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Abstract 

 Gene-level differential expression analysis based on RNA-Seq is more robust, powerful 

and biologically actionable than transcript-level differential analysis. However aggregation of 

transcript counts prior to analysis results can mask transcript-level dynamics. We demonstrate 

that aggregating the results of transcript-level analysis allow for gene-level analysis with 

transcript-level resolution. We also show that p-value aggregation methods, typically used for 

meta-analyses, greatly increase the sensitivity of gene-level differential analyses. Furthermore, 

such aggregation can be applied directly to transcript compatibility counts obtained during 

pseudoalignment, thereby allowing for rapid and accurate model-free differential testing. The 

methods are general, allowing for testing not only of genes but also of any groups of transcripts, 

and we showcase an example where we apply them to perturbation analysis of gene ontologies.  
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Background 

Direct analysis of RNA abundance by sequencing cDNAs using RNA-Seq technology 

offers the possibility to analyze expression at the resolution of individual transcripts (Wang et al. 

2009). Nevertheless, RNA-Seq continues to be used mostly at the gene-level, partly because such 

analyses appear to be more robust (Soneson et al. 2016), and also because gene-level discoveries 

are more actionable than transcript discoveries due to the difficulty of knocking down single 

isoforms of genes (Kisielow et al. 2002). 

Gene-level RNA-Seq differential analysis is, at first glance, similar to transcript-level 

analysis, with the caveat that transcript counts are first summed to obtain gene counts (Anders 

and Huber 2010, Anders et al. 2015). However, despite the superficial simplicity of utilizing 

RNA-Seq for gene-level analysis, there is considerable complexity involved in transitioning from 

transcripts to genes. In (Trapnell et al. 2013), it was shown that naïve approaches for obtaining 

gene counts from transcript counts lead to inaccurate estimates of fold-change between 

conditions when transcripts have different lengths. Because transcript counts are proportional to 

transcript lengths, the summation of transcript counts is not equivalent to the summation of 

transcript abundances. A remedy to this problem is to estimate gene abundances (e.g. in 

transcript-per-million units) via the summation of transcript abundances (Trapnell et al. 2010), 

however methods for regularizing gene counts (Robinson et al. 2010) cannot be directly applied 

to gene abundances. 

For this reason, recent workflows for gene-level differential analysis rely on conversion 

of gene abundance estimates to “gene counts” (Soneson et al. 2016, Pimentel et al. 2017). Such 

methods have two major drawbacks. First, even though the gene counts they produce can be used 

to accurately estimate fold changes, the associated variance estimates can be distorted (see 
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Figure 1 and Supplementary Material). Second, the assignment of a single numerical value to a 

gene per condition can mask dynamic effects among its multiple constituent transcripts (Figure 

2). In the case of “cancellation” (Figure 2a), the abundance of transcripts changing in opposite 

directions cancels out upon conversion to gene abundance. In “domination” (Figure 2b), an 

abundant transcript that is not changing can mask substantial change in abundance of a minor 

transcript. Finally, in the case of “collapsing” (Figure 2c), due to overdispersion in variance, 

multiple isoforms of a gene all moving a little in the same direction do not lead to a significant 

change when observed in aggregate, but their independent changes constitute substantial 

evidence for differential expression. As shown in Figure 2, these scenarios are not only 

hypothetical scenarios in a thought experiment, but events that occur in biological data.  

One approach to addressing these issues is to first perform a transcript-level differential 

analysis followed by a gene-level meta-analysis rather than aggregating quantifications prior to 

differential analysis. Such a method is implemented in the DEXSeq program (Anders et al. 

2012), although it is not effective at recovering differential events lost due to collapsing, and is 

suboptimal even for cancellation or domination events (see Results and Supplementary 

Material). Meta-analyses are frequently performed during genome-wide association analyses to 

aggregate SNP-level p-values to the gene-level (Chen et al., 2014. Dai et al., 2011., Lamparter et 

al., 2016) and in pathway studies (Li et al., 2011, Lamparter et al., 2016), but such approaches 

do not appear to have been extensively explored for RNA-Seq. 

We present a new framework for gene-level differential analysis that utilizes the 

Lancaster method (Lancaster, 1961) to aggregate p-values. Our approach can be based on p-

values derived from transcript-level differential analysis, but can also be applied to p-values 

derived from comparisons of transcript compatibility counts (TCCs) as output by the 
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pseudoalignment method in kallisto (Bray et al., 2016). Each TCC corresponds to a set of 

transcripts and the count is the number of reads that are compatible with all the transcripts in the 

set. Thus, differential analysis directly from TCCs has the advantage of being quantification-free 

and efficient, and we show that it is particularly useful for positionally biased RNA-Seq data. 

Finally, we highlight the generality of our approach at varying levels of biological 

resolution by extending it naturally to gene ontology analysis. In contrast to classical gene 

ontology (GO) tests that identify enrichment of GO terms with respect to gene lists, our approach 

identifies GO terms in which there is significant perturbation among the associated genes. We 

combine this idea with TCC-based differential analysis to illustrate how RNA-Seq GO analysis 

can be performed without transcript quantification. 

 

Results 

We first examined the performance of aggregation in comparison to standard gene-level 

differential expression methods using three simulated scenarios of differential expression from 

(Pimentel et al. 2017). In these simulations transcripts are perturbed independently, in a 

correlated fashion, or according to effect sizes observed in a biological experiment. Each 

scenario was simulated 20 times. Figure 3 shows the results on the simulation with parameters 

set according to an experiment (Supplementary Figures 1 and 2 show results with other 

simulation scenarios). Aggregation of sleuth (Pimentel et al. 2017) estimated transcript p-values 

using the Lancaster method (Lancaster, 1961) outperforms standard gene-level analysis with 

sleuth. By using the same differential expression method to compute gene and transcript p-

values, we show that the marked improvement in performance is a result of the method of 

aggregation, and not the method used to compute p-values. Supplementary Figure 3 (see 
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Supplementary Materials) shows similar improvements when aggregation is performed using p-

values that are derived from DESeq2 (Love et al. 2014) instead of sleuth, however overall results 

are better with sleuth. Furthermore, Lancaster-based aggregation outperforms the Šidák method 

of DEXSeq (method corrected, see Supplementary Materials Section 2). While the Šidák method 

performs well when transcripts are perturbed independently (see Supplementary Material Figure 

1), it performs very poorly in the more common case of correlated effect (Supplementary 

Material Figure 2).  

Transcript-level p-values are computed from transcript quantifications. In (Bray et al. 

2016), we showed that bootstrapping, when coupled to pseudoalignment, is a fast and accurate 

approach to estimating uncertainty in transcript quantification. The sleuth method (Pimentel et 

al., 2017) propagates uncertainty in quantification estimates, increasing the accuracy of 

differential analysis at the transcript-level. Given the improved results observed with 

aggregation, we asked whether it is possible to directly aggregate the raw transcript compatibility 

counts obtained during pseudoalignment, thereby bypassing quantification and the uncertainty it 

entails altogether. Figure 3 shows that the results of gene-level differential analysis when p-

values are computed directly from TCCs are comparable to those derived from comparisons of 

transcript quantifications. In this instance, we used only TCCs that mapped solely to the 

transcripts of a single gene, which accounts for 88% of the RNA-Seq reads. It may be possible to 

continue to improve performance by accounting for inter-genic TCCs. 

Aggregation of TCCs is useful when quantification is complicated due to non-uniformity 

of reads across transcripts. While non-uniformity in coverage is prevalent in RNA-Seq (Hayer et 

al., 2015), it is particularly extreme in variants of RNA-Seq that enrich for 5’ or 3’ sequences. 

We used TCC aggregation to perform differential expression on QuantSeq data (Moll et al., 
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2014), where an experiment involving stretching of rat primary type I like alveolar epithelial 

cells was used to identify changes in 3’ untranslated region (UTR) usage (Dolinay et al., 2017, 

GEO Series GSE89024). Figure 4a shows that overall results with TCC-based aggregation, 

which avoids any quantification, are similar to standard analysis based on gene counts obtained 

by counting the number of reads that map to any constituent isoforms. However, TCC-based 

aggregation allows for the discovery of events that are masked in standard count-based analysis. 

Figure 4b shows an example where we discovered 3’ UTR isoform switching, an event which 

could not be identified with count-based analysis. 

While p-value aggregation works well for gene-level analysis at transcript resolution, the 

aggregation according to gene isoforms can be extended to other natural groupings. To 

demonstrate the generality of the approach, we examined transcript groupings according to gene 

ontology (Ashburner, 2000). Classic gene ontology analysis involves identifying statistically 

enriched categories based on over-representation in gene lists extracted from differential analysis 

(Huang et al., 2009, Mi et al., 2013). Instead, we examined the complementary question of 

“perturbation analysis”, namely whether a GO category is significantly perturbed. 

To test for perturbation, we aggregated p-values based on transcript quantifications or 

TCCs for all genes in each GO category to obtain p-values for each category, which are then 

Bonferroni corrected. Unlike standard GO enrichment analysis, this perturbation analysis utilizes 

all genes and reveals information not only about membership but also about the significance of 

perturbation. We performed differential expression and GO analysis on recently published RNA-

Seq data used to examine the effect of dexamethasone treatment on primary neural progenitor 

cells of embryonic mice (Frahm et al., 2017, GEO Series GSE95363).  To compare to standard 

GO enrichment analysis, we first performed gene-level differential expression analysis to find 
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genes that are perturbed by dexamethasone treatment. We found that the Lancaster method 

applied to TCC derived p-values identified the most “immune”-containing GO terms as enriched 

(Figure 5a). 

Finally, we performed a perturbation analysis with aggregated TCC p-values. This 

revealed 6396 perturbed ontologies (<0.05 FWER) by dexamethasone treatment.  Example gene 

ontologies at the top of the perturbed GO list included: system process (GO:0003008), response 

to stress (GO:0006950), metabolic process (GO:0008152), immune system process 

(GO:0002376), leukocyte differentiation (GO:0002521), inflammatory response (GO:0006954), 

response to hormone (GO:0009725), and regulation of signal transduction (GO:0009966). 

Comparatively, a classical enrichment GO analysis using Fisher’s exact method revealed 2123 

significantly enriched ontologies (<0.05 FWER). Many of the significantly perturbed GO’s 

mentioned above were also significantly enriched (<0.05 FWER), but system process and 

inflammatory response were not (FWER = 1.00). In other words, an enriched ontology is most 

likely perturbed, but not vice versa. Indeed, many more “immune”-containing GO terms were 

significantly perturbed but not significantly enriched. (See Figure 5c for scatter plot of p-values). 

Furthermore, we found that the significant GO terms identified by perturbation analysis were 

indeed enriched for “immune” GO terms (p-value = 0.015, Fisher’s exact test), but the 

significant GO terms in enrichment analysis were not enriched for “immune” GO terms (p-value 

0.967, Fisher’s exact test). These results suggest that perturbation analysis can be a useful and 

powerful complementary analysis to standard GO enrichment analysis. 
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Discussion 

We have shown that aggregating transcript compatibility counts to obtain gene-level p-

values is a powerful and tractable method that provides biologically interpretable results. The 

approach leverages the idea of pseudoalignment for RNA-Seq, enabling a fast and model-free 

approach to differential analysis that circumvents numerous drawbacks of previous methods. 

Specifically, the method is robust to the artifacts of collapsing, domination and cancellation that 

arise in standard gene-level analysis. The standard Lancaster method for aggregation works well 

but non-parametric approaches to aggregation could improve on the results we have reported. 

 The method of p-value aggregation is also extendable to testing other features of 

biological interest. We have demonstrated its utility for GO analysis, but applications can include 

testing for intron retention, differential transcript start site (TSS) usage, and other use cases 

where aggregation of features is of interest.  Finally, gene-level testing directly from TCC counts 

is particularly well-suited for single-cell RNA-Seq analysis, where many technologies produce 

read distributions that are non-uniform across transcripts. 

While this paper has focused on higher-order differential analysis, the complementary 

problem of differential analysis of individual transcripts can also benefit from some of the 

aggregation ideas described here. The stageR method, recently described in (Van den Berge et 

al., 2017), incorporates a two-step testing procedure in which an initial meta-analysis at the 

gene-level (using DEXSeq) is used to identify differential transcripts without losing power due 

to testing of all transcripts. The use of the Šidák method for aggregation of p-values makes sense 

in that context, as it is desirable to identify genes with at least one differential isoform. However, 

it is possible that some of the methods we have introduced, including testing of TCCs and 

weighting, could be applied during the screening stage. 
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Methods 

Aggregation of p-values 

Fisher’s method aggregates K p-values p1,…, pK which, under null hypotheses, are independent 

and uniformly distributed between 0 and 1. Supplementary Figure 4 shows that this assumption 

is reasonable for the dexamethasone RNA-Seq data we examined (aside from a peak close to 0, 

presumably corresponding to the differential transcripts, the p-values appear to be uniformly 

distributed). The method is based on a test statistic 𝑇 = 	 −2 log 𝑝* 	+
*,- which under the 

assumptions is chi-squared distributed with degrees of freedom (df)  = 2K. The aggregated p-

value is therefore  1 − 	𝜙( −2 log 𝑝* )	+
*,- where 𝜙 is the cumulative distribution function 

(CDF) of a chi-squared distribution with df = 2K.  (Fisher, 1932) 
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The Lancaster method  (Lancaster, 1961) generalizes Fisher’s method for aggregating p-values 

by introducing the possibility of weighting the p-values with weights w1,…,wK. Under the null 

hypothesis where all studies have zero effect, the test statistic 𝑇 = 𝜙2*3-(𝑝*)	+
*,- , where 𝜙2*3- is 

the inverse CDF of the chi-squared distribution with df = wi, follows a chi-squared distribution 

with 𝑑𝑓 = 	 𝑤*	+
*,- . 

 

The Šidák method utilizes a test based on the minimum p-value m = min(p1,…, pK), namely the 

adjustment 𝜃 = 	1	–	 1 − m +. In the context of K isoforms with p-values p1,…, pK, 	𝜃 is the 

gene-level p-value based on adjusting for the number of isoforms in the gene. If there are M 

genes, the adjustments will generate p-values 𝜃1, …, 𝜃M, which can be corrected for multiple 

testing. This method is similar to the perGeneQvalue result from DEXSeq (Anders et al., 2012), 

and while both methods control the false discovery rate, the gene ranking is different between the 

two methods (see Supplementary Materials). 

  

Transcript differential analysis and aggregation 

RNA-Seq reads were quantified with kallisto v.0.43.1 to obtain transcript counts and 

abundances. These counts were used as inputs in various differential expression methods (e.g. 

sleuth, DESeq2) in order to obtain transcript-specific p-values, which were then aggregated to 

obtain gene-specific p-values. Any transcripts filtered out from the differential expression 

analysis were also filtered out from the gene-level p-value aggregation.  FDRs were calculated 

for the gene-specific p-values with the Benjamini-Hochberg method. 
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Transcript compatibility count differential analysis and aggregation 

Transcript compatibility counts (TCCs) of RNA-Seq reads were obtained with the kallisto 

pseudo command.  The TCCs correspond to equivalence classes of transcripts, and all TCCs 

corresponding to transcripts from different genes were filtered out (88% of reads were retained 

after applying this filter). These TCCs were used to perform differential expression with sleuth 

(Pimentel et al. 2017) and DESeq2 (Love et al. 2015). The resulting p-values corresponding to 

TCCs were subsequently aggregated using the p-value aggregation methods described above. 

 

Gene differential analysis 

The aggregation methods were compared to standard gene-level differential analysis performed 

with sleuth and DESeq2. sleuth was run with default options (at the gene-level). DESeq2 was run 

on gene counts obtained with tximport (Soneson et al. 2015), with both programs run with 

default options.  

 

Simulations 

The simulations used to benchmark the method followed the approach of (Pimentel et al. 2017). 

A null distribution consisting of the negative binomial model for transcript counts was learned 

from the Finnish female lymphoblastic cell lines subset of GEUVADIS (Lappalainen et al., 

2013).  A distribution of fold changes to the mean was learned from an experimental data set 

from (Trapnell et al., 2013), and 20% of genes were chosen randomly to be differentially 

expressed, with fold changes of the transcripts assigned by rank-matching transcript abundances. 

Twenty simulations were performed, each with different randomly chosen sets of differentially 

expressed genes. For further details on the simulation structure see (Pimentel et al. 2017). 
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The simulations were quantified with kallisto v0.43.1 using an index constructed from the 

Ensembl Homo sapiens GRCh38 cDNA release 79. Differential expression analyses were 

performed with several aggregation methods, sleuth and DESeq2. Sensitivities and 

corresponding FDRs were calculated and then averaged across the twenty simulations. The 

average sensitivities at a range of false discovery rates were plotted with the mamabear package 

(Pimentel et al., 2017, https://github.com/pimentel/mamabear). 

 

Alveolar Stretching Data Set Analysis 

We used a QuantSeq data set (GEO Series GSE89024) of stretched and unstretched rat primary 

type I like alveolar epithelial cells. Five replicates for each condition were performed, resulting 

in a total of 10 single-end RNA-Seq samples (Dolinay et al., 2017). 

 

Reads were trimmed to remove poly-A tails with fqtrim-0.9.5 using the default parameters 

(Johns Hopkins Center for Computational Biology, 2015). kallisto v0.43.1 was used for 

quantification, with an index constructed from Ensembl Rattus norvegcius 6.0 cDNA, with 

default kmer length = 31, and with single-end quantification parameters l = 100 and sd = 70.  

Differential expression was performed with sleuth using 30 bootstraps. A Wald test was 

performed on the stretching parameter within sleuth to obtain p-values for the null hypothesis 

that stretching did not affect transcript expression. Transcript-level p-values were aggregated via 

the Lancaster method to gene-level p-values. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190199doi: bioRxiv preprint 

https://doi.org/10.1101/190199
http://creativecommons.org/licenses/by/4.0/


In addition, TCCs were obtained with kallisto v0.43.1 using the pseudo option, and differential 

expression of TCCs was performed in sleuth using the Wald test, with inferential variance 

estimated using 30 bootstraps of the TCC counts. sleuth-provided TCC-level p-values were 

aggregated with the Lancaster method to identify differentially expressed genes. 

 

Dexamethasone Data Set Analysis 

We analyzed a data set (GEO Series GSE95363) consisting of reads derived from RNA-Seq on 

primary mouse neural progenitor cells extracted from two regions of the brain, from female and 

male embryonic mice, and with and without dexamethasone treatment. Three replicates were 

performed for each of the eight combinatorial conditions, resulting in a total of 24 single-end 

RNA-Seq samples (Frahm et al., 2017). 

 

Samples were quantified with kallisto v0.43.1 to obtain transcript counts (default kmer length 31, 

with 30 bootstraps per sample), using an index constructed from Ensembl Mus musculus 

GRCm38 cDNA release 88. Differential expression was performed with sleuth using 30 

bootstraps to estimate inferential variance. The linear model with three parameters: gender (male 

vs female), brain region (hippocampus vs cortex), and treatment (vehicle vs dexamethasone), 

was used.  A Wald test was performed on the treatment parameter within sleuth to test the null 

hypothesis that dexamethasone had zero effect size on transcript expression. Transcript-level p-

values were aggregated via the Lancaster method to gene-level p-values. 

 

In addition, TCCs were obtained with kallisto v0.43.1 using the pseudo option, and differential 

expression of TCCs was performed in sleuth using 30 bootstraps on the TCC counts and the 
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Wald test. sleuth-provided TCC-level p-values were aggregated with the Lancaster method to 

identify differentially expressed genes. 

 

Gene Ontology 

topGO_2.26.0 (Alexa et al., 2016) was invoked to perform Fisher’s exact test for gene ontology 

overrepresentation tests, using gene ontologies drawn from GO.db_3.4.0 and mouse gene 

annotations drawn from org.Mm.eg.db_3.4.0 (The Gene Ontology Consortium, 2015). Gene-to-

gene ontology mappings were constructed with topGO to perform gene ontology perturbation 

tests with the Lancaster method. 

 

Software Versions 

DESeq2 1.14.1 and sleuth 0.29.0 were used in R version 3.4.1 to perform differential analyses. 

tximport 1.2.0 was used to sum transcript counts within genes to perform gene-level differential 

expression with DESeq2. We implemented Fisher’s method and Lancaster method with the chisq 

and gamma functions in the R stats package (R Core Team, 2017). Scripts to reproduce the 

figures and results of the paper are available at http://github.com/pachterlab/aggregationDE/. 
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Figure 1: Conversion of transcript counts to gene counts for the Nkap gene in the dexamethasone 
dataset. In this process, the transcript counts (a) are converted into transcript abundances (b) by 
normalization according to transcript lengths. Transcript abundances are then summed to obtain 
gene abundances (c), and then converted to gene counts (d) using the median or mean transcript 
length as a proxy for the gene length. The converted gene counts may mask significant changes 
among the constituent transcripts, and the gene count variance may not directly reflect the 
combined variance in transcript counts. In this example the gene is not differential when 
examined using the converted counts, but can be identified as differential when the p-values of 
the constituent transcripts are aggregated.  
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Figure 2: Differential transcript masking. Dynamics among transcripts may not be detected with 
gene-level analyses due to cancellation (a), domination (b) and collapsing (c).  In all these 
examples, gene-level differential analysis with sleuth failed to identify the genes as significantly 
differential, whereas Lancaster aggregation of transcript p-values resulted in detection of the 
genes as significantly differential (q-value < 0.05). 
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(b)

Figure 3: Sensitivity and false discovery rate of methods. Twenty simulated experiments based 
on parameters estimated from biological data were analyzed with different methods that rank 
genes (a), and zoomed in (b). sleuth in gene-mode (‘sleuth-Gene’) is a standard gene-level 
differential analysis. Aggregation results based on transcript p-values are shown using two 
approaches: sleuth transcript p-values aggregated by the Lancaster method (‘sleuth-Lancaster 
Tx’) and sleuth transcript p-values aggregated by the Šidák-adjusted minimum method (‘sleuth – 
Sidak Tx’) .  Finally, sleuth TCC p-values obtained by running sleuth on TCC counts were 
aggregated with the Lancaster method (‘sleuth-TCC’). Dashed lines indicate true FDR at 0.01, 
0.05, and 0.1. 
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Figure 4: Analysis of positionally biased RNA-Seq data using TCC aggregation. A log-log plot 
of p-values comparing aggregated TCC p-values using the Lancaster method (x-axis) to p-values 
obtained by differential analysis of total gene counts (y-axis) show good overall agreement (a).  
However, TCC aggregated analysis can detect differential 3’ UTR usage that is masked in gene 
count analyses (b). An example is shown from the rat gene Tap1, with rectangular blocks 
representing individual exons (blank = noncoding, solid = coding), and distinct equivalence 
classes labeled with brackets. Two other transcripts and their corresponding (zero count) 
equivalence classes are not shown. Significance levels for Tap1 under effects of alveolar 
stretching were calculated using the Lancaster method (p-value = 0.00218) and compared to p-
values derived from gene counts (p-value = 0.169). 
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(a)

 
(b) 

 
Figure 5: GO analysis based on p-value aggregation. (a) Significance of GO terms containing the 
word “immune,” performed with a classical GO enrichment test on gene lists significant for 
effects of dexamethasone (FDR < .05) shows that aggregation methods (‘Lancaster TCC’, 
Lancaster Tx’ and ‘Sidak Tx’) are better at detecting enrichment than p-values derived from 
standard gene-level analysis (‘Gene’). (b) TCC p-values aggregated by GO term (‘Perturbation 
Test’) reveal complementary information to classical GO enrichment (‘Enrichment Test’). 
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