrichment of SSC deleterious variants in each bin, with 
respect to deleterious 1KG variants.  Because the SSC is a neurodevelopmental cohort, we 
expect to see over-representation of SSC variants in the most confidently called brain-related 
genomic regions. Indeed, significant enrichment of SSC variants was observed in the top 
quantiles for TiSAn-brain but also for both GenoSkyline models (Fig. 2C). Surprisingly, the 
GenoSkyline-heart model reports a more pronounced enrichment than the corresponding brain 
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model, suggesting a potential lack of tissue specificity for GenoSkyline. TiSAn-brain achieves 
the highest enrichment by ranking 2.5 times more SSC variants in the top 5% than 1KG 
variants.  

 

Autism and calcium channel genes 

 An autism-related calcium voltage-gated channel gene, CACNA1C(21), was the gene 
with the highest TiSAn-brain score enrichment in SSC data, suggesting that deleterious variants 
at this locus are more likely to affect brain function. In particular, we identified 116 non-coding 
deleterious variants (see methods for CADD thresholds) in CTCF(22) transcription factor 
binding sites around CACNA1C location in SSC data, while none were found in unaffected 
population. Mutations in the same region also hit non-coding RNAs (ncRNAs) more frequently in 
SSC population than in control population (Fisher’s exact test, P < 2x10-16). Interestingly, 5 of 
these ncRNAs (Supplementary Table 4) were found in linkage disequilibrium with loci 
associated with autism and Tourette's syndrome according to the LincSNP database(9). 

 

Heart-related signal prioritization in coronary artery disease 

 

Genome-wide association strength and annotation score 

 Current approaches to GWAS analysis rely mostly on association strength (e.g., P-
value) to prioritize candidate regions. These variants often belong to large linkage-disequilibrium 
(LD) blocks, making it difficult to decipher the actual causal genetic mechanism. Here, we apply 
TiSAn to the Coronary Artery Disease (CAD) CARDIoGRAM consortium GWAS meta-
analysis(23), and we demonstrate that the TiSAn-heart score is significantly higher among the 
most associated variants (Fig. 3, (Student t-test, P < 2x10-16)). Furthermore, the top 100 SNPs 
(according to their P-value) with a non-zero TiSAn were all found in LD with genomic regions 
strongly associated with coronary artery disease, demonstrating TiSAn high sensitivity. In this 
analysis, no significant enrichment was observed for GenoSkyline-heart (Wilcoxon signed-rank 
test, P = 0.12) or brain models (Supplementary Fig. 8).  

 

Reduction of multiple hypothesis burden in GWAS 

 We filtered tissue-relevant genotyped variants before the GWAS analysis, so that only 
heart-related variants would be considered in the correction for multiple testing. In the case of 
CAD-GWAS, this reduced the number of SNPs considered by 75%. This resulted in significant 
loci being narrowed by 20% on average (paired Student t-test, P = 0.019). Furthermore, the 
overall enrichment in transcription factor binding sites (TFBS) among significant loci is 
conserved between the original set of and the TiSAn-filtered one (Chi-squared test, P = 0.51), 
suggesting that the regulatory content is preserved after the filtering step (a further analysis of 
TFBS, provided in the supplementary information, suggests that TiSAn can reveal which TFs 
have important functional roles in specific tissues). Reducing the number of tested variants 
directly recalibrates the multiple-testing correction threshold used to determine significant loci 
from 5x10-8 to 1.6x10-7. Here, 91 new loci were found significantly associated with coronary 
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artery disease, and show a significant enrichment in EBF1 TFBS (Fisher’s Exact test, P = 
3.2x10-6), which has been previously linked to obesity, diabetes, and cardiovascular 
disease(24). 

 

 

Discussion   

Integrative approaches like TiSAn hold great promise for helping genomics researchers narrow 
down massive lists of variants to focus on those that are most relevant to the tissue or disease 
at hand. However, few such tools currently exist, with most development efforts focusing on 
improving estimators of general (and not tissue-specific) deleteriousness(25). GenoSkyLine, a 
recently developed tool that utilizes genome-scale tissue-specific epigenetic data, allowed us to 
benchmark TiSAn and demonstrate its effectiveness in prioritizing genetic variants that are most 
likely to play a role in the tissue-specific disease processes under consideration.   

Specifically, we showed that individuals with elevated risk for autism (i.e., probands and their 
family members) had more deleterious WGS variants that were predicted to be brain relevant 
(by TiSAn-Brain) than controls.  At the same time, we were unable to show any such differences 
in regions identified as brain-relevant by GenoSkyLine.  Specificity was demonstrated in this 
analysis by the absence of a similar case/control difference in deleterious variants predicted (by 
TiSAn-Heart) to be relevant to cardiovascular tissue. Further, we showed that strongly 
associated GWAS hits in a study of coronary artery disease have a significantly higher TiSAn-
Heart signal than non-associated SNPs, supporting our method’s ability to correctly prioritize 
tissue-specific variants. Again, we were unable to observe this difference using the 
GenoSkyLine score for cardiovascular tissue.  We also demonstrated the practical advantages 
of reducing GWAS multiple testing burden by pre-filtering SNPs on the basis of their estimated 
tissue relevance.  In each of these analyses, TiSAn showed an ability to correctly prioritize 
variants according to tissue specific action, while we were unable to do so with GenoSkyLine, 
the current state of the art for this application.  TiSAn thus represents an important development 
towards leveraging the massive amount of underutilized information (i.e., non-coding variation) 
coming from whole genome sequencing studies. 

Several technical points related to the development of TiSAn are worth mentioning. First, a 
comparison between multiple machine learning algorithms (Supplementary Table 2) led us to 
use random forests, known to better handle non-linearity and correlation between variables. 
Recently, deep learning has been evaluated in the context of variation effects on chromatin(11), 
and future analyses will investigate the impact of using this algorithmic framework. Another 
issue is that supervised learning requires genomic positions with accurate class labels, in this 
case, known to be either associated with a given tissue or not. However, for most of the 
available data, such a label does not exist, especially for positive association with a tissue-
specific trait. Imbalance-aware machine learning(26) could be a solution to efficiently train 
predictive models in the case of underrepresented classes. 

Researchers interested in other tissues beyond brain or heart can derive their own functional 
annotation for a selected tissue of interest (Online Methods), and we have provided thorough 
documentation, including tutorials, on how to use TiSAn in typical genome informatics 
workflows.  
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Figures: 

 

 
Figure 1: TiSAn framework overview. Each nucleotide position in the genome is 
annotated with multiple levels of omics information, such as sequence content, 
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methylation level, proximity to genes, etc. (see Methods). This information is extracted
for training sets, comprised of deleterious variants with or without an association with
the tissue of interest. Using supervised machine learning, specifically a Random Forest
(RF), a predictive model combines each feature with respect to its ability to predict
whether a position will be functionally associated with the tissue of interest. Model
output consists in a tissue-specific functional score spanning between no functional
relevance to the tissue (0) and strong functional relevance to the tissue (1). This score
can then be used, for instance, to filter down large lists of candidate variants for further
investigation, or to isolate the contribution of different tissues to a complex trait. 

Figure 2: Brain-related functional enrichment in a case-control setting.
Comparison of Simons Simplex Collection (SSC) variants with 1000Genomes (1KG)
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variants. Coding variants (a) and non-coding variants (b).  Both brain and heart models 
for TiSAn and GenoSkyline were evaluated. (c) Functional score enrichment in SSC 
variants compared to 1KG variants. After sorting SSC and 1KG variants based on 
their score, we compute cumulative enrichment for each 5%-ile. Blue bars correspond 
to significant difference between SSC and 1KG, using the Chi-squared test (p-value 
<0.05). 

 
Figure 3: CAD-GWAS signal prioritization using heart-related models. Genetic 
variants were binned by percentiles, based on their association P-values. In each of 
those bins, we report average functional scores (blue: TiSAn-heart, grey: GenoSkyline-
heart). Shaded areas represent confidence interval for the corresponding method, after 
GWAS P-value random permutations. 

 

 

Supplementary Materials: 
 
Tissue-specific signal in transcription factor binding sites 
Genome-wide enrichment in transcription factor binding sites  
Transcription factor (TF) binding sites (TFBS) are associated with observed differences 
in gene expression across tissues(12). We hypothesized that computing TiSAn score 
profiles in TFBS could provide insight about the tissue-related action of specific TFs. 
The ENCODE project provides TFBS detection in 80 different cell types for more than 
50 TFs. TiSAn scores were predicted for millions of loci using a 1,000bp window 
centered on TFBS. Average TiSAn profiles for each TF allow us to identify the sites 
showing an overall enrichment across cell types. For instance, strong heart-related 
signal was found among TFBS for BHLHE40, CEBPB, FOXA1, GATA1, HNF4A, JUN, 
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MAFK, MAX, MYC, POU2F2, STAT1, and TAL1. Notably, CEBPB TFBS are enriched 
for TiSAn-heart score in 6 cell types, including two related to smooth muscles (A549 
and IMR90) and one related to liver (HepG2) (Supplementary Fig. 7A), and CEBPB has 
been associated with cardiac hypertrophy(27) and fatty liver disease(28). 
 
Brain-specific regulatory features  
Brain-specific binding patterns in mouse have been observed for CTCF, the major 
regulator of chromatin state(22), and our analysis demonstrates a consistent signature 
with TiSAn-Brain enrichment at the CTCF binding locations across 70 different cell 
types (Supplementary Fig. 8), suggesting the importance of chromatin conformation in 
brain development and function. Functional enrichment patterns were also found for the 
critical brain transcription factor REST in 10 different cell types (Supplementary Fig. 7B). 
Among these were 3 brain cancer cell lines (U87, SK-N-SH, and PFSK-1), which 
support recent findings on the importance of REST in neuroblastoma drug 
sensitivity(29). 

 

Supplementary Figure 1: Distribution of distance to the closest GTEx expression 
quantitative trait locus (eQTL) for brain (left) and non-brain (right) tissues. The red lines 
correspond to a Weibull distribution fit. Estimated parameters for left (resp. right) figure 
are: shape = 0.351 (resp. 0.315) and scale = 21,888 (resp. 9,111). 
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Supplementary Figure 2: Distribution of distance to the closest gene for brain (left) and 
non-brain (right) tissues. The red lines correspond to a Weibull distribution fit. Estimated 
parameters for left (resp. right) figure are: shape = 0.852 (resp. 0.529) and scale = 
1,453,217 (resp. 201,985). 
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Supplementary Figure 3: Distribution of distance to the closest methylated region 
found in RoadMap Epigenomics database. The red line corresponds to a Weibull 
distribution fit. Estimated parameters are: shape = 0.746 and scale = 590.3. 

  

 

 

 

Supplementary Figure 4: TiSAn-brain cross-validation performances. (a) Random 
forest raw output distribution. (b) TiSAn score obtained after rescaling odd-ratios. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/141408doi: bioRxiv preprint 

https://doi.org/10.1101/141408
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Figure 5: TiSAn-heart cross-validation performances. (a) Random 
forest raw output distribution. (b) TiSAn score obtained after rescaling odd-ratios. 

 

 

Supplementary Figure 6: CAD-GWAS signal prioritization using brain-related models. 
Genetic variants were binned by percentiles, based on their association p-values. In 
each of those bins, we reported average functional scores (blue: TiSAn-brain, grey: 
GenoSkyline-brain) 
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Supplementary Figure 7: Genome-wide tissue-specific transcription factor 
binding sites (TFBS) characterization. Functional score profiles were obtained using 
a 1,000bp window centered on the TFBS (dash line). Positive enrichment (orange) and 
negative enrichment (blue) are reported for each different cell type in row. (A)TiSAn-
heart enrichment in CEBPB TFBS. Locations for ENCODE TFBS were found in 6 
different cell types. (B) TiSAn-brain enrichment in REST TFBS. Locations for 
ENCODE TFBS were found in 10 different cell types.  
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Supplementary Figure 8: TiSAn-brain enrichment in CTCF transcription factor binding 
sites (TFBS). Locations for ENCODE TFBS were found in 70 different cell types. 
Functional score profiles were obtained using a 1,000bp window centered on the TFBS 
(dash line). Positive enrichment (orange) and negative enrichment (blue) are reported 
for each different cell type in row.   

Tissue Category Count 

Brain Positive 10,715 (5,535 + 5,180) 

Brain Negative 22,811 (13,861 + 8,950) 

Heart Positive 28,473 (9,760 + 18,713) 

Heart Negative 62,438 (22,476 + 39,962) 

 

Supplementary Table 1: Training set composition. For both heart and brain tissues, 
we report the count of positive and negative examples used to train TiSAn models. The 
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counts are divided in two parts, corresponding to variants found in large intergenic non-
coding RNAs database, or in genotype array probesets. 

Methods Cross-validated AUC 

Random Forest 0.795 

Logistic regression 0.635 

Linear SVM 0.584 

Supplementary Table 2: 10-folds cross-validated performances obtained during TiSAn-
brain model training, for different classification strategies. AUC: Area under ROC curve.   

Gene Citations Gene Citations 

NRXN1 61 GABRB3 30 

CNTNAP2 49 SCN2A 30 

SHANK3 49 FOXP2 28 

PTEN 39 RBFOX1 28 

CACNA1C 35 SYNGAP1 28 

OXTR 34 AUTS2 27 

RELN 34 GRIN2B 25 

MET 32 DPP6 22 

DISC1 31 MBD5 22 

SCN1A 31 SLC6A4 22 

Supplementary Table 3: List of SFARI autism-related genes, supported by literature. 

  

LincSNP ID Chr Start End Associated disorder 

LSLNC096364 12 
  

2907933 2909631 Suicide attempts in bipolar 
disorder 

LSLNC141017 12 2901746
  

2904044 Autism with low IQ 

LSLNC169768 12 2901745
  

2904044 Autism with low IQ 

LSLNC169511 12 1936729
  

1940267 Tourette's syndrome 
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LSLNC027117 12 1936728
  

1940267 Tourette's syndrome 

 

Supplementary Table 4: Non-coding RNAs found in linkage disequilibrium with 
neurodevelopmental and psychiatric disorders 
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