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Summary

We develop an analytic statistical framework for examining a variety of gene-set enrichment

analysis tests. Within this framework, we describe why statistical power for both self-contained

and competitive gene set tests is a function of the correlation structure of co-expressed genes,

and why this characteristic is undesireable for gene-set analyses. We additionally describe why

past gene-set tests have su↵ered from inflated type 1 error, and how permutation-based methods

have sought to address the issue with some success in the case of self-contained tests and with

less success in the case of competitive tests. While the context of this investigation is microarray

analysis, with particular focus on leading tests CAMERA, ROAST, SAFE, and GAGE, the

observations are also relevant to recently proposed RNAseq gene-set tests, including MAST.

The variable statistical power we describe as a function of gene correlation structure has not

been studied. While type 1 error inflation has been well-studied and described previously for both

self-contained and competitive tests, it has less often been done in an analytical framework and

so it is useful to make assumptions explicit and examine parametric distributions.
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2 D. M. SWANSON

We propose three alternative tests, one of which replicates the properties of permutation-

based self-contained tests but obviates the need for even recently proposed, rotation-based ap-

proximations to burdensome permutations in favor of closed-form densities. The two other tests

we propose have the unique property that their statistical power is not a function of co-expression

correlation in the gene-set and therefore may be the preferred methodology. We provide simu-

lation support for these proposed methods, compare their results to leading gene-set tests, and

apply them to an already-published study of smoking exposure on pregnant women. We call the

suite of three proposed test “JAGST” – Just Another Gene-Set Test – and make the methods

accessible via an R package of the same name.

Key words: statistical power;GSEA;gene-set testing;pathway analysis;di↵erential expression

1. Introduction

Gene set enrichment analysis (GSEA) or gene-set testing is a class of methods whose goal is to

asses the joint enrichment of a biologically interpretable set of genes in a microarray or RNAseq

experiment (Subramanian and others, 2005; Goeman and others, 2004; Kim and Volsky, 2005;

Irizarry and others , 2009; Luo and others , 2009). A variety of methods have been proposed

nearly since the advent of microarrays, all with unique advantages, and there have been more

recent modifications of these methods as RNAseq becomes a more common platform (Finak

and others, 2015). There have been two primary categories of gene-set tests, “competitive” and

“self-contained” (Wu and Smyth, 2012; Goeman and Bühlmann, 2007; Zhou and others , 2013;

Rahmatallah and others, 2012). The former tries to answer whether genes in a set are more

di↵erentially expressed (DE) than some background level of DE on the array. The latter tries

to answer whether the gene-set is more DE than one were to expect under the null of no asso-

ciation between transcript abundance and condition. The null distributions for these two kinds
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STATISTICAL POWER IN GENE-SET TESTING 3

of hypothesis tests have often been calculated via permutation, either at the gene-level for the

competitive test, or sample level, for the self-contained test. Manual permutation is used in an

attempt to attain the nominal type 1 error rate (Naeem and others, 2012; Barry and others,

2005) or sometimes quicker methods that yield permutation-like results (Wu and others, 2010;

Zhou and others , 2013). Rejecting a competitive gene-set test test is often a higher bar or more

di�cult burden of proof, and these tests have been more commonly used in gene-set testing. A

rejection of a competitive gene-set test can be more biologically meaningful than a self-contained

test.

The use of some GSEA methods has been far more common than others; The seminal paper

of Subramanian and others (2005) proposed a means of testing a set of genes that leverages the

Kolmogorov-Smirnov hypothesis test for similar distributions. It is still often used today and even

implemented via a web portal. In recent years, GSEA tests have been proposed that claim greater

power and control of type 1 error rates (Rahmatallah and others , 2012; Mesirov and others , 2016;

Wu and Smyth, 2012; Ritchie and others, 2015). Error rates have been an issue in some GSEA

tests due to correlated test statistics comprising the gene-set test (Goeman and Bühlmann, 2007;

Wu and Smyth, 2012; Gatti and others, 2010; Ritchie and others, 2015; Mesirov and others,

2016).

In this paper, we describe within an analytic statistical framework why past gene-set tests

have su↵ered from inflated type 1 error, and how permutation-based methods have sought to

address the issue in di↵erent ways. Goeman and Bühlmann (2007) made a similar and rigorous

description of gene-set tests, though in the context primarily of 2⇥2 tables, and prior to the

development of some of the tests we analyze. More importantly, we additionally describe in the

same framework why past and more recently proposed gene-set tests su↵er from having variable

power as a function of gene set correlation structure.

We show that the location of causal transcripts within the co-expression correlation structure
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is critical in determining statistical power of the test in addition to the e↵ect sizes of them, and

how the issue is relevant to both competitive and self-contained gene-set tests. Briefly, correlated

blocks of genes manifest themselves in disproportionate degree in the tails of distributions under

both the null and alternative hypotheses. Since we generally perform statistical tests in the tails

of distributions, hypothesis tests are disproportionately influenced by this correlation. When

causal transcripts are found in these correlated blocks, power for their detection is likewise overly

represented relative to causal transcripts found in less correlated. This observation has been made

in the context of region-based SNP testing, though not in the context of gene-set testing (Swanson

and others, 2013). Despite the observation being made in the context of SNP-set testing, it is

pertinent to mention since tests continue to be proposed that su↵er from variable power under

di↵erent correlation structures (Bakshi and others, 2016).

We leverage our statistical analysis of gene-set tests by proposing three tests, the suite of which

we call “JAGST” (Just Another Gene Set Test). The first test is self-contained and replicates

results from a leading self-contained test ROAST, but does so using a closed form mixture density

rather than the rotation and iteration-based method of ROAST. Though ROAST is an elegant,

general, and computationally cheap algorithm for various set-based hypothesis tests, two of its

more important special cases (mixed and directed set-based tests) fall within our statistical

framework so that relevant null tail probabilities can be written down and calculated.

The second two tests of JAGST are power-invariant self-contained and competitive tests. The

proposed JAGST power-invariant self-contained test simply uses correlation information of DE

test statistics to implement a standard chi-square test. The proposed competitive test is more com-

plex and computationally intensive, using a sophisticated and recently proposed high-dimensional

penalized regression method for obtaining z-statistics from a variable selection procedure (Zou

and others, 2007; Lockhart and others, 2014; Taylor and Tibshirani, 2017; Tibshirani and oth-

ers, 2016). We use these z-statistics to create an appropriate mixture distribution of non-central
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STATISTICAL POWER IN GENE-SET TESTING 5

chi-squares, which is the null distribution for our competitive test.

We perform simulations with leading and commonly used competitive and self-contained tests,

including ROAST, CAMERA, SAFE, and GAGE (Wu and Smyth, 2012; Wu and others , 2010;

Barry and others , 2005; Luo and others , 2009) to demonstrate the degree to which statistical

power is e↵ected by correlation structure of the gene-set and how our proposed tests do not have

this same property. ROAST and SAFE are self-contained tests, while CAMERA and GAGE are

competitive tests. We perform a data analysis on an already published study of smoking exposure

in pregnant women (Votavova and others, 2011). While expression studies are the context of our

analysis, our observations are also relevant to RNAseq. The popular MAST method for RNAseq

is based on CAMERA, and many of the same statistical principles will apply in the RNAseq

context (Finak and others, 2015). Additionally, expression analyses continue to be a valuable

and well-used platform for diagnosis and prediction (Tachibana, 2015; Zhao and others, 2014;

Byron and others, 2016; Zhang and others, 2015; Xu and others, 2016).

2. Methods

Consider matrix Y (n⇥m) of normalized transcript measures and matrix X (n⇥p) of conditions,

where Y has m⇥m correlation matrix ⌃, whose i, jth element is ⇢
i.j . Assume for now that p = 1

for simplicity. It is common in GSEA to first perform a standard microarray analysis, and then

test gene-set enrichment on the summary statistics (such as transcript-level test statistics).

If we fit a regression model of the i

th column of Y (Y
i

) on X, i 2 1 . . .m, we extract some

test statistic, call it T
i

(oftentimes a t-statistic for linear regression if the outcome is continuous),

associated with this model, and likewise T

j

for the model of Y
j

on X. The test statistic from a

linear regression model is

T

i

⌘ Y

T

i

·Xp
�̂

2
X

T ·X

if we have centered X and Y , which follows a t-distribution on n-2 df under the null hypothesis.
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Likewise, define

T

j

⌘
Y

T

j

·X
p
�̂

2
X

T ·X
.

Since Cor(·, ·) is invariant to scaling its arguments and assuming centered, normalized Y

i

’s, Y
j

’s,

and X’s,

Cor(T
i

, T

j

) = E(T
i

· T
j

) = E(Y
i

·X · Y
j

·X) = E(Y
i

· Y
j

) · E(X2) = ⇢

ij

where the second to last equality holds because we calculate under the null of no association with

X. So we see that Cor(T
i

, T

j

) is the (i, j) entry of ⌃, the correlation matrix of Y . It follows that

the vector T composed of entries T
k

, k = 1, . . . ,m also has Cor(T ) = ⌃.

Now consider the regression model under the alternative hypothesis of an association between

a condition and transcript abundance. In particular, suppose there exists a causal association

between X and Y

j

such that the expectation of the test statistics T
j

corresponding to regression

model Y
j

⇠ X is E[T
j

] = µ

j

. For example, power under this association for an ↵-level test would

be calculated with

F

tn�2(µj

+ q) + (1� F

tn�2(µj

� q))

where F
tn�2(·) is the cdf of a t-distribution on n-2 df and q is the ↵/2 quantile of that distribution.

Assume there exists no causal association between X and Y

i

, and consider test statistic T

i

.

Because Cor(T
i

, T

j

) = ⇢

i,j

, E(T
i

) = ⇢

i,j

· µ
j

; we have power to detect an association between X

and Y

i

by virtue of Y
i

’s correlation with Y

j

. though less so because |⇢
i,j

| 6 1. We will return to

this point later in the discussion of statistical power.

Suppose that we have su�cient sample size such that the t-statistics resulting from an expres-

sion analysis can be approximated by the standard normal distribution. Since the test statistic

for many gene-set tests relies on or is highly correlated with a sum or sum of squares of probe-

level summary statistics composing the gene-set (e.g, Wu and others (2010); Kim and Volsky
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(2005); Wu and Smyth (2012); Ritchie and others (2015); Luo and others (2009); Barry and

others (2005)), consider the following property about the multivariate normal distribution.

X

i2�

T

i

= J

T

G

· T ⇠ N(JT

G

· µ, JT

G

⌃ J

G

) (2.1)

for T a length g vector that follows MVN(µ,⌃), � a size g set of indices for the gene-set, and J

G

an indicator vector whose 1 entries correspond to the indices of �. So the mean of
P

i2� Ti

is the

sum of the component means corresponding to the 1 entries in J

G

, and variance the sum of the

entries of ⌃ that remain after multiplication by J

G

. Sometimes this test statistic in the gene-set

testing context is called the directed or directional test since its value is sensitive to the sign of

T

i

.

Additionally, if we square the T

i

’s, we have

X

i2�

T

2
i

=
X

i2�

�

i

· �2
1(�

2
i

) where �

i

= (µJ
T · ⌫i)/

p
�

i

, (2.2)

µ

J

⌘ J

G

· µ, and �

i

and ⌫i are the eigenvalues and eigenvectors of JT

G

⌃ J

G

(Imhof, 1961; Press,

1966; Harville, 1971). Sometimes this test statistic in the gene-set testing context is called undi-

rected, non-directional, or mixed as its power is invariant to the sign of T
i

.

3. Relationship to permutation-based tests

3.1 Considering preservation of Type 1 error using permutations

It is sometimes thought that permutation is a sure, if computationally burdensome, way of pre-

serving type 1 error when the null distribution of a test statistic is unknown. We show why this

is not the case, at least with competitive gene-set tests. The result has been noted frequently

elsewhere (Wu and Smyth, 2012; Ritchie and others, 2015; Zhou and others, 2013), but we try

to describe it in a statistical framework so that evidence of the phenomenon is not primar-
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ily simulation-based. First, however, we consider permutation-based self-contained tests and the

parametric distributions approximated by them.

3.1.1 Self-contained tests type 1 error In light of the results in Section 2, we can consider the null

distributions generated when samples (“self-contained” gene-set tests) or genes (“competitive”

gene-set tests) are permuted to generate a null distribution for the test statistics discussed.

In permuting samples, any possible association between gene and outcome is broken so that the

expectation of T , the test statistic vector described above, is a length g vector with expectation 0,

rather than µ. Since the permutations do not permute the particular gene set under consideration,

their own correlation structure is preserved. Thus, one can conclude that a permutation-generated

null distribution is a sample from

T

null,self

⇠ MVN(0,⌃
G

), where ⌃
G

⌘ J

T

G

⌃ J

G

.

With the joint distribution of T
null,self

in mind, we can consider the sum of squares of its

elements. Since the expectation of T
null,self

is zero and using notation conventions from Section 2,

�

i

= 0 because ⌫
i

will be an inner product with a 0 vector. Di↵erences in the null distribution for

P
i2� T

2
i

are therefore driven by {�
i

} (the set of eigenvalues of ⌃
G

), and the null distribution can

be very di↵erent depending on the distribution of the {�
i

}’s. If there is high within-set correlation,

greater variation in �

i

will lead to a heavier-tailed null, whereas little within-set correlation will

correspond to relatively similar �
i

’s and a thinner tail.

No within gene-set correlation implies independent T
i

’s, so that

nX

i=1

T

2
i

⇠ �

2
g

.

It is because independent component test statistics have been assumed at times in the past that

a �

2
g

null distribution is used when in fact the heavier tailed
P

n

i=1 �i

· X2
1 was the true null

distribution (Irizarry and others, 2009). It is in this distinct way that even self-contained tests
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STATISTICAL POWER IN GENE-SET TESTING 9

have occasionally had inflated type 1 error, though this has been recognized and corrected in

di↵erent articles (Gatti and others, 2010; Wu and others, 2010; Zhou and others, 2013; Mesirov

and others, 2016).

3.1.2 Competitive tests type 1 error When permuting across gene sets for a competitive gene

set test, probe-wise associations with the outcome are maintained, but the set over which we

aggregate changes as a function of the genes randomly chosen to compose our permutation-

generated set. Thus, for permutation k of the null generation, the distribution from which we

sample is

T

null,comp,k

⇠ MVN(µ
Gk ,⌃Gk),

where G
k

is a set of genes of size g randomly chosen, µ
Gk is the expectation vector of test statistics

corresponding to those particular genes, and ⌃
Gk is a submatrix of ⌃ corresponding to the set G

k

.

Since G

k

changes with each iteration, it is evident that {T
null,comp,1 , . . . , T

null,comp,q

}, where

q is the size of the permutation-generated null, are not identically distributed, but a mixture of

distributions.

Crucially, and likely the reason type 1 error has been di�cult to maintain in competitive

gene-set tests, the o↵-diagonal entries of ⌃
Gk (the correlation matrix of permutation k) will often

be systematically smaller than the o↵-diagonal entries of ⌃
G

because genes within biologically

meaningful sets will often be co-expressed to a greater degree than randomly chosen groups of

genes. We may therefore expect that the permutation-generated null distribution will not be as

thick tailed as the test statistic whose null it is trying to approximate.

3.2 Statistical power when using permutations

Because expression analyses often rely on univariate regression test statistics, confounding struc-

tures are not detected and power to detect some non-causal transcripts can be above ↵ because
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10 D. M. SWANSON

of their association with the causal gene. The underlying causal structure of transcript on pheno-

type and confounding by co-expressed genes and their e↵ects on statistical power has been less

discussed on a methodological level. When variable power has been discussed, it has been done

so from the perspective of underlying biological or platform phenomena, such as in Oshlack and

Wakefield (2009) with respect to transcript length bias. Here we describe why statistical power

for both self-contained and competitive gene-set tests can vary due to the methodological set-up

of the tests themselves.

3.2.1 Illustrative example We first consider an example to explain variable power more concretely.

For simplicity, assume a gene-set consists of 3 genes, one of which has a causal association with

the outcome, and the other two do not. Call the test statistic associated with the causal gene

T1 with expectation µ1, and those of the non-causal genes T2 and T3 (both with expectations

0). First suppose that T2 and T3 have correlation ⇢, but both are independent of T1 (the causal

gene). The distribution of their sum is

T1 + T2 + T3 ⇠ N(µ1, 3 + 2⇢),

while the non-directional test statistic is

T

2
1 + T

2
2 + T

2
3 ⇠

3X

i=1

�

i

· �2
1(�

2
i

) with. �
i

= (µ1 0 0) · ⌫i

and �

i

and ⌫i are the eigenvalues and eigenvectors of ⌃.

Consider now the scenario where we “shift” the correlation structure so that T1 and T2 have

correlation ⇢, and T3 is independent of them both. though the same causal associations remain.

So E(T1) = µ1, and in this scenario E(T2) = µ1⇢ because of T2’s correlation with T1. The

expectation of T3 is still 0. This time, the distribution of their sum is

T1 + T2 + T3 ⇠ N(µ1(1 + ⇢), 3 + 2⇢)
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and the non-directional test statistic is

T

2
1 + T

2
2 + T

2
3 ⇠

3X

i=1

�

i

· �2
1(�

⇤2
i

) where �

⇤
i

= (µ1 µ1⇢ 0) · ⌫i.

It will always be the case that �

⇤2
i

> �

2
i

8 i, that is, in the second scenario the non-

centrality parameters will tend to be bigger than those in the first scenario. We know this because

(µ1 µ1⇢ 0) is greater than (µ1 0 0) element-wise. Additionally, there will exist at least one �

i

strictly greater in the second scenario than the first scenario because for at least one i, ⌫
i

has a

non-zero entry in the second element since eigenvectors span the space defined by the columns of

⌃. Because �

2 distributions are stochastically strictly increasing in their non-centrality parame-

ters, we will always be better powered to detect the gene-set in the second scenario than in the

first.

From this example, we conclude that we are more likely to reject the null for gene set enrich-

ment test when causal transcripts are co-expressed with non-causal ones.

4. Proposed hypothesis tests: JAGST

4.1 Proposed hypothesis test 1: an analytic approach to self-contained test ROAST

First we introduce a test that is nearly numerically equivalent to important special cases of a lead-

ing self-contained gene-set test ROAST, but whose implementation relies on closed form formulae

rather than the rotation-based methodology of ROAST, itself an elegant way of approximating

the results of permutation-based procedures.

In Section 2 we gave formulae in equations (1) and (2) for the sum of test statistics and sum

of squares of test statistics, respectively. These two distributions correspond to two important

special cases of ROAST – its directional and mixed gene-set tests. We therefore do not need

to rely on the rotation of residual methodology, which though statistically elegant has p-value

granularity dependent on the number of specified iterations. We can instead calculate p-values
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12 D. M. SWANSON

using tail probabilities of the normal distribution in the case of the directional test and of a

mixture of scaled �

2 distributions in the case of the mixed test.

We see in the supplementary material the correlation of 0.99 (0.96) between the ROAST

directional test (mixed test) and analytic calculation of tail probabilities using these densities,

both under the null hypothesis. That correlation falls slightly under the alternative hypothesis

for reasons explained in the figures, but remains above 0.88. If the variable power issue is not

a concern for the analyst, for example for reasons given in the Discussion section, and p-values

from the self-contained test ROAST methodology are preferred, one need only use these formulae

given. Since inversion of the �

2 mixture distribution can be di�cult, sampling from the mixture

distribution is also adequate and likely still more computationally inexpensive than ROAST.

4.2 Proposed hypothesis test 2: power-invariant competitive gene-set test

We propose the JAGST competitive test whose statistical power is invariant to the correlation

structure in which causal e↵ects are found. We do so by making two key changes to currently

used gene-set testing methods. First, the test statistic for the competitive test is calculated using

T

T

G

⌃�1
G

T

G

,

rather than a straightforward sum or sum of squares of test statistics. Using the inverse covari-

ance matrix of the test statistics is central to achieving the desired correlation structure power

invariance. Secondly, the null distribution is calculated by taking random subsets of genes of

size g and calculating the same test statistic. Unlike other competitive tests that calculate their

null distribution with random subsets of genes, using the inverse correlation matrix makes each

realization of our null distribution a function of only the underlying e↵ects of each subset thereby

controlling for correlation structure.

While this is the essential idea of the JAGST competitive test, in practice we generate the

proposed null distribution in a di↵erent and computationally easier way. Especially for large gene-
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sets, some of which approach a few hundred genes, calculating the null distribution in this brute

force way is too cumbersome if not numerically prohibitive depending on whether the correlation

matrices are approximately singular.

We therefore propose instead to:

1. Perform variable selection on the random gene subsets of size g,

2. choose the model with the smallest AIC (or another model fitness criterion that could be

shown to control type 1 error and be power-invariant), then

3. use a novel and sophisticated method to calculate the z-statistics of the selected variables

(Taylor and Tibshirani, 2017; Lockhart and others, 2014; Tibshirani and others, 2016), in

order to

4. take the sum of squares of these test statistics, calling them �

PI

⌘
P

�

2
i,PI

(“PI” for

“power-invariant”), and

5. sample from �

2
g

(�
PI

), which is the null distribution of the above test statistic as demon-

strated in simulation (Figure 4).

We iterate until desired granularity in the null distribution is achieved.

The L1-penalized regression hypothesis testing procedure of Taylor and Tibshirani (2017)

proves central to our algorithm. It provides a means of obtaining z-statistics on selected variables

in a penalized regression framework and until recently was not possible. These z-statistics allow

us to determine the distribution under the alternative that our DE test statistics arise from.

While variable selection is not without computation cost, since the procedure stops once

a certain AIC is achieved, we will generally avoid the large O(g3) cost of matrix inversion and

numeric instability for large gene sets by a significant margin. This is especially true if it’s assumed

that in general gene sets are composed of many transcripts working together in pathways, though

reveal relatively sparse models when regularization is applied.
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Iteration over di↵erent sets of size g will yield a mixture of non-central �

2 distributions.

Formulae and approximations have been proposed for mixtures of �2 distributions (Press, 1966;

Liu and others, 2009), which could be used if the same null distribution were relevant to many

di↵erent tests, or sampling from distributions were burdensome. For our purposes, we eschew

these formulae to prefer sampling from the mixture distribution in R (R Core Team, 2017).

While other model fitness criteria could be used, we propose AIC at least in part because it

chooses less parsimonious models than, for example, BIC. Since models are less parsimonious,

the procedure we propose is less likely to be anti-conservative since �

PI

, the sum of squares of

non-centrality parameters, will tend to be larger. Indeed, simulation suggests that type 1 error is

controlled, without being overly conservative. If other simulation scenarios suggested otherwise,

di↵erent model fitness criteria could be used.

4.3 Proposed hypothesis test 3: power-invariant self-contained gene-set test

For the JAGST self-contained test, we again use the test statistic

T

T

G

⌃�1
G

T

G

.

In this case, the null hypothesis assumes no association between transcript and outcome so the null

distribution for this test statistic is simply �

2
g

. The quantiles for this null distribution will often

be a much lower threshold for statistical significance as compared to the proposed competitive

gene set test.

5. Results

We provide simulation and data analysis results for the di↵erent JAGST tests and compare them

with CAMERA (with and without ranks), GAGE (with and without ranks), ROAST, and SAFE.

We abbreviate our simulation analysis of type 1 error since it has been described well and studied
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in detail elsewhere (Barry and others , 2005, 2008; Zhou and others , 2013; Wu and Smyth, 2012)

and focus on power as a function of correlation structure under di↵erent generating models. We

perform simulation and data analysis in the R language (R Core Team, 2017).

5.1 Simulation

We generated 280 samples, each with 40 transcripts or features, the 40 composed of a correlated

region of size 20 with correlation 0.8 and an uncorrelated region of size 20. The correlated and

uncorrelated blocks also compose our two hypothetical gene sets. We then generated two di↵erent

binary outcomes consistent with a logistic regression model, where the probability of event in one

case was a function of two transcripts in the correlated block and in the other case a function

of two uncorrelated transcripts in the uncorrelated block. The e↵ect sizes of the two transcripts

were equal and were also the same in either scenario (i.e., whether the causal transcripts were in

the correlated or uncorrelated blocks).

We varied the e↵ect size of the two transcripts from a log odds ratio of zero to 3 in the

correlated region and performed eight di↵erent gene set tests on the 20 features composing the

correlated block: CAMERA (with and without ranks), GAGE (with and without ranks), ROAST,

SAFE, and the two JAGST power-invariant tests were propose, one self-contained and the other

competitive.

We then varied the e↵ect sizes of the two transcripts in the uncorrelated block over the same

values and performed the same eight gene tests, this time on the 20 features composing the

uncorrelated block. The two power curves in each of Figures 1-6 correspond to the respective test

applied to the 20 correlated or uncorrelated features and the associated outcome.

In the cases of CAMERA, ROAST, SAFE, and GAGE, at all e↵ect sizes greater than zero,

there was more power to detect the correlated block gene set, even though e↵ect sizes were the

same as compared to the uncorrelated block gene set (Figures 1-6). Indeed, the power curves
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diverged and had di↵erent slopes on the -log p-value scale so that there was a still bigger power

di↵erential at increasing e↵ect sizes. The divergence is particularly striking with GAGE, whose

simulation was repeated to confirm the result. In the cases of Figures 1 and 2, we see a ceiling

on the -log p-value, essentially stopping the divergence of power curves. This occurs because the

methods use empirical p-values, and we set the number of iterations to 1000. The divergence would

continue if the number of iterations were increased. There is a similar ceiling on the rank-based

tests found in Figures 4 and 6.

Our proposed gene set tests on the other hand yielded power curves that were much closer at

all e↵ect sizes of the two underlying causal transcripts (Figures 7 and 8). While there are small

power di↵erences with at least the proposed competitive JAGST test, the power curves were

parallel, indicating that the power di↵erence in curves does not increase for larger e↵ect sizes.

Lastly we performed gene-set tests under the null hypothesis and weak alternative to compare

results from ROAST’s directional tests with tail probabilities justified in Section 2. The alterna-

tive hypothesis posited two causal transcripts among a gene-set size of 20 correlated transcripts.

Rather than inverting the distribution, we estimated this tail probability using the appropriate

mixture distribution of central, scaled �

2’s. Figures 9 and 10 show the high degree of correspon-

dence between the two ways of calculating the test, with a correlation of 0.99. Figures found in

the Supplementary Material show the correspondence between the mixed, non-directional tests

of ROAST and the analytic solution described in Section 2. Again there is a high degree of corre-

spondence between the two tests under the null and alternative hypotheses, both with correlations

above 0.9.

5.2 Data analysis

We analyze data from an already published study of maternal and fetal transcription variation

due to smoking exposure (Votavova and others , 2011). The study analyzed maternal peripheral,
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placenta, and neonatal cord blood on 20 pregnant women with smoking exposure and 50 with-

out significant smoking exposure. Women were assayed using Illumina expression beadchip v3

and yielded 24,526 transcripts. We accessed the data via its Gene Expression Omnibus (GEO)

accession number GDS3929 (Edgar and others, 2002; Barrett and others, 2013).

In keeping with the analysis protocol of Votavova and others (2011), we filtered transcripts

of each cell type to approximately the third at detectable expression level. In doing so, the most

di↵erentially expressed genes according to our analyses were consistent with those of Votavova and

others (2011). For our gene-set analyses, we only used this approximate third most di↵erentially

expressed in each category.

We analyzed 7 di↵erent gene-sets, motivated by ones commonly used in gene-set enrichment

studies, oncogenic pathways, and ones more specific to the context of (Nevins and Potti, 2007;

Zhang and others, 2010; Bild and others, 2006; Votavova and others, 2011) (e.g., placenta devel-

opment). We used 8 di↵erent gene-set test methodologies: CAMERA (with and without ranks),

ROAST, SAFE, and GAGE (with and without ranks). ROAST and SAFE are self-contained

tests, while CAMERA and GAGE are competitive tests. The last two used are our proposed

power-invariant competitive and self-contained tests. P-values for the 8 tests by gene-set and

data source (maternal peripheral blood, neonatal cord blood, or placenta) are included in Tables

1, 2, and 3, respectively.

6. Discussion

Much has been learned from gene-set testing since the early 2000’s when such methods were de-

veloped. The idea that because biological processes are complex systems whose elements are not

acting in isolation is powerful and has rightly been leveraged in many gene-set testing method-

ologies. Most of these methods are uniquely suited to certain situations, implicitly or explicitly

making di↵erent assumptions of the underlying data and biological process.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/186288doi: bioRxiv preprint 

https://doi.org/10.1101/186288


18 D. M. SWANSON

Additionally, most proposed gene-set tests make much intuitive sense, for example summing

test statistics from di↵erential expression analyses and considering correlation structure in those

test statistics to varying degrees and in di↵erent ways. For example, CAMERA accounts for that

correlation structure via a variance inflation factor (VIF), while ROAST does so via generating

a null distribution with rotation of residuals. As methodology has become more sophisticated

over time, many tests have been proposed as a response to deficiencies identified in existing

methods. For example, recognition that without accounting for correlated test statistics some

even self-contained gene-set tests had grossly inflated type 1 error rates led to many critical

methodological developments (Zhou and others, 2013; Wu and others, 2010; Mesirov and others,

2016). And to the extent that permutation has been proposed as a means of controlling type

1 error in some cases Barry and others (2005), other tests have been proposed that avoid the

computational demands of permutation (Wu and others, 2010; Zhou and others, 2013).

We described many gene-set tests within an explicit statistical framework in this paper and

showed why some could be subject to type 1 error inflation. While that observation has been made

previously, its best description was done in the context of 2 x 2 tables (Goeman and Bühlmann,

2007), and we describe why it can be the case with a linear combination of di↵erential expression

statistics.

More importantly in this paper, we observed and explained why all gene-set tests analyzed

have variable power as a function of correlation structure. We show that if gene drivers of phe-

notype are found in uncorrelated regions of a gene-set, there is much less power to detect the

gene-set than if the drivers are in a correlated region of the gene-set. The observation is partic-

ularly relevant because co-expression of genes on expression arrays is ubiquitous and variable;

indeed, the very idea of gene-set testing is that groups of genes working in concert are expressed

and can be tested together.

The gene set tests applied in our data analysis of smoking exposure on pregnant women did
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not yield any significant results adjusted for multiple testing. Our proposed self-contained and

competitive tests were less significant in the cases of nearly every gene set. The proposed JAGST

competitive gene set test is less significant than the JAGST self-contained test, which is consistent

with the idea that competitive tests are a more significant burden of proof than self-contained

tests. While we were able to replicate the DE results of Votavova and others (2011), we were not

able to confirm findings of significant gene-sets. Since Votavova and others (2011) relied on the

DAVID database for enrichment analyses, we cannot expect our results to coincide with those of

the previous study (Huang and others, 2008, 2009) .

The self-contained tests used in our data analysis, ROAST and SAFE, were not generally more

significant than the competitive tests, Camera and Gage. Since tests are a function of correlation

structure, and in the cases of the ranked tests, non-parametric, we would not necessarily expect an

obvious distinction between the two kinds of tests even though their null hypotheses are di↵erent.

While we have pointed out power variability as a function of correlation structure in gene-set

tests, it is important to point out that the relevance of use of the JAGST methodology will depend

on application. When the correlation structure and location of transcripts driving phenotype

relative to that structure are similar to those used in our simulation scenario, then there could

be significant under-detection of certain gene sets depending on the genetic architecture of the

pathway. On the other hand, there are also scenarios, for example when there is only a single

correlated block in the gene set, when power variation is likely less of a concern and any of the

tests analyzed in this paper are suitable methods. In principle, however, it seems best to use a

test that is statistically sound without such implicit assumptions about correlation structure, in

which case the JAGST method is preferred.

It is unclear why exactly there is a small divergence in power curves for the JAGST competitive

test in the simulation scenarios compared (see Figure 7). Since our method relies on test statistics

from an L1-penalized regression model, it is likely the relatively small variation is due to very
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di↵erent correlation structures from the simulation in which the transcripts with non-zero e↵ect

sizes are found. These correlation structures may a↵ect AIC, the model fitness criterion being

used to choose the tuning parameter, which then a↵ects magnitude of the test statistics. It is

important, though, that that small di↵erence we see in our test is much smaller than that observed

in other tests and that additionally the two power curves are parallel on the -log p-value scale.

In contrast, we see that divergence in power curves increases with e↵ect size for the other tests

examined. For the JAGST self-contained test, we observe nearly identical power curves indicating

nearly perfect power invariance.

7. Software and Data

An R package for implementing JAGST is available on GitHub under “sojourningNorth/JAGST”

and can be installed in the standard way using directions found at the repository. Additionally,

code used for simulation and analysis found in the manuscript is available at “sojourningNorth/JAGST-

analysis”. Data used for analysis is available through NCBI’s GEO database and has accession

number GDS3929 (Edgar and others, 2002; Barrett and others, 2013).

8. Supplementary Material

Additional figures showing correspondences between the directional and mixed tests of ROAST

and our calculation of these tests is in the online Supplementary Material and can be found at

http://biostatistics.oxfordjournals.org.
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Fig. 1. Comparison of power between SAFE tests in correlated region (solid line) and uncorrelated (long
dashes) region as a function of the strength of association between two transcripts within the gene set
and the outcome, holding the sample size constant at 280 observations. There is a practical ceiling on
one curves because an empirical p-value is calculated and iterations were limited to 1000.

Table 1. P-values from di↵erent gene-set tests on maternal peripheral blood.

Pathway p53 MAPK TGF beta cell prog plac inflamm immune

Camera (ranks) 0.43 0.22 0.98 0.46 0.25 0.48 0.35
Camera 0.64 0.26 0.91 0.50 0.22 0.57 0.32
Roast 0.95 0.17 0.66 0.90 0.43 0.35 0.92
Safe 0.25 0.07 0.33 0.62 0.37 0.04 0.23

Gage (ranks) 0.14 0.13 0.34 0.36 0.28 0.06 0.12
Gage 0.08 0.13 0.22 0.32 0.42 0.07 0.12

JAGST comp. test 0.65 1.00 0.68 1.00 0.88 1.00 1.00
JAGST self-cont. test 0.21 1.00 0.26 0.97 0.58 1.00 1.00
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Fig. 2. Comparison of power between ROAST tests in correlated region (solid line) and uncorrelated
(long dashes) region as a function of the strength of association between two transcripts within the gene
set and the outcome, holding the sample size constant at 280 observations. There is a practical ceiling
on one curves because an empirical p-value is calculated and iterations were limited to 1000.

Table 2. P-values from di↵erent gene-set tests on neonatal cord blood.

Pathway p53 MAPK TGF beta cell prog plac inflamm immune

Camera (ranks) 0.76 0.69 0.61 0.83 0.38 0.54 0.67
Camera 0.93 0.71 0.66 0.88 0.45 0.59 0.70
Roast 0.84 0.93 0.63 0.77 0.66 0.81 0.91
Safe 0.47 0.55 0.65 0.85 0.31 0.12 0.75

Gage (ranks) 0.46 0.58 0.50 0.92 0.49 0.17 0.79
Gage 0.60 0.57 0.40 0.85 0.39 0.11 0.77

JAGST comp. test 0.96 1.00 0.58 1.00 0.27 1.00 1.00
JAGST self-cont. test 0.85 1.00 0.24 0.99 0.07 1.00 1.00

Table 3. P-values from di↵erent gene-set tests on placenta data.

Pathway p53 MAPK TGF beta cell prog plac inflamm immune

Camera (ranks) 0.10 0.86 0.45 0.27 0.09 0.34 0.98
Camera 0.10 0.95 0.49 0.21 0.07 0.20 0.91
Roast 0.23 0.33 0.78 0.41 0.18 0.04 0.43
Safe 0.18 0.03 0.15 0.35 0.75 0.11 0.31

Gage (ranks) 0.23 0.05 0.21 0.52 0.81 0.12 0.45
Gage 0.26 0.04 0.23 0.49 0.77 0.07 0.41

JAGST comp. test 0.89 1.00 0.89 1.00 0.76 1.00 1.00
JAGST self-cont. test 0.66 1.00 0.65 1.00 0.43 1.00 1.00
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Fig. 3. Comparison of power between CAMERA tests in correlated region (solid line) and uncorrelated
(long dashes) region as a function of the strength of association between two transcripts within the gene
set and the outcome, holding the sample size constant at 280 observations.
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Fig. 4. Comparison of power between CAMERA tests using ranks in correlated region (solid line) and
uncorrelated (long dashes) region as a function of the strength of association between two transcripts
within the gene set and the outcome, holding the sample size constant at 280 observations.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/186288doi: bioRxiv preprint 

https://doi.org/10.1101/186288


REFERENCES 31

0.0 0.2 0.4 0.6 0.8

0
5

10
15

effect size of two transcripts

−l
og

 p
−v

al
ue

Fig. 5. Comparison of power between GAGE tests in correlated region (solid line) and uncorrelated (long
dashes) region as a function of the strength of association between two transcripts within the gene set
and the outcome, holding the sample size constant at 280 observations.
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Fig. 6. Comparison of power between GAGE tests using ranks in correlated region (solid line) and
uncorrelated (long dashes) region as a function of the strength of association between two transcripts
within the gene set and the outcome, holding the sample size constant at 280 observations.
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Fig. 7. Comparison of power between the JAGST competitive test in correlated region (solid line) and
uncorrelated (long dashes) region as a function of the strength of association between two transcripts
within the gene set and the outcome, holding the sample size constant at 280 observations.
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Fig. 8. Comparison of power between the JAGST self-contained test in correlated region (solid line) and
uncorrelated (long dashes) region as a function of the strength of association between one transcript
within the gene set and the outcome, holding the sample size constant at 280 observations.
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Fig. 9. Comparison of p-values between ROAST’s directional test and tail probabilities calculated analyt-
ically. These p-values were generated under the null and have a correlation of 0.99. The line corresponds
to y=x, along which equivalent points will fall
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Fig. 10. Comparison of p-values between ROAST’s directional test and tail probabilities calculated an-
alytically. These p-values were generated under a weak alternative and have a correlation of 0.99. The
line corresponds to y=x, along which equivalent points will fall
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