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Abstract 30	

 31	

Working with cancer whole genomes sequenced over a period of many years in different 32	

sequencing centres requires a validated framework to compare the quality of these 33	

sequences. The Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International 34	

Cancer Genome Consortium (ICGC), a project a cohort of over 2800 donors provided us 35	

with the challenge of assessing the quality of the genome sequences. A non-redundant set 36	

of five quality control (QC) measurements were assembled and used to establish a star 37	

rating system. These QC measures reflect known differences in sequencing protocol and 38	

provide a guide to downstream analyses of these whole genome sequences. The resulting 39	

QC measures also allowed for exclusion samples of poor quality, providing researchers 40	

within PCAWG, and when the data is released for other researchers, a good idea of the 41	

sequencing quality. For a researcher wishing to apply the QC measures for their data we 42	

provide a Docker Container of the software used to calculate them. We believe that this is 43	

an effective framework of quality measures for whole genome, cancer sequences, which 44	

will be a useful addition to analytical pipelines, as it has to the PCAWG project.  45	
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Introduction 46	

Combining whole genome sequencing data from individual projects has many 47	

advantages: increased statistical power, the ability to extend hypotheses across several 48	

projects and the possibility of asking biological questions covering a wider range of 49	

phenomena. However when the genome sequencing data comes from different centres, 50	

was sequenced at different times and under different protocols, great care must be taken 51	

to ensure that the sequencing data is of comparable quality, to avoid drawing false 52	

conclusions. The Pan-Cancer Analysis of Whole Genomes (PCAWG) project provided us 53	

with a great opportunity to assemble, test and finalise which quality control measures are 54	

important for comparing the quality of whole genome, cancer sequences. 55	

The PCAWG project assembled a cohort of 48 projects encompassed in the International 56	

Cancer Genome Consortium (ICGC)1 and The Cancer Genome Atlas (TCGA)2 of which 57	

we analysed 2959 cancer genomes (normal-tumour genome pairs) from 2830 donors. The 58	

size of the dataset and the diversity of the samples, representing many different cancers 59	

from varied populations, allow the exploration of many fundamental questions of cancer. 60	

There was inclusion criteria based on the sequencing platform (Illumina) and minimum 61	

sequencing depth. However there were 18 different sequencing centres involved and the 62	

sequencing was performed over a five-year time-span (2009-2014: a time period in which 63	

the sequencing methodology was evolving rapidly). To be able to perform analysis across 64	

the whole data set, it was necessary that the quality of the sequencing be carefully 65	

assessed. 66	

There are advantages in a comprehensive set of quality measures. We will be able to 67	
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exclude samples of low quality. This will save running downstream analyses, saving 68	

computational and the researchers’ time. Another advantage is for researchers in 69	

PCAWG studying driver mutations, we can provide a sanity check. If the driver mutation 70	

is only found in low quality samples, it may not be a good candidate, compared to if it is 71	

supported by high quality samples. As PCAWG will release the data for community to 72	

use, our quality measures will provide a guide to the quality of the whole genome 73	

sequences within. For researchers who wish to assess the quality of their whole genome 74	

cancer sequences, we have released our methods, in a Docker Container for easy 75	

implementation.  76	

 77	

To develop a framework to determine the quality of samples, we use methods employed 78	

by the sequencing centres involved in PCAWG as well as results in the literature. TCGA 79	

marker papers (see references3-5 for examples from 2014-16) all include quality control 80	

(QC) measures such as depth of coverage, batch effects and contamination levels, 81	

calculated as part of the Firehose analysis infrastructure. Likewise a recent ICGC paper6 82	

with samples sequenced from three different centres relied on similar QC measures 83	

computed by the Picard toolkit. Lu et al.7, carried out meta-analysis of exome data 84	

available from the TCGA for 12 cancer types which is similar, but not identical in scope, 85	

to the data set examined here. Their inclusion criteria were based on coverage depth and 86	

percentage of exome coverage for both the normal and tumour samples. Other cancer 87	

studies have also pointed to the importance of the percentage of the genome covered8,9 as 88	

well as error rates for each of the paired reads10 as QC measures.  89	
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Here we present the results of the work by sequencing centres and research groups 90	

involved in PCAWG to define important quality control measures, and how best to 91	

combine the results from these measures. Based on the PCAWG data we selected 92	

measures covering five important features to assess the quality of cancer genome 93	

sequences: mean coverage, evenness of coverage, somatic mutation calling coverage, 94	

paired reads mapping to different chromosomes and the ratio of difference in edits 95	

between paired reads, an edit being a base in the read which is different to the reference 96	

genome. These measurements we computed for both the normal and tumour samples. To 97	

summarise the five QC measures, we established a star rating system to cover the range 98	

of the highest quality cancer genomes, passing the thresholds set for each measurement, 99	

to those that had many sequencing quality issues. 100	

Results 101	

All our analyses are based on the aligned sequences from the PCAWG core pipeline11. 102	

Within the aligned sequences we did not use duplicate reads, reads with a mapping 103	

quality of zero and ignored supplementary alignments (reads that map to more than one 104	

place in the genome). The first three quality control measures; mean coverage, evenness 105	

of coverage and somatic mutation calling coverage; are linked to different aspects of the 106	

coverage of the genomic sequence. The other two measures indicate discrepancies 107	

between the paired reads: mapping to different chromosomes and the ratio of edits 108	

between the paired reads compared to the reference genome. Finally we summarise these 109	

five measures into a star rating, for easy comparison of each of the sample pair’s quality. 110	

Mean Coverage When deciding on what depth to sequence cancer genomes to, a trade 111	
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off has to be made between the advantages of having a high coverage to the cost of 112	

sequencing. The higher the cancer genome is sequenced the greater the confidence in 113	

calling somatic events (see Alioto et al.12 for a comparison of somatic mutation calling at 114	

depths up to 300X). A precondition for the inclusion of a donor in the PCAWG study was 115	

the availability of a whole genome sequence of the normal and tumour with 25X 116	

coverage or greater. We found that a number of the projects submitting these genomes 117	

had calculated coverage differently. For standardization the mean number of reads 118	

covering each position in the genome was calculated, after low quality and duplicate 119	

reads were excluded so to not inflate the number of reads (see Supplementary Methods 120	

for exact methods used). As shown in Supplementary Figure S1, most commonly the 121	

normal samples were sequenced to around 30X, while there was a bimodal distribution 122	

for the tumour samples with maxima at 38X and 60X. To provide a meaningful guide to 123	

the quality of the genomes in PCAWG, we therefore set the thresholds for the mean 124	

coverage, after aligning, to 25X for normal samples and 30X for tumour samples. This 125	

resulted in 0.4% normal and 2.2% tumour samples not reaching these minimum criteria 126	

(Supplementary Figure S1).  127	

Evenness of Coverage To confidently identify germline variants and somatic mutations, 128	

an even coverage across the target area13, in this case the entire genome, is ideal. For this 129	

QC measure we used two methods to test if the genome is evenly covered. One method is 130	

to calculate the ratio of the median coverage over the mean coverage (MoM). An evenly 131	

covered sequence should have a ratio of one, with the mean value the same as the median 132	

value, not skewed by very low or high coverage in certain regions. To decide within what 133	

range of values a sample should fall to be regarded as evenly covered, we used the 134	
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whiskers of the boxplots in Figure 1, 1.5 × I.Q.R (interquartile range) of the data, which 135	

results in the range of 0.99 - 1.06 for a normal sample and the wider range of 0.92 - 1.09 136	

for the tumour samples (Supplementary Figure S2).  137	

The second measure of evenness looks at the variation of the normalised coverage in ten 138	

kilobase genomic windows, after correction for GC-dependent coverage bias using the 139	

somatic CNV calling algorithm ACEseq14 (Figure 2). The main cloud, which corresponds 140	

to the main copy number state of the sample, is determined (as shown by the red dots in 141	

Figure 2). The remaining coverage variation is measured as full width at half maximum 142	

(FWHM) of the main cloud. This measure is insensitive to copy number aberrations and 143	

GC-dependent coverage bias. To determine the thresholds, 1000 WGS samples from 144	

different tumour types were used. We chose the thresholds based on clustering of these 145	

samples and subsequent visual inspection of the "best" samples that exceeded the 146	

threshold to see whether they are valid. Using these results the thresholds chosen are 147	

0.205 for the normal and the more lenient 0.34 for the tumour, above which the sample 148	

would be regarded as having an uneven coverage (Supplementary Figure S3). 149	

For MoM coverage ratio and for FWHM, there is a greater range of values for the tumour 150	

samples than normal samples, potentially due to biologically reasons valid for tumours, 151	

for example large deletions could lead to a more unevenly covered sample. If the normal 152	

sample is unevenly covered, it is more likely due to a sequencing artefact. Hence, we are 153	

more stringent for the normal than the tumour samples. 154	

The two evenness measures identify different samples as having uneven coverage (Figure 155	

3). Spearman’s correlation coefficient for the two measures suggests that these measures 156	
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are not correlated for the normal (ρ = 0.24) and tumour (ρ = −0.06) samples. FWHM is 157	

insensitive to GC bias, as the CNV caller corrects for this while MoM identifies other 158	

evenness outliers.  159	

The samples needs to be in the respective ranges of the MoM and below the thresholds 160	

for FWHM for the normal and the tumour to pass the evenness quality measure, of which 161	

6.28% and 5.81% respectively of the samples were not. 162	

Somatic Mutation Calling Coverage Having the depth of and evenness of coverage 163	

measured, our next QC measure looks at the effect of these at each base in the cancer 164	

genome (both the normal and the tumour sample). This measure gives a good summary of 165	

how much of the cancer genome is sufficiently covered to call a somatic mutation event. 166	

The somatic mutation caller MuTect15 calculates for each base in the genome, if it has 167	

sufficient coverage in both the normal and tumour sample (least fourteen reads are 168	

present in the tumour and eight reads in the matched normal sample). Based on those 169	

requirements, we had to establish the number of bases to consider the sample sufficiently 170	

covered. Ideally the threshold should be high enough to penalise the less well-sequenced 171	

samples, while not unduly penalising tumour samples that have had large deletions in the 172	

genome resulting in fewer bases to sequence. Taking into account the largest 173	

unambiguous mapping for a female donor (so not including the Y chromosome) would be 174	

2,835,690,481 bases16, 2.6 gigabases would best suit these two needs. This results in 175	

5.95% of normal-tumour pairs with fewer bases sufficiently covered, than this threshold 176	

(Supplementary Figure S4).  177	

Paired reads mapping to different chromosomes The two reads from a read pair 178	
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should represent the ends of a contiguous DNA sequence that depending on the insert 179	

size should be a given distance apart (for PCAWG between 200 and 1,000 bases). Paired 180	

reads mapping to different chromosomes can be due to a rearrangement. However an 181	

excess of reads mapping to different chromosomes points to a technical artefact. So 182	

deciding a threshold based on percentage of paired reads mapping to different 183	

chromosomes, we should not penalise sequences with biological causes of the paired 184	

reads mapping to different chromosomes (such as chromothripsis17, or more generally, 185	

interchromosomal rearrangements). We set the threshold to 3%, which even samples with 186	

confirmed high levels of rearrangements and chromothripsis do not exceed which in our 187	

experience, do not have more than 1% of paired reads mapping to different 188	

chromosomes. Of the normal sequences 14.5% exceed the threshold, as do 13.0% tumour 189	

sequences (Supplementary Figure S5). Interestingly there are more normal samples 190	

failing this measure, which cannot be explained by biological processes. A possible 191	

explanation may be that for lower quality samples in preparing libraries with PCR 192	

amplification causes an increase in two fragments of DNA from different parts of the 193	

genome being fused together, as has previously been noted18. Consequently, this 194	

translates to an increase in percentage of paired reads mapping to different chromosomes.  195	

Ratio of difference in edits between paired reads Damage in sequencing runs has been 196	

linked to a global imbalance in edits (where the base in read is different compared to the 197	

reference) between read 1 and read 2 in paired end sequencing19. Therefore the ratio of 198	

the sum of edits between paired reads for a well-sequenced sample should be close to 199	

one. We adjudged samples with a two-fold ratio of edits between the paired reads, or 200	

greater, as having something gone wrong in the sequencing cycle resulting in lower data 201	
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quality. Based on this threshold 4.66% and 4.49% normal and tumour samples failed 202	

respectively. 203	

Summary The five quality measures were selected to provide minimal redundancy in 204	

flagging quality issues in normal/tumour paired genome sequences, which each measure 205	

reflects a facet of sequencing quality that other measures do not. Figure 4 shows there is 206	

some overlap between certain measures, for example 75 sample pairs are penalised by 207	

both having a high percentage paired reads mapping to different chromosomes and 208	

uneven coverage. However a much higher number of samples penalised by one of these 209	

measures and not the other. Having defined these five, non-redundant QC measures our 210	

next step was to summarise them, to give an overall score for quality for the other 211	

researchers in PCAWG to use. 212	

Star rating system 213	

We used the five quality measures to construct a star rating for each cancer genome 214	

(normal/tumour whole genome sequence). For each QC measure a star is awarded if both 215	

the normal and tumour sample pass the threshold. Half a star is awarded if only the 216	

normal passes the threshold for the respective QC measures. For somatic mutation calling 217	

coverage, a whole star is awarded for passing, none otherwise. The reasons for the extra 218	

weighting of the normal sample for the other four measures are that there is no biological 219	

reason for low quality in the normal sequence and a well-sequenced normal sample is 220	

important for calling somatic mutations. 221	

Summing the stars earned for each of the five QC measure results in 66.4% of the 222	

normal/tumour sample pairs of the PCAWG being rated as 5 stars. Looking specifically 223	
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at the different projects (Figure 5), a more nuanced picture is available. The quality does 224	

not seem to be biased by tissue type (Supplementary Figure S7) based on detailed 225	

molecular subtypes of the tumours in PCAWG20, the difference seems to be more at the 226	

project level. Unfortunately, there is only limited project metadata on when and which 227	

protocol was used to sequence the samples. Detailed metadata was available for 95 228	

donors of the CLLE-ES project (concerning Chronic Lymphocytic Leukaemia), so it 229	

could be used as an example. Changes in protocol had an effect on the quality of the 230	

sequencing over the four years in which CLLE-ES samples were sequenced. For the 231	

CLLE-ES project, most notable was the change to a no PCR proband in 2012, which 232	

resulted in improvements to the measures of paired reads mapping to different 233	

chromosomes and evenness of coverage. This in turn resulted in a measurable change in 234	

somatic mutation calling coverage and improvement in star ratings (Supplementary 235	

Figure S8). We found similar results for a subset of 348 samples sequenced at the Broad 236	

Institute (Supplementary Figure S9), which had metadata recorded in CGHub21 about the 237	

time and instruments used to sequence. We hypothesise that this will be true for other 238	

projects as well. 239	

Having calculated the star rating for the sequences, it was interesting to see how our QC 240	

measures relate to the calling of somatic single nucleotide variants (SNVs)11, somatic 241	

insertion and deletions (indels)11 and somatic structural variants (SVs)22 in PCAWG. An 242	

advantage of using these PCAWG datasets is that four callers were used for each. 243	

Looking at the proportion of calls, which all four callers supported, gives us a good idea 244	

how the quality of sequencing influences the identification of unambiguous somatic 245	

mutations. While the proportion of calls supporting the four callers varies greatly by 246	
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sample, we find that the samples with four stars or more tended to have higher 247	

proportions than samples with less than four stars for SNVs, indels and SVs (with p-248	

values of ~10-5, ~10-5, ~10—18 respectively, using the Mann-Whitney-U test, also see 249	

Figure 6). 250	

Taking this analysis further we used linear regression models to further analyse the 251	

relation between the proportion of calls supported by four callers and the QC measures 252	

(see Supplementary Tables S1-S3). The results show that, an increasing percentage of 253	

paired reads mapping to different chromosomes in tumour samples, has a negative effect 254	

on the proportion of calls supported by four callers for SNVs, indels and SVs. For SNVs 255	

an increasing mean coverage in tumours has a significant positive effect on the proportion 256	

of calls supported by four callers. While for indels there is a significant negative effect on 257	

the proportion of calls supported by four callers by increasing unevenness (as measured 258	

by FWHM) in tumours. As in indels, the unevenness effect is also true in SVs as well as 259	

significant negative effects by increasing percentage of paired reads mapping to different 260	

chromosomes in normal samples and ratio of difference in edits between paired reads in 261	

tumour samples. 262	

The results from this analysis suggest quality of sequencing, measured by our star rating, 263	

does have a measurable effect on the downstream analyses. As our QC measures reflect 264	

different aspects of sequencing quality, they also have varying levels of importance in 265	

using these sequences in the calling of SNVs, indels and SVs. 266	

Discussion 267	

The established star rating system allows grading the normal and tumour sample 268	
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sequences by quality in absence of information on how sequencing was carried out, what 269	

protocols were used and what problems may have occurred during the sequencing 270	

process. The system is not designed to be all encompassing, instead using a small amount 271	

of computational resources and time (compared to the actual aligning of the sequences), 272	

we get a good snapshot of the quality of the normal-tumour sample pair sequences on 273	

which to call somatic mutations. Likewise having graded the cancer genomes with our 274	

five-star system, we do not intend researchers to necessarily exclude the lower ranked 275	

cancer genomes, just to be wary of any conclusions based solely on the lower scoring 276	

genomes. 277	

With our star rating system, we sent several samples in PCAWG to the exclusion list due 278	

to their poor performance in one of the QC measures. Due to the timing, this did not 279	

prevent the downstream analyses being performed. Though anecdotally it would have 280	

saved 55 days computational runtime for our one star sample. For all samples that 281	

remained, the QC star rating was embedded in the header of the variant call format files 282	

for use of the researchers within PCAWG, and when the data is released, to all 283	

researchers.  284	

For those projects in PCAWG, which we had metadata, we found that sequencing quality 285	

has definitely improved over the time period 2009-2014 in which the samples sequenced. 286	

Our results for the CLLE-ES project suggest that in part a protocol change to PCR-free 287	

methods improved sequencing, as in line with best practices from a recent benchmarking 288	

exercise12. 289	

Another advantage of our quality control is the link to the downstream analyses. In 290	
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aggregate, the higher the quality of the sequences, had a higher proportion of the somatic 291	

SNVs, indels, SVs identified, by all the callers for each type of somatic mutation. These 292	

results suggest overall that higher quality sequence will identify the true positive somatic 293	

mutations with higher probability. Our data would suggest that when pre-amplification of 294	

DNA is needed for WGS, for example DNA isolated from formalin fixed, paraffin 295	

embedded tissue, the star rating system will be helpful when the variants and mutations 296	

are interpreted. 297	

We believe that our method can be adapted for similar projects that look to use whole 298	

genome sequences from a variety of sources. The thresholds we used based on our 299	

experience and applied to this dataset of 2959 cancer genomes can also be used as guide 300	

to quality of sequences. It is worth noting that they represent a trade-off of being severe 301	

enough to penalise poor quality while not discriminating against samples with valid 302	

biological causes. We also would recommend using our methods to ascertain the quality 303	

before downstream analyses by other groups. To enable others to use our approach, there 304	

is a Docker Container, which can be accessed at https://github.com/eilslabs/PanCanQC. 305	

We provide a framework for quality assessment, which opens the door to do large-scale 306	

meta-analysis in a more robust framework.  307	
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Figures 388	

 389	

Figure 1: Distribution of the median coverage over mean coverage ratios for normal and 390	
tumour samples. The horizontal dashed bar at 1 represents the value of an evenly covered 391	
sample. As shown in the plot the tumour samples have a greater spread of values than the 392	
normal, we hypothesize this is to be expected as tumours are more likely to have deletions 393	
and structural rearrangements, which will lead to less evenly covered sequence. The 394	
whiskers on each of the boxplots (0.99-1.06 for the normal and 0.92-1.09 for the tumour) 395	
were taken as thresholds for this measure.  396	
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a) 397	

 398	

b) 399	

 400	

Figure 2: GC content versus the normalised coverage for evenly covered sample (a) and 401	
unevenly covered sample (b). The main cloud, corresponding to the main copy number 402	
state of the samples, is indicated in red. The yellow cloud represents a different copy 403	
number state of a copy number aberrant region. FWHM is calculated on the main copy 404	
number state.  405	
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a) 406	

 407	

b) 408	

  409	

Figure 3: Density scatter plot comparing the two evenness of coverage measures for 410	
normal (a) and tumour (b). The number of samples overlapping is reflected by the colour 411	
at that point as shown by the legend. The dashed lines reflect the thresholds for the 412	
evenness measures. These graphs show that while there are certain samples both methods 413	
pick out as being unevenly covered, there are also samples picked out by one of the two.  414	
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 415	

Figure 4: Venn diagram showing for which QC measure sample pairs were penalised for. 416	
The outside numbers show that each QC measures penalises a fair number of sample 417	
pairs uniquely. Looking at the overlaps between QC measures, while some measures are 418	
closer to each other than others, they all maintain a large degree of independence.  419	
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 420	

Figure 5: Distribution of the star ratings for the PCAWG genomes, grouped by tissue 421	
type (as labelled along the x-axis), and then project. The project name and number of 422	
samples in the project are labelled at the top of the bar. The colour of the bar reflects 423	
what percentage of samples in the project have that star rating (corresponding to the 424	
legend). The bar on the far left shows the results for all samples. The plot demonstrates 425	
the varying quality of different projects - differences we believe come from when the 426	
genome was sequenced and the sequencing protocol used.  427	
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 428	
Figure 6a: Samples with four stars or greater tend to have a higher the proportion of 429	
somatic single nucleotide variants (SNV) calls supported by four callers than samples 430	
with fewer than four stars. This is significant using the Mann-Whitney U test, with p-431	
value ~ 10-5.  432	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/140921doi: bioRxiv preprint 

https://doi.org/10.1101/140921


	 26	

 433	

Figure 6b: Samples with four stars or greater tend to have a higher the proportion of 434	
somatic insertion and deletion (indel) calls supported by four callers than samples with 435	
fewer than four stars. This is significant using the Mann-Whitney U test, with p-value ~ 436	
10-5.  437	
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 438	

Figure 6c: Samples with four stars or greater tend to have a higher the proportion of 439	
somatic structural variant (SV) calls supported by four callers than samples with fewer 440	
than four stars. This is significant using the Mann-Whitney U test, with p-value ~ 10-8. 441	
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