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ABSTRACT 
How the neocortex works is a mystery. In this paper we 
propose a novel framework for understanding its function. 
Grid cells are neurons in the entorhinal cortex that represent 
the location of an animal in its environment. Recent evidence 
suggests that grid cell-like neurons may also be present in the 
neocortex. We propose that grid cells exist throughout the 
neocortex, in every region and in every cortical column. They 
define a location-based framework for how the neocortex 
functions. Whereas grid cells in the entorhinal cortex represent 
the location of one thing, the body relative to its environment, 
we propose that cortical grid cells simultaneously represent the 
location of many things. Cortical columns in somatosensory 
cortex track the location of tactile features relative to the object 
being touched and cortical columns in visual cortex track the 
location of visual features relative to the object being viewed. 
We propose that mechanisms in the entorhinal cortex and 
hippocampus that evolved for learning the structure of 
environments are now used by the neocortex to learn the 
structure of objects. Having a representation of location in 
each cortical column suggests mechanisms for how the 
neocortex represents object compositionality and object 
behaviors. It leads to the hypothesis that every part of the 
neocortex learns complete models of objects and that there are 
many models of each object distributed throughout the 
neocortex. The similarity of circuitry observed in all cortical 
regions is strong evidence that even high-level cognitive tasks 
are learned and represented in a location-based framework.  
 
INTRODUCTION 
The human neocortex learns an incredibly complex and 
detailed model of the world. Each of us can recognize 
thousands of objects. We know how these objects appear 
through vision, touch, and audition, we know how these 
objects behave and change when we interact with them, and 
we know their location in the world. The human neocortex also 
learns models of abstract objects, structures that don’t 
physically exist or that we cannot directly sense. The circuitry 
of the neocortex is also complex. Understanding how the 
complex circuitry of the neocortex learns complex models of 
the world is one of the primary goals of neuroscience.  
 
Vernon Mountcastle was the first to propose that all regions of 
the neocortex are fundamentally the same. What distinguishes 
one region from another, he argued, is mostly determined by 
the inputs to a region and not by differences in intrinsic 
circuitry and function. He further proposed that a small volume 
of cortex, a cortical column, is the unit of replication 
(Mountcastle, 1978). These are compelling ideas, but it has 
been difficult to identify what a column could do that is 
sufficient to explain all cognitive abilities. Today, the most 
common view is that the neocortex processes sensory input in 
a series of hierarchical steps, extracting more and more 
complex features until objects are recognized. Although this 
view explains some aspects of sensory inference, it fails to 
explain the richness of human behavior, how we learn multi-
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dimensional models of objects, and how we learn how objects 
themselves change and behave when we interact with them. It 
also fails to explain what most of the circuitry of the neocortex 
is doing. In this paper we propose a new theoretical framework 
based on location processing that addresses many of these 
shortcomings. 

Over the past few decades some of the most exciting advances 
in neuroscience have been related to “grid cells” and “place 
cells”. These neurons exist in the hippocampal complex of 
mammals, a set of regions, which, in humans, is roughly the 
size and shape of a finger, one on each side of the brain. Grid 
cells in combination with place cells learn maps of the world 
(Hafting et al., 2005; Moser et al., 2008; O’Keefe and 
Dostrovsky, 1971). Grid cells represent the current location of 
an animal relative to those maps. Modeling work on the 
hippocampus has demonstrated the power of these neural 
representations for episodic and spatial memory (Byrne et al., 
2007; Hasselmo, 2012; Hasselmo et al., 2010), and navigation 
(Erdem and Hasselmo, 2014; Bush et al., 2015). There is also 
evidence that grid cells play a role in more abstract cognitive 
tasks (Behrens et al., 2018; Constantinescu et al., 2016). 

Recent experimental evidence suggests that grid cells may also 
be present in the neocortex. Using fMRI, (Doeller et al., 2010; 
Constantinescu et al., 2016; Julian et al., 2018) have found 
signatures of grid cell-like firing patterns in prefrontal and 
parietal areas of the neocortex. Using single cell recording in 
humans, (Jacobs et al., 2013) have found more direct evidence 
of grid cells in frontal cortex. Our team has proposed that 
prediction of sensory input by the neocortex requires a 
representation of an object-centric location to be present 
throughout the sensory regions of the neocortex, which is 
consistent with grid cell-like mechanisms (Hawkins et al., 
2017). 

Here we propose that grid cell-like neurons exist in every 
column of the neocortex. Whereas grid cells in the entorhinal 
cortex primarily represent the location of one thing, the body, 
we suggest that cortical grid cells simultaneously represent the 
location of multiple things. Columns in somatosensory cortex 
that receive input from different parts of the body represent the 
location of those inputs in the external reference frames of the 
objects being touched. Similarly, cortical columns in visual 
cortex that receive input from different patches of the retinas 
represent the location of visual input in the external reference 
frames of the objects being viewed. Whereas grid cells and 
place cells learn models of environments via movement of the 
body, we propose that cortical grid cells combined with 
sensory input learn models of objects via movement of the 
sensors.  

Throughout this paper we refer to “cortical columns”. We use 
this term similarly to Mountcastle, to represent a small area of 
neocortex that spans all layers in depth and of sufficient lateral 
extent to capture all cell types and receptive field responses. 
For this paper, a cortical column is not a physically demarked 
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entity. It is a convenience of nomenclature. We typically think 
of a column as being about one square millimeter of cortical 
area, although this size is not critical and could vary by species 
and region. 

HOW GRID CELLS REPRESENT 
LOCATION 
To understand our proposal, we first review how grid cells in 
the entorhinal cortex are believed to represent space and 
location, Figure 1. Although many details of grid cell function 
remain unknown, general consensus exists on the following 
principles. A grid cell is a neuron that becomes active at 
multiple locations in an environment, typically in a grid-like, 
or tiled, triangular lattice. A “grid cell module” is a set of grid 
cells that activate with the same lattice spacing and orientation 
but at shifted locations within an environment. As an animal 
moves, the active grid cells in a grid cell module change to 
reflect the animal’s updated location. This change occurs even 
if the animal is in the dark, telling us that grid cells are updated 
using an internal, or “efference”, copy of motor commands 
(Kropff et al., 2015; McNaughton et al., 2006; Moser et al., 
2008). This process, called “path integration”, has the 
desirable property that regardless of the path of movement, 
when the animal returns to the same physical location, then the 
same grid cells in a module will be active. 

 
Due to tiling, a single grid cell module cannot represent a 
unique location. To form a representation of a unique location 
requires looking at the active cells in multiple grid cell 
modules where each grid cell module differs in its tile spacing 
and/or orientation relative to the environment, Figure 1C and 
1D. For example, if a single grid cell module can represent 
twenty different locations before repeating, then ten grid cell 
modules can represent approximately 2010 different locations 
before repeating. (Fiete et al., 2008) This method of 
representing location has several desirable properties.  
 
1) Large representational capacity 
The number of locations that can be represented by a set of 
grid cell modules is large as it scales exponentially with the 
number of modules. 
 
2) Path integration works from any location 
No matter what location the network starts with, path 
integration will work. This is a form of generalization. The 
path integration properties have to be learned once for each 
grid cell module, but then apply to all locations, even those the 
animal has never been in before. 
 

 

Figure 1. How Grid Cells Represent Location. (A) An individual grid cell becomes active at multiple locations (red circles) 
as an animal moves about an environment (rectangle). The locations of activation form a periodic grid-like lattice. The 
activation locations are always the same for any particular environment. (B) A grid cell module is a set of grid cells that 
activate at the same spacing and orientation but at different positions in the environment. The activation locations for two grid 
cells in a grid cell module are shown (red and blue dots). Every location in an environment will activate one or more grid 
cells in a module. Because of the periodic activation of grid cells, a single grid cell module cannot represent unique locations. 
(C) Multiple grid cell modules (two shown, top and bottom) tile the same space at different orientations and/or spacings. (D) 
Although a single module cannot represent unique locations in an environment, the activity across multiple modules can. This 
rectangle shows the superimposed firing fields of the two grid cells from C). Note that when the two cells (red and green) fire 
together, only one location is possible (indicated by arrow). The number of locations that can be represented increases 
exponentially with the number of modules. 
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3) Locations are unique to each environment 
Every learned environment is associated with a set of unique 
locations. Experimental recordings suggest that upon entering 
a learned environment, entorhinal grid cell modules “anchor” 
differently (Marozzi et al., 2015; Rowland and Moser, 2014).  
(The term “anchor” refers to selecting which grid cells in each 
module should be active at the current location.) This suggests 
that the current location and all the locations that the animal 
can move to in that environment will, with high certainty, have 
representations that are unique to that environment (Fiete et 
al., 2008; Sreenivasan and Fiete, 2011).  
 
Combining these properties, we can now broadly describe how 
grid cells represent an environment such as a room, Figure 2A. 
An environment consists of a set of location representations 
that are related to each other via path integration (i.e. the 
animal can move between these location representations). 
Each location representation in the set is unique to that 
environment and will not appear in any other environment. An 
environment consists of all the locations that the animal can 
move among, including locations that have not been visited, 
but could be visited. Associated with some of the location 
representations are observable landmarks. 
 
GRID CELLS IN THE NEOCORTEX 
Now let us consider a patch of neocortex that receives input 
from the tip of a finger, Figure 2B. Our proposal is that some 
of the neurons in that patch of cortex represent the location of 
the fingertip as it explores an object. When the finger moves, 

these cortical grid cells update their representation of location 
via a motor efference copy and path integration. Objects, such 
as a coffee cup, have an associated set of locations, in the same 
way that environments, such as a room, have an associated set 
of locations. Associated with some of the object’s locations are 
observable features. The cortical area receiving input from the 
fingertip tracks the location of the sensory input from the 
fingertip in the location space of the object. Through 
movement and sensation, the fingertip cortical area learns 
models of objects in the same way that grid cells and place 
cells learn models of environments. Whereas the entorhinal 
cortex tracks the location of the body, different areas of the 
neocortex independently track the location of each movable 
sensory patch. For example, each area of somatosensory cortex 
tracks the location of sensory input from its associated body 
part. These areas operate in parallel and build parallel models 
of objects. The same basic method applies to vision. Patches 
of the retina are analogous to patches of skin. Different parts 
of the retina observe different locations on an object. Each 
patch of cortex receiving visual input tracks the location of its 
visual input in the location space of the object being observed. 
As the eyes move, visual cortical columns sense different 
locations on an object and learn parallel models of the 
observed object. 
 
We have now covered the most basic aspects of our proposal. 

1) Every cortical column has neurons that perform a function 
similar to grid cells. The activation pattern of these cortical 
grid cells represents the location of the column’s input relative 

 

Figure 2. Representing Objects as Location Spaces. We propose that the neocortex learns the structure of objects in the same 
way that the entorhinal cortex and hippocampus learn the structure of environments. (A) Two rooms that a rodent has learned. 
Because of distinct landmarks (suggested by blue and green rectangles) an animal will perceive these as different rooms. 
Locations in a room are represented by the activity in a set of grid cell modules in the entorhinal cortex. Three locations are 
shown for each room (A,B,C and D,E,F). Representations of location are unique to both the location in a room and the room. 
Therefore, if an animal can determine it is in location A, then it knows what room it is in (Room1) and its location in the 
room. The locations associated with a room are united via movement and path integration. As an animal moves, the 
representation of location is updated (red arrows) based on an internal copy of its motor behavior. By exploring a room, the 
animal learns the features associated with locations in the room. (B) We propose that objects such as a pen or coffee cup are 
similarly defined by a set of locations (four labeled for the pen and three labeled for the cup). Grid cells in the neocortex 
represent the location of a sensor patch (for example, tip of finger) in the location space of the object. Locations in an object’s 
space are unique to the object and the location relative to the object. An object’s space includes locations that can be moved 
to but don’t necessarily have an associated feature. For example, location W is part of the pen because a finger can move from 
V to W to T via path integration. By moving and exploring the object, the neocortex learns the features associated with 
locations of the object. 
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to an external reference frame. The location representation is 
updated via a motor efference copy and path integration. 

2) Cortical columns learn models of objects in the world 
similarly to how grid cells and place cells learn models of 
environments. The models learned by cortical columns consist 
of a set of location representations that are unique to each 
object, and where some of the locations have observable 
features.  

A LOCATION-BASED FRAMEWORK FOR 
CORTICAL COMPUTATION 
Our proposal suggests that cortical columns are more powerful 
than previously assumed. By pairing input with a grid cell-
derived representation of location, individual columns can 
learn complex models of structure in the world (see also 
(Lewis et al., 2018)). In this section we show how a location-

based framework allows neurons to learn the rich models that 
we know the neocortex is capable of.  

Object Compositionality 

Objects are composed of other objects arranged in a particular 
way. For example, it would be inefficient to learn the 
morphology of a coffee cup by remembering the sensory 
sensation at each location on the cup. It is far more efficient to 
learn the cup as the composition of previously learned objects, 
such as a cylinder and a handle. Consider a coffee cup with a 
logo on it, Figure 3A. The logo exists in multiple places in the 
world and is itself a learned “object”. To represent the cup with 
the logo we need a way of associating one object, “the logo”, 
at a relative position to another object, “the cup”. 
Compositional structure is present in almost all objects in the 
world, therefore cortical columns must have a neural 

 

Figure 3. Representing Objects as Compositions of other Objects. (A) The neocortex can learn an object, such as a “coffee 
cup with logo”, as a composition of two previously learned objects, “cup” and “logo”. The goal is to represent this relationship 
efficiently, without any relearning. (B) The cup and the logo each have their own unique set of locations. Three locations are 
shown in cup space (a, b, c) and three locations are shown in logo space (x, y, z). When the logo is placed on the cup there is 
a fixed one-to-one mapping between locations in cup space and locations in logo space. This relationship can be represented 
as a displacement vector between the two spaces (blue arrows). (C) Animals exploring an environment can determine the 
direction and distance from their current location, a, to a previously visited target location, b, even if they have never taken 
this path before. Determining the displacement between two locations in the same space (e.g. a to b in panel C) is equivalent 
to determining the displacement between two locations in separate spaces (e.g. a to x in panel B). (D) A method to determine 
the displacement between two locations. Each grid cell module is paired with a displacement cell module. Cells in a 
displacement cell module (blue dots) respond to a particular displacement between pairs of grid cells (green dots). Any two 
pairs of grid cells with the same displacement in physical space will activate the same displacement cell. Displacement cells 
cannot represent a unique displacement in the same way that grid cells cannot represent a unique location. However, the set 
of active cells in multiple displacement cell modules (three shown) will represent a unique displacement. Because the set of 
active grid cells in multiple grid cell modules is unique to objects (cup and logo), the set of active displacement cells will also 
be unique (to both the cup and logo). Thus, a set of active displacement cells can represent the relative placement of two 
specific objects (location of logo on cup). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/442418doi: bioRxiv preprint 

https://doi.org/10.1101/442418
http://creativecommons.org/licenses/by/4.0/


 5 

mechanism that represents a new object as an arrangement of 
previously-learned objects. How can this functionality be 
achieved? 

We have proposed that each object is associated with a set of 
locations which are unique to the object and comprise a space 
around the object. If a finger is touching the coffee cup with 
the logo, then the cortical grid cells representing the location 
of the finger can at one moment represent the location of the 
finger in the space of the coffee cup and at another moment, 
after re-anchoring, represent the location of the finger in the 
space of the logo. If the logo is attached to the cup, then there 
is a fixed, one-to-one, relationship between any point in the 
space of the logo and the equivalent point in the space of the 
cup, Figure 3B. The task of representing the logo on the cup 
can be achieved by creating a “displacement” vector that 
converts any point in cup space to the equivalent point in logo 
space. 

Determining the displacement between two objects is similar 
to a previously-studied navigation problem, specifically, how 
an animal knows how to get from point a to point b within an 
environment, Figure 3C. Mechanisms that solve the 
navigation problem (determining the displacement between 
two points in the same space) can also solve the object 
composition problem (determining the displacement between 
two points in two different spaces).  

Displacement Cells 

Several solutions have been proposed for solving the point-to-
point navigation problem using grid cells. One class of 
solutions detects the difference between two sets of active grid 
cells across multiple grid cell modules (Bush et al., 2015) and 
another uses linear look-ahead probes using grid cells for 
planning and computing trajectories (Erdem and Hasselmo, 
2014). We suggest an alternate but related solution. Our 
proposal also relies on detecting differences between two sets 
of active grid cells, however, we propose this is done on a grid 
cell module by grid cell module basis. We refer to these cells 
as “displacement cells”. (See Box 1 for a more thorough 
description.) Displacement cells are similar to grid cells in that 
they can’t on their own represent a unique displacement. (In 
the example of Box 1, a displacement cell that represents a 
displacement of “two to the right and one up”, would also be 
active for “five over and four up”.) However, the cell activity 
in multiple displacement cell modules represents a unique 
displacement in much the same way as the cell activity in 
multiple grid cell modules represents a unique location, Figure 
3D. Hence, a single displacement vector can represent the logo 
on the coffee cup at a specific relative position. Note, a 
displacement vector not only represents the relative position of 
two objects, it also is unique to the two objects. Complex 
objects can be represented by a set of displacement vectors 
which define the components of an object and how they are 
arranged relative to each other. This is a highly efficient means 
of representing and storing the structure of objects. 

This method of representing objects allows for hierarchical 
composition. For example, the logo on the cup is also 
composed of sub-objects, such as letters and a graphic. A 
displacement vector placing the logo on the cup implicitly 
carries with it all the sub-objects of the logo. The method also 
allows for recursive structures. For example, the logo could 
contain a picture of a coffee cup with a logo. Hierarchical and 
recursive composition are fundamental elements of not only 
physical objects but language, mathematics, and other 
manifestations of intelligent thought. The key idea is that the 
identity and relative position of two previously-learned 
objects, even complex objects, can be represented efficiently 
by a single displacement vector. 

Grid Cells and Displacement Cells Perform 
Complementary Operations 

Grid cells and displacement cells perform complementary 
operations. Grid cells determine a new location based on a 
current location and a displacement vector (i.e. movement). 
Displacement cells determine what displacement is required to 
reach a new location from a current location.  

Grid cells:  (Location1 + Displacement => Location2) 
 
Displacement cells:  (Location2 – Location1 => Displacement) 

If the two locations are in the same space, then grid cells and 
displacement cells are useful for navigation. In this case, grid 
cells predict a new location based on a starting location and a 
given movement. Displacement cells represent what 
movement is needed to get from Location1 to Location2. 

 

Figure 4. Representing Behaviors of Objects. Objects have 
“behaviors”, they can change their shape and features over 
time. The neocortex can learn these behaviors, but how? 
For example, a stapler has several behaviors, one is the 
lifting of the top to add new staples. If the top of the stapler 
is a component object of the stapler, with its own location 
space, then its position relative to the stapler base is 
represented by a displacement vector as illustrated in 
Figure 3. (The top and base of the stapler are analogous to 
the logo and the cup. Unlike the logo on the cup, the 
location of the stapler top relative to the base can move.) 
The closed position is represented by displacement A and 
the fully open position is represented by location N. As the 
stapler top hinges from the closed to open positions, the 
displacement vector changes continually from A to N with 
several displacements in between. To learn this behavior, 
the neocortex only needs to learn the sequence of 
displacements as the top rotates. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/442418doi: bioRxiv preprint 

https://doi.org/10.1101/442418
http://creativecommons.org/licenses/by/4.0/


 6 

If the two locations are in different spaces (that is the same 
physical location relative to two different objects) then grid 
cells and displacement cells are useful for representing the 
relative position of two objects.  Grid cells convert a location 
in one object space to the equivalent location in a second object 
space based on a given displacement. Displacement cells 
represent the relative position of two objects. 

We propose that grid cells and displacement cells exist in all 
cortical columns. They perform two fundamental and 
complementary operations in a location-based framework of 
cortical processing. By alternating between representations of 
locations in a single object space and representations of 
locations in two different object spaces, the neocortex can use 
grid cells and displacement cells to learn both the structure of 
objects and generate behaviors to manipulate those objects.  

The existence of grid cells in the entorhinal cortex is well 
documented. We propose they also exist in all regions of the 
neocortex. The existence of displacement cells is a prediction 
introduced in this paper. We propose displacement cells are 
also present in all regions of the neocortex. Given their 
complementary role to grid cells, it is possible that 
displacement cells are also present in the hippocampal 
complex. 

Object Behaviors 

Objects may exhibit behaviors. For example, consider the 
stapler in Figure 4. The top of the stapler can be lifted and 
rotated. This action changes the stapler’s morphology but not 
its identity. We don’t perceive the open and closed stapler as 
two different objects even though the overall shape has 

changed. The movement of a part of an object relative to other 
parts of an object is a “behavior” of the object. The behaviors 
of an object can be learned, and therefore it must be 
represented in the neural tissue of cortical columns. We can 
represent this behavior in a location-based framework, again 
using displacement vectors. The top half and bottom half of 
the stapler are two components of the stapler. The relative 
position of the top and bottom is represented by a displacement 
vector in the same way as the relative position of the logo and 
the coffee cup. However, unlike the logo on the coffee cup, the 
two halves of the stapler can move relative to each other. As 
the stapler top rotates upward, the displacement of the stapler 
top to bottom changes. Thus, the rotation of the stapler top is 
represented by a sequence of displacement vectors. By 
learning this sequence, the system will have learned this 
behavior of the object. 

Opening and closing the stapler are different behaviors yet 
they are composed of the same displacement elements, just in 
reverse order. These are sometimes referred to as “high-order” 
sequences. Previously we described a neural mechanism for 
learning high-order sequences in a layer of neurons (Hawkins 
and Ahmad, 2016). This mechanism, if applied to the 
displacement modules, would allow the learning, inference, 
and recall of complex behavioral sequences of objects.  

“What” and “Where” Processing 

Sensory processing occurs in two parallel sets of neocortical 
regions, often referred to as “what” and “where” pathways. In 
vision, damage to the “what”, or ventral, pathway is associated 
with the loss of ability to visually recognize objects whereas 

 

Figure 5. Location Processing in Different Areas of the Brain. Grid cells and displacement cells (see text) can be applied to 
different tasks in different areas of the brain. (A) If grid cell modules in the hippocampal complex are anchored by cues in an 
environment, then grid cell activation patterns will represent locations relative to that environment. Given two locations, a 
and b, displacement cells will calculate the movement vector needed to move the body from point a to point b. (B) If cortical 
grid cell modules are anchored relative to the body, then they will represent locations in body space. Given two locations, 
displacement cells will calculate the movement vector needed to move a body part from its current location to a desired new 
location relative to the body. (C) If cortical grid cell modules are anchored by cues relative to an object, then they will 
represent locations in the object’s space. Displacement cells will calculate the movement vector needed to move a limb or 
sensory organ from its current location to a new location relative to the object. Operations performed in (B) and (C) are 
associated with “where” and “what” regions in the neocortex. 
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damage to the “where”, or dorsal, pathway is associated with 
the loss of ability to reach for an object even if it has been 
visually identified. Equivalent “what” and “where” pathways 
have been observed in other sensory modalities, thus it appears 
to be general principle of cortical organization (Ungerleider 
and Haxby, 1994; Goodale and Milner, 1992; Rauschecker, 
2015). “What” and “where” cortical regions have similar 
anatomy and therefore we can assume they operate on similar 
principles. 

A location-based framework for cortical function is applicable 
to both “what” and “where” processing. Briefly, we propose 
that the primary difference between “what” regions and 
“where” regions is that in “what” regions cortical grid cells 
represent locations that are allocentric, in the location space of 
objects, and in “where” regions cortical grid cells represent 
locations that are egocentric, in the location space of the body. 
Figure 5 shows how a displacement vector representing 
movement could be generated in “what” and “where” regions. 
The basic operation, common to all, is that a region first 
attends to one location and then to a second location. The 
displacement cells will determine the movement vector needed 
to move from the first location to the second location. In a 
“what” region, Figure 5C, the two locations are in the space 
of an object, therefore, the displacement vector will represent 
the movement needed to move the finger from the first location 
on the object to the second location on the object. In this 
example, the “what” region needs to know where the finger is 
relative to the cup, but it does not need to know where the cup 
or finger is relative to the body. In a “where” region, Figure 
5B, the two locations are in the space of the body, therefore, 
the displacement vector will represent how to move from one 
egocentric location to a second egocentric location. The 
“where” region can perform this calculation not knowing what 
object may or may not be at the second location. A more 
detailed discussion of processing in “where” regions is beyond 
the scope of this paper. We only want to point out that it is 
possible to understand both “what” and “where” processing 
using similar mechanisms by assuming different location 
spaces. 

Rethinking Hierarchy, 
The Thousand Brains Theory of Intelligence 

Regions of the neocortex are organized in a hierarchy 
(Felleman and Van Essen, 1991; Markov et al., 2014; 
Riesenhuber and Poggio, 1999). It is commonly believed that 
when sensory input enters the neocortex the first region detects 
simple features. The output of this region is passed to a second 
region that combines simple features into more complex 
features. This process is repeated until, several levels up in the 
hierarchy, cells respond to complete objects (Figure 6A). This 
view of the neocortex as a hierarchy of feature extractors also 
underlies many artificial neural networks (LeCun et al., 2015). 

We propose that cortical columns are more powerful than 
currently believed. Every cortical column learns models of 
complete objects. They achieve this by combining input with 
a grid cell-derived location, and then integrating over 
movements. (See (Hawkins et al., 2017; Lewis et al., 2018) for 
details.) This suggests a modified interpretation of the cortical 
hierarchy, where complete models of objects are learned at 

every hierarchical level, and every region contains multiple 
models of objects (Figure 6B). 

Feedforward and feedback projections between regions 
typically connect to multiple levels of the hierarchy. (Only one 
level of connection is shown in Figure 6.). For example, the 
retina projects to thalamic relay cells in LGN, which then 
project to cortical regions V1, V2, and V4, not just V1. This 
form of “level skipping” is the rule, not the exception. 
Therefore, V1 and V2 are both, to some extent, operating on 
retinal input. The connections from LGN to V2 are more 
divergent suggesting that V2 is learning models at a different 
spatial scale than V1. We predict that the spatial scale of 
cortical grid cells in V2 will similarly be larger than those in 
V1. The level of convergence of input to a region, paired with 
the spatial scale of its grid cells, determines the range of object 
sizes the region can learn. For example, imagine recognizing 
printed letters of the alphabet. Letters at the smallest 
discernable size will be recognized in V1 and only V1. The 
direct input to V2 will lack the feature resolution needed. 
However, larger printed letters would be recognized in both 
V1 and V2, and even larger letters may be too large for V1 but 
recognizable in V2. Hierarchical processing still occurs. All 
we are proposing is that when a region such as V1 passes 
information to another region such as V2, it is not passing 
representations of unclassified features but, if it can, it passes 
representations of complete objects. This would be difficult to 
observe empirically if objects are represented by population 
codes as proposed in (Hawkins et al., 2017). Individual 
neurons would participate in many different object 
representations and if observed in isolation will appear to 
represent sensory features, not objects. The number of objects 
that a cortical column can learn is large but limited (Hawkins 
et al., 2017). Not every column can learn every object. 
Analysis of system capacity requires a more thorough 
understanding of hierarchical flow and is beyond the scope of 
this paper. 

There are many cortical-cortical projections that are 
inconsistent with pure hierarchical processing (Figure 6B 
green arrows). For example, there are long range projections 
between regions in the left and right hemispheres (Clarke and 
Zaidel, 1994), and there are numerous connections between 
regions in different sensory modalities, even at the lowest 
levels of the hierarchy (Suter and Shepherd, 2015; Driver and 
Noesselt, 2008; Schroeder and Foxe, 2005). These connections 
may not be hierarchical as their axons terminate on cells 
located outside of cellular layers associated with feedforward 
or feedback input. It has been estimated that 40% of all 
possible region-to-region connections actually exist which is 
much larger than a pure hierarchy would suggest (Felleman 
and Van Essen, 1991). What is the purpose of these long-range 
non-hierarchical connections? In (Hawkins et al., 2017) we 
proposed that cell activity in some layers (e.g. L4 and L6) of a 
column changes with each new sensation, whereas, cell 
activity in other layers (e.g. L2/3), representing the observed 
“object”, are stable over changing input. We showed how 
long-range associative connections in the “object” layer allow 
multiple columns to vote on what object they are currently 
observing. For example, if we see and touch a coffee cup there 
will be many columns simultaneously observing different 
parts of the cup. These columns will be in multiple levels of 
both the visual and somatosensory hierarchies. Every one of 
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these columns has a unique sensory input and a unique 
location, and therefore, long-range connections between the 
cells representing location and input do not make sense. 
However, if the columns are observing the same object, then 
connections between cells in the object layer allow the 
columns to rapidly settle on the correct object. Thus, non-
hierarchical connections between any two regions, even 
primary and secondary sensory regions in different sensory 
modalities, make sense if the two regions often observe the 
same object at the same time. See (Hawkins et al., 2017) for 
details. 

One of the classic questions about perception is how does the 
neocortex fuse different sensory inputs into a unified model of 
a perceived object. We propose that the neocortex implements 
a decentralized model of sensor fusion. For example, there is 
no single model of a coffee cup that includes what a cup feels 
like and looks like. Instead there are hundreds of models of a 
cup. Each model is based on a unique subset of sensory input 
within different sensory modalities. There will be multiple 
models based on visual input and multiple models based on 
somatosensory input. Each model can infer the cup on its own 
by observing input over movements of its associated sensors. 

However, long-range non-hierarchical connections allow the 
models to rapidly reach a consensus of the identity of the 
underlying object, often in a single sensation. 

Just because each region learns complete models of objects 
does not preclude hierarchical flow. The main idea is that the 
neocortex has hundreds, likely thousands, of models of each 
object in the world. The integration of observed features does 
not just occur at the top of the hierarchy, it occurs in every 
column at all levels of the hierarchy. We call this “The 
Thousand Brains Theory of Intelligence.”  

 
DISCUSSION 
In 1979 Francis Crick wrote an essay titled, “Thinking about 
the Brain” (Crick, 1979). In it he wrote, “In spite of the steady 
accumulation of detailed knowledge, how the human brain 
works is still profoundly mysterious.” He posited that over the 
coming years we would undoubtedly accumulate much more 
data about the brain, but it may not matter, as “our entire way 
of thinking about such problems may be incorrect.” He 
concluded that we lacked a “theoretical framework”, a 
framework in which we can interpret experimental findings 

 

Figure 6. Rethinking Cortical Hierarchy (A) Commonly held view of cortical hierarchy. Sensory input is processed in a 
hierarchy of cortical regions. The first region detects simple features. The next region combines simple features into more 
complex features. This is repeated until a region at the top of the hierarchy forms representations of complete objects. (B)  
Modified view of cortical hierarchy. Every column in every region learns complete models of objects. (Columns learn complete 
models by combining sensory input with an object-centric location of that input and integrating over movements of the sensor.). 
Shown are two sensory hierarchies, one for vision and one for touch, both sensing the same object, a cup. There are multiple 
models of an object within each region, in different regions within a sensory modality, and in different sensory modalities. 
Although there are many models of the same object (suggested by the small cup images), the models are not identical, as each 
model is learned via a different subset of the sensory arrays. The green arrows denote the numerically-large cortical-cortical 
connections that are not hierarchical in nature. The non-hierarchical connections project within the region of origin, across 
hierarchical levels, across modalities, and between hemispheres. Typically, many columns will be simultaneously observing the 
same object. The non-hierarchical connections between columns allow them to rapidly infer the correct object (see text). 
Although learning objects requires movement of the sensors, inference often occurs without movement due to the non-
hierarchical connections.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/442418doi: bioRxiv preprint 

https://doi.org/10.1101/442418
http://creativecommons.org/licenses/by/4.0/


 9 

and to which detailed theories can be applied. Nearly forty 
years after Crick wrote his essay, his observations are still 
largely valid. 

Arguably, the most progress we have made towards 
establishing a theoretical framework is based on the discovery 
of place cells and grid cells in the hippocampal complex. These 
discoveries have suggested a framework for how animals learn 
maps of environments, and how they navigate through the 
world using these maps. The success of this framework has led 
to an explosion of interest in studying the entorhinal cortex and 
hippocampus. 

In this paper we are proposing a theoretical framework for 
understanding the neocortex. Our proposed cortical 
framework is a derivative of the framework established by grid 
cells and place cells. Mechanisms that evolved for learning the 
structure of environments are now applied to learning the 
structure of objects. Mechanisms that evolved for tracking the 
location of an animal in its environments are now applied to 
tracking the location of limbs and sensory organs relative to 
objects in the world. As part of this location-based framework, 
we have proposed the existence of a cell type, called 
“displacement cells”, that perform a complementary function 
to grid cells. We propose that grid cell and displacement cell 
modules exist throughout the neocortex and that the function 
of the neocortex is best understood in a framework of locations 
and location spaces. 

Orientation 

In the entorhinal cortex, and elsewhere in the brain, are found 
head direction cells (Sargolini et al., 2006; Raudies et al., 
2016; Taube et al., 1990). These cells represent the orientation 
of an animal relative to its environment. Inferring where you 
are, predicting what you will sense after moving, and 
determining how to move to get to a new location all require 
knowing your current orientation to your environment. In the 
models reviewed in (Hasselmo, 2009; Hasselmo et al., 2010) 
head direction cells are critical for accurately transitioning 
between spatial locations. The same need for orientation exists 
throughout the neocortex. For example, knowing that a finger 
is at a particular location on a coffee cup is not sufficient. The 
finger also has an orientation relative to the cup (which way it 
is rotated and its angle at contact). Predicting what the finger 
will feel when it contacts the cup and what movement is 
required to reach a new location on the cup requires knowing 
the finger’s orientation in addition to its location. Cortical grid 
cells and displacement cells require access to a representation 
of orientation to function properly. Therefore, we predict that 
orientation cells, analogous to head direction cells, will be 
found throughout the neocortex. For example, in 
somatosensory regions that represent fingers there will be 
“finger orientation cells”. How orientation is represented and 
interacts with grid cells and displacement cells is largely 
unknown. It is an area we are actively studying. 

Prediction 

A long standing principle behind many theories of cortical 
function is prediction (Lashley, 1951; Hawkins and Blakeslee, 
2004; Lotter et al., 2018). By representing the location of a 
sensor, a cortical column can associate sensory information 

within the location space of each object, similar to the way 
place cells associate sensory information with locations 
(Komorowski et al., 2009). This enables a column to build 
powerful predictive models. For example, when moving your 
finger from the bottom of a cup to the top, it can predict the 
sensation regardless of how the cup is rotated with respect to 
the sensor. Representing composite objects using 
displacement cells enables a column to generalize and predict 
sensations even when encountering a novel object. For 
example, suppose we see a cup with a familiar logo (Figure 
3A) and that portions of the logo are obscured. Once a column 
has recognized the logo and the cup, it can make predictions 
regarding the entire logo in relation to the cup even if that 
combined object is new. Building such predictive models 
would be much harder without an explicit representation of 
location. In previous papers we proposed dendritic 
mechanisms that could serve as the neural basis for predictive 
networks (Hawkins and Ahmad, 2016; Hawkins et al., 2017). 
Overall, prediction underlies much of the framework discussed 
in this paper. 

Attention 

One of the key elements of a location-based framework for 
cortical processing is the ability of an area of cortex to rapidly 
switch between object spaces. To learn there is a logo on the 
coffee cup we need to alternate our attention between the cup 
and the logo. With each shift of attention, the cortical grid cells 
re-anchor to the location space of the newly attended object. 
This shift to a new object space is necessary to represent the 
displacement between two objects, such as the logo and the 
cup. It is normal to continuously shift our attention between 
the objects around us. With each newly attended object the 
cortical grid cells re-anchor in the space of the new object, and 
displacement cells represent where the new object is relative 
to the previously attended object. Changing attention is 
intimately tied to movement of the sensor, re-anchoring of grid 
cells, and, as widely believed, feedback signals to the thalamus 
(Crick, 1984; McAlonan et al., 2006), presumably to select a 
subset of input for processing. How these elements work 
together is poorly understood and represents an area for further 
study. 

Uniqueness of Location Code 

Our proposal is based on the idea that a set of grid cell modules 
can encode a very large number of unique locations. There are 
some observations that suggest that grid cells, on their own, 
may not be capable of forming enough unique codes. For 
example, because each grid cell exhibits activity over a fairly 
large area of physical space (Hafting et al., 2005), the 
activation of the cells in a grid cell module is not very sparse. 
Sparsity is helpful for creating easily discernable unique codes. 
The lack of sparsity can be overcome by sampling the activity 
over more grid cell modules, but not enough is known about 
the size of grid cell modules and how many can be realistically 
sampled. (Gu et al., 2018) have shown that grid cell modules 
are composed of smaller sub-units that activate independently, 
which would also increase the representation capacity of grid 
cells. Another factor impacting capacity is conjunctive cells. 
In the entorhinal cortex there are more conjunctive cells than 
pure grid cells. Conjunctive cells exhibit some combination of 
“gridness” plus orientation and/or other factors (Sargolini et 
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al., 2006). Conjunctive cells may have a sparser activation than 
pure grid cells and therefore would be a better basis for 
forming a set of unique location codes. If the neocortex has 
cells similar to conjunctive cells, they also might play a role in 
location coding. Not enough is known about how grid cells, 
orientation cells, and conjunctive cells work together to 
suggest exactly how locations are encoded in the neocortex. 
As we learn more about location coding in the neocortex, it is 
important to keep these possibilities in mind. 

Where are Grid Cells and Displacement Cells in 
the Neocortex? 

The neocortex is commonly divided into 6 layers that run 
parallel to the surface. There are dozens of different cell types, 
therefore, each layer contains multiple cell types. Several lines 
of evidence suggest that cortical grid cells are located in L6 
(layer 6) and displacement cells are located in L5 (Figure 7). 

The main evidence for cortical grid cells being in L6 is the 
connectivity between L4 and L6. L4 is the primary input layer. 
However, approximately 45% of the synapses on L4 cells 
come from a sub-population of L6 cells, and, similarly, L4 
cells make large numbers of synapses onto those same L6 cells 
(Binzegger et al., 2004; McGuire et al., 1984; Kim et al., 
2014). We previously proposed how the reciprocal 
connections between L6 and L4 can learn the structure of 
objects by movement of sensors if L6 represents a location in 
the space of the object (Lewis et al., 2018). Our best guess is 
that the L6 neurons that project to L4 are similar to conjunctive 
cells in the entorhinal cortex, encoding both location and 
orientation, as that is what is needed to make a prediction of 
input in L4. If this is the case, then the actual cortical grid cells 
would be a different sub-population of neurons in L6 that are 
closely tied to the neurons that project to L4. It is likely that 
the operation of cortical grid cells is dependent on one or more 
class of interneuron, and it is possible that cortical grid cells 
are themselves interneurons. 

The main evidence for displacement cells being in L5 is again 
connectivity. A subset of L5 cells (known as “L5 thick-tufted 
cells”) that exist in all cortical regions project sub-cortically to 
brain regions involved with motor behavior. (For example, L5 
cells in the visual cortex project to the superior colliculus 
which controls eye movements.) These L5 cells are the motor 
output cells of the neocortex. However, the same L5 cells send 
a branch of their axon to thalamic relay nuclei, which then 
project to hierarchically higher cortical regions (Douglas and 
Martin, 2004; Guillery and Sherman, 2011; Sherman and 
Guillery, 2011). It is difficult to understand how the same L5 
cells can be both the motor output and the feedforward input 
to other regions. One interpretation put forth by Guillery and 
Sherman is that L5 cells represent a motor command and that 
the feedforward L5 projection can be interpreted as an 
efference copy of the motor command (Guillery and Sherman, 
2011, 2002).  

We offer a possible alternate interpretation. The L5 cells in 
questions are displacement cells and they alternately represent 
movements (sent sub-cortically) and then represent 
compositional objects (sent to higher regions via thalamic 
relay cells). As described above, displacement cells will 
represent a movement vector when comparing two locations in 
the same space and will represent composite objects when 
comparing two locations in two different spaces. These two 
rapidly-changing representations could be disambiguated at 
their destination either by phase of an oscillatory cycle or by 
physiological firing patterns (Hasselmo and Brandon, 2012; 
Hasselmo, 2008; Burgess et al., 2007). Although we are far 
from having a complete understanding of what the different 
cellular layers do and how they work together, a location-
based framework offers the opportunity of looking anew at the 

 

Figure 7. Location of Grid Cells and Displacement Cells in 
the Neocortex. The neocortex contains dozens of cell types 
commonly organized into six cellular layers. Here we show 
a simple drawing of a cortical column. We propose cortical 
grid cells are located in layer 6 and displacement cells are in 
layer 5. A requirement of our proposal is that cortical grid 
cells make bi-lateral connections with displacement cells 
(solid blue line). Another requirement is that, when 
combined with a representation of orientation, they make bi-
lateral connections with cells in layer 4 (dashed blue line). 
This is how the column predicts the next input into layer 4. 
Displacement cells match the unusual connectivity of layer 
5 “thick tufted” neurons, which are the motor output cells of 
the neocortex. These neurons send their axon down into the 
white matter where the axon splits (green arrows). One 
branch terminates in sub-cortical structures responsible for 
motor behavior. The second axon branch terminates on relay 
cells in the thalamus which become the feedforward input to 
a hierarchically-higher cortical region. As explained in the 
text, displacement cells can alternate between representing 
movements and representing the composition of multiple 
objects. We propose that L5 thick tufted cells alternate 
between these two functions which aligns with their unusual 
connectivity. 
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vast body of literature on cortical anatomy and physiology and 
making progress on this problem. 

Location-based Framework for High-level 
Thought and Intelligence 

We have described our location-based framework using 
examples from sensory inference. Given that the anatomy in 
all cortical regions is remarkably similar, it is highly likely that 
everything the neocortex does, including language and other 
forms of high-level thought, will be built upon the same 
location-based framework. In support of this idea, the current 
empirical evidence that grid cells exist in the neocortex was 
collected from humans performing what might be called 
“cognitive tasks”, and it was detected in cortical regions that 
are far from direct sensory input. (Doeller et al., 2010; 
Constantinescu et al., 2016; Jacobs et al., 2013). 

The location-based framework can be applied to physical 
structures, such as a cup, and to abstract concepts, such as 
mathematics and language. A cortical column is 
fundamentally a system for learning predictive models. The 
models are learned from inputs and movements that lead to 
changes in the input. Successful models are ones that can 
predict the next input given the current state and an anticipated 
movement. However, the “inputs” and “movements” of a 
cortical column do not have to correspond to physical entities. 
The “input” to a column can originate from the retina or it can 
originate from other regions of the neocortex that have already 
recognized a visual object such as a word or a mathematical 
expression. A “movement” can represent the movement of the 
eyes or it can represent an abstract movement, such as a verb 
or a mathematical operator. 

Success in learning a predictive model requires discovering the 
correct dimensionality of the space of the object, learning how 
movements update locations in that space, and associating 
input features with specific locations in the space of the object. 
These attributes apply to both sensory perception and high-
level thought. Imagine a column trying to learn a model of a 
cup using visual input from the retina and movement input 
from a finger. This would fail, as the location spaced traversed 
by the finger would not map onto the feature space of the 
object as evidenced by the changing inputs from the eyes. 
Similarly, when trying to understand a mathematical problem 
you might fail when using one operator to manipulate an 
equation but succeed by switching to a different operator. 

Grid cells in the neocortex suggests that all knowledge is 
learned and stored in the context of locations and location 
spaces and that “thinking” is movement through those location 
spaces. We have a long way to go before we understand the 
details of how the neocortex performs cognitive functions, 
however, we believe that the location-based framework will 
not only be at the core of the solutions to these problems, but 
will suggest solutions.  

CONCLUSION 
It is sometimes said that neuroscience is “data rich and theory 
poor”. This notion is especially true for the neocortex. We are 
not lacking empirical data as much as lacking a theoretical 
framework that can bridge the gap between the heterogeneous 
capabilities of perception, cognition, and intelligence and the 

homogeneous circuitry observed in the neocortex. The closest 
we have to such a framework today is hierarchical feature 
extraction, which is widely recognized as insufficient. 

This paper proposes a new framework for understanding how 
the neocortex works. We propose that grid cells are present 
everywhere in the neocortex. Cortical grid cells track the 
location of inputs to the neocortex in the location space of the 
objects being observed. We propose the existence of a new 
type of neuron, displacement cells, that complement grid cells, 
and are similarly present throughout the neocortex. The 
framework shows how it is possible that a small patch of cortex 
can represent and learn the morphology of objects, how objects 
are composed of other objects, and the behaviors of objects. 
The framework also leads to a new interpretation of how the 
neocortex works overall. Instead of processing input in a series 
of feature extraction steps leading to object recognition at the 
top of the hierarchy, the neocortex consists of thousands of 
models operating in parallel as well as hierarchically.  

Introspection can sometimes reveal basic truths that are missed 
by more objective experimental techniques. As we go about 
our day we perceive thousands of objects, such as trees, printed 
and spoken words, buildings, and people. Everything is 
perceived at a location. As we attend to each object we 
perceive the distance and direction from ourselves to these 
objects, and we perceive where they are relative to each other. 
The sense of location and distance is inherent to perception, it 
occurs without effort or delay. It is self-evident that the brain 
must have neural representations for the locations of objects 
and for the distances between the objects as we attend to them 
in succession. The novelty of our claim is that these locations 
and distances are calculated everywhere in the neocortex, they 
are the principle data types of cortical function, perception, and 
intelligence. 
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Box 1: Displacement Cells 

Here we describe a possible network mechanism for a layer of displacement cell modules, derived from a layer of grid cell 
modules. We first illustrate the mechanism for a single module, and then describe multiple modules. 

In the lower box of Figure 1A, we show the cells in a single grid cell module. In this simple example there are 9 cells, arranged 
in a 3X3 lattice. For convenience we assign (x,y) coordinates to each cell where x and y can be 0, 1, or 2. The cells in this lattice 
are arranged such that neighboring cells represent neighboring positions. For example, if cell 𝐺"," is active for a location on an 
object, a movement one step to the right will cause 𝐺$," to become active. Since the cells tile space, an additional movement one 
step to the right will cause 𝐺%," to become active. 

Each grid cell module is paired with a displacement module (upper box of Figure 1A). Each cell in the displacement module 
corresponds to a particular relative movement. It becomes active if any of the grid cell pairs corresponding to its displacement 
become active in the appropriate order. For example, cell 𝐷",%, representing a displacement one step to the right, would become 
active if grid cell 𝐺$,$ becomes active after grid cell 𝐺",$. It would also become active if cell 𝐺"," becomes active after 𝐺%,", etc. A 
possible neural implementation is that these pairs of grid cells connect to independent dendritic segments on cell 𝐷",% such that 
any of these transitions cause 𝐷",% to become active. 

In effect, the displacement module implements a form of residue number math. If the active cell moves from location 𝐺'",(" to 
𝐺'$,($, the displacement cell in position ((𝑥2 − 𝑥1)	𝑚𝑜𝑑𝑢𝑙𝑜	3, (𝑦2 − 𝑦1)	𝑚𝑜𝑑𝑢𝑙𝑜	3) will become active. Each cell in the 
displacement module connects to 9 pairs of grid cells.  Cell 𝐷",% thus becomes active for any of the following 9 pairs of cells: 

𝐺%,$ → 𝐺",$ 𝐺",$ → 𝐺$,$ 𝐺$,$ → 𝐺%,$ 
𝐺%," → 𝐺"," 𝐺"," → 𝐺$," 𝐺$," → 𝐺%," 
𝐺%,% → 𝐺",% 𝐺",% → 𝐺$,% 𝐺$,% → 𝐺%,% 

  
Figure 1B shows all the transitions within the grid cell module that cause 𝐷",% to become active. These transitions form the input 
to the displacement cells.  

The number of possible displacements is tied to the number of cells in a grid cell module. Note that the magnitude and direction 
of a shift is ambiguous within a module. You cannot distinguish a displacement two steps to the right from a displacement one 
step to the left. However, the activity across displacement modules will be unique to a particular directional displacement in the 
same way that the activity across grid cell modules is unique to a location. 

Now let us see how this single module network represents an example composite object such as the logo on the coffee mug. 
Figure 1C shows two points on the composite object. Each point has a location in the space of the coffee mug as well as a 
location in the space of the logo. In our example, suppose that attending to point 𝑃" on the coffee mug invokes grid cell 𝐺%," in 
the coffee mug space, and attending to it on the logo invokes cell 𝐺"," in the logo space. The activity of these two cells will 
invoke displacement cell 𝐷",%. This displacement cell will remain active, regardless of where you move on the composite object. 
Suppose, you switch to point 𝑃$ and this is one step below 𝑃". Grid cells 𝐺%,% and 𝐺",% will become active in the coffee mug and 
logo spaces, respectively. However, the relative positions of these two cells will still invoke displacement cell 𝐷",%. 

Due to the modulo operation of displacement cells it is not possible to uniquely distinguish a composite object with just one 
module. In our simple example, there is a 1 in 9 chance that another composite object will invoke the same displacement cell. 
However, with a collection of independent grid cell modules and associated displacement modules, the combined activity is 
highly likely to be unique. If there are 𝑀 modules with 𝑁 cells in each module, the chance that two composite objects will invoke 
an identical set of displacement cells is 1 in 𝑁;. Note that as you sense different locations on the composite object, the active 
grid cells will change, but the activity in the displacement cells will be stable. Thus, the overall pattern in the displacement layer 
is unique to a particular pair of objects, in a specific relative configuration. 

A displacement layer as described above can encode relative shifts in position. In general, to completely specify a composite 
object, it is also necessary to encode relative scaling, rotation, and perhaps other transformations. In the coffee cup example the 
size and angle of the logo is just as important as the positioning. We would notice a discrepancy if the logo were half the size or 
tilted at 45 degrees. Residue number systems are powerful enough to handle many numerical operations. It is therefore possible 
that these other transformations can also be represented by operations on grid cell modules. This is an area of ongoing research 
for us. 
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Figure 1. (A) Cells in a single grid cell module (lower square) and its corresponding displacement module (upper square). In this 
example each module contains 9 cells, arranged in a 3X3 lattice with associated (x,y) coordinates. Cells are arranged such that 
neighboring cells represent neighboring positions or displacements. For convenience we show the same number of cells in both 
modules. (B) Shows the transitions that cause displacement cell 𝐷",%(green) to become active. Any of the 9 transitions (green 
arrows) will cause the cell to become active. (C) Two points on a coffee cup with an embedded logo. Attending to 𝑃" in the coffee 
cup space followed by attending to 𝑃" in the logo space will activate two different grid cells and a single displacement cell. If you 
attend to 𝑃$, in cup space and then logo space, the active grid cells will be different than with 𝑃" , but the active displacement cell 
will not change. 
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