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Abstract 

Transcriptional dysregulation is a key feature of cancer. Transcription factors (TFs) are the             
main link between signalling pathways and the transcriptional regulatory machinery of the            
cell, positioning them as key oncogenic inductors and therefore potential targets of            
therapeutic intervention. We implemented a computational pipeline to infer TF regulatory           
activities from basal gene expression and applied it to publicly available and newly             
generated RNA-seq data from a collection of 1,010 cancer cell lines and 9,250 primary              
tumors. We show that the predicted TF activities recapitulate known mechanisms of            
transcriptional dysregulation in cancer and dissect mutant-specific effects in driver genes.           
Importantly, we show the potential for predicted TF activities to be used as markers of               
sensitivity to the inhibition of their upstream regulators. Furthermore, combining these           
inferred activities with existing pharmacogenomic markers significantly improves the         
stratification of sensitive and resistant cell lines for several compounds. Our approach            
provides a framework to link driver genomic alterations with transcriptional dysregulation that            
helps to predict drug sensitivity in cancer and to dissect its mechanistic determinants.  
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Background 

Transcriptional dysregulation is required for tumor initiation, progression and acquisition of           
drug resistance [1]. Many cancer driver genes are transcription factors (TFs). Notable           
examples include TP53, the most commonly mutated tumor suppressor that controls cell            
growth arrest and apoptosis[2], and HIF1A, a key regulator of the adaptive response to              
hypoxic stress and the induction of angiogenesis[3]. TFs are commonly dysregulated in            
cancer as a consequence of a variety of genomic alterations including mutations,            
amplifications, deletions or chromosomal rearrangements. However, the activity of a TF can            
also be dysregulated through other mechanisms such as genomic alterations of their            
regulatory proteins. For example, HIF1A upregulation is often induced by loss-of-function           
(LoF) mutations in VHL [4] whereas TP53 activity can be potently suppressed through            
amplification of its negative regulator MDM2 [5]. Due to their role as downstream effectors of              
signalling pathways, the aberrant activity of any protein in a pathway may ultimately result in               
dysregulated activity of a TF[6], which inevitably alters the expression of many of the TF’s               
transcriptional targets or “regulon”. Different from driver alterations in intracellular          
kinase-mediated signalling cascades, where redundancy may bypass the driver or provide           
compensatory mechanisms, aberrant transcriptional regulators have been argued to be          
harder to circumvent by secondary genomic alterations[7]. Consequently, TFs have been           
proposed as key nodal oncogenic drivers and their activity patterns used to characterise             
genomic aberrations in cancer[8–10] or their influence in a patient's prognosis[11, 12]. 

Projects such as the Genomics of Drug Sensitivity in Cancer (GDSC)[13, 14], Cancer             
Therapeutics Response Portal (CTRP)[15] and the Cancer Cell Line Encyclopedia          
(CCLE)[16] have generated large-scale public pharmacogenomic datasets that span multiple          
molecular data types in a plethora of cancer cell lines. These datasets have been used to                
identify individual genomic, transcriptomic and epigenomic markers of drug         
sensitivity/resistance [13, 14, 16], thus detecting dependencies between drug response and          
individual molecular features. These studies recapitulated multiple clinical pharmacogenomic         
interactions and revealed novel possible therapeutic markers. The emerging paradigm from           
the aforementioned studies is one of a complex network of genomic alterations interacting             
with sensitivity to a large number of anti-cancer drugs. Of special interest is the potential use                
of these datasets to dissect the underlying molecular mechanisms regulating drug response.            
In order to put these informative molecular features into their operative signalling context and              
to shed light on the corresponding molecular mechanisms, novel and more systemic            
functional approaches are needed.  

Here we use prediction of TF regulatory activities in cancer as sensors of pathway              
dysregulation. We show that the activity of a given TF can be estimated from the mRNA                
levels of its direct target genes extracted from DNA-binding networks, and that the activity              
profiles of TFs interact with genomic aberrations in upstream signalling nodes and drug             
response. Toward these aims, we implemented a computational framework to estimate           
single sample TF activity profiles across 9,250 primary tumors from the Cancer Genome             
Atlas (TCGA) and 1,010 cancer cell lines. For the cell lines we generated RNA-seq data for                
448 cell lines, that we integrated with available RNA-seq data [16, 17]. We benchmarked             
different sources of TF-target interactions and computational methods to infer TF activity and             
assessed the prediction accuracy on independent genomics and gene-essentiality screens          
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(Figure 1A). Then, we mined for statistical interactions between the activity patterns of the              
TFs and the mutational status of known cancer driver genes (Figure 1B). In order to               
discriminate the contributions of specific mutants, we re-annotated somatic mutations with           
the expected impact on the molecular properties of the coded proteins (e.g. impact on PTM               
regulatory sites, protein interactions, protein truncation, etc.). Finally, we investigated TF           
activities alone or in combination with other genomic markers as potential predictors of             
resistance/sensitivity to 265 of compounds (Figure 1C). Our results provide a comprehensive            
characterisation of TF activities in primary tumors and cell lines, show how TF activities can               
refine well characterised pharmacogenomic interactions and propose new testable         
mechanistic hypotheses on how gene aberrations influence drug response. To the extent of             
our knowledge, the presented study represents the first systematic evaluation of the role of              
TFs as markers of drug sensitivity in cancer.  

Results 

Assembling transcriptional profiles and regulatory networks  

Our initial step was to assemble a collection of basal transcriptional profiles of immortalised              
human cancer cell lines and primary tumors. For cancer cell lines, we extracted gene              
expression levels from newly derived RNA-seq data from 448 cell lines in the GDSC[13].              
GDSC data was complemented with RNA-seq profiles for 934 cell lines from the CCLE[16]              
and for 622 cell lines from a study published by Klijn et al [17]. This collection comprises a                 
total of 1,010 unique cancer cell line models described in COSMIC[18] (Table S1),             
representing, to the best of our knowledge, the largest collection of RNA-seq-derived gene             
expression data for cancer cell lines to date. In order to minimise technical biases introduced               
by different RNA-seq procedures, we processed raw reads from the three datasets using a              
common pipeline to derive gene-level raw counts. For primary tumors, we downloaded            
RNA-seq gene-level raw reads data encompassing 9,250 TCGA primary tumor samples and            
741 normal samples derived by Rahman et al [19]. Raw counts from both cell lines and               
patient samples were further processed using a common procedure as described in the             
Methods section, to enable subsequent integrated analysis. 
 
Next, we defined the set of genes whose transcription is regulated by a given TF (hereafter                
TF regulon). We inferred a regulatory TF-target network, through aggregating DNA-binding           
data from 13 publicly available resources covering TF binding site (TFBS) predictions,            
Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques (ChIP-X)        
experiments, text mining and manually curated regulatory events (Figure S1). A protein was             
considered a TF according to the census established by Vaquerizas et al [20]. Only TFs with               
at least 3 targets defined in at least two of the mentioned resources were considered. The                
final network consisted of 127 TFs regulating 7,978 target genes, with 106 targets per TF on                
average (avg) (hereafter Consensus TF Regulons, CTFR; Figure S1B; Table S2). Overall,            
pairwise overlap between regulons was low (avg Jaccard Similarity Coefficient = 0.0044,            
Figure S1C), indicating negligible levels of redundancy between most of the CTFRs.  
 
We then used the transcriptomic data and the CTFR to derive the level of basal regulatory                
activity of each TF in each cancer patient and cell line based on the expression levels of                 
their targets using the aREA algorithm in VIPER R package [8] (Table S3A-B). We evaluated              
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the quality of our estimated TF activities using independent essentiality screen data from the              
Achilles portal (v2.4.3)[21] and Copy Number Alterations (CNA) and Whole Exome           
Sequencing (WES) data from the GDSC project data portal [14] (see Supplemental Results).            
Moreover, we studied the effect of the inclusion of CpG island methylation data to derive               
sample-specific CTFRs, which rendered similar results (Supplemental Results, Figures         
S2-S3). Finally, we compared the TF activities obtained using other regulons definition            
alternative to the CTFRs. Substitution of CTFRs by reverse-engineered networks from           
transcriptomic interactions[8] yielded slightly worse performances (Supplemental Results,        
Figure S2-7 ), hence, we decided to use CTFR to define TF-targets in the downstream              
analysis. 
 

Overview of TF activities across primary tumors, normal samples and cell lines 

To obtain a global view of TFs operating in common human tumors, we studied how TF                
activities distribute across cancer samples. First, differential activity analysis of normal           
versus tumor samples over 14 tumor types revealed groups of TFs that were consistently              
activated or repressed across cancers. Globally, we observed a decrease in activity for the              
majority of TFs, whereas a small subset undergoes a strong and recurrent increase in              
activity across tumor types. As expected, among the upregulated TFs were the oncogenes             
MYC, MYCN and MAX and other genes with known oncogenic properties such as the E2F               
family members, FOS and FOXM1, important regulators of cell cycle gene expression; ELK1             
and ETS1, involved in tumor invasion and angiogenesis[22, 23]; and HSF1, recently            
suggested to promote tumorigenesis[24] (Figure 2A).  
 
Next, we compared the TF activity profiles between cancer types. To measure the             
involvement of different TFs in each cancer type, we summarised single sample-level            
activities into cancer type-level enrichment scores (Figure S8A-B, Table S3C-D) in both            
primary tumors and cell lines. Hierarchical clustering based on euclidean distance highlights            
similar TF activity profiles for tumors from the same tissue of origin, such as the diffuse                
gliomas GBM and LGG; hematopoietic and lymphoid DLBC and LAML; or squamous-like            
tumors such as BLCA, CESC, HNSC and LUSC (Figure 2B). These clusters are still              
observed in the cell line models (Figure S9). Interestingly, the TF activity profile of DLBC               
resembled those of cancers from the digestive system (BLCA, CESC, COREAD) and skin             
(SKCM) in primary tumors but not in the cell lines (Figure 2B). We hypothesised that               
similarities between these solid tumors and DBLC reflect the tumor immune infiltrating cells             
present in patient samples but not in cancer cell lines. In fact, previous studies already               
demonstrated different compositions of immune cells signatures across tumor types[25, 26]           
and suggested that subtypes of DLBC display gene expression signatures with properties            
similar to tumor-infiltrating lymphocytes and stromal cells[27]. However, further studies would           
be needed to evaluate whether these TF signatures truly reflect tumor infiltrating cell             
contamination. 
 
Closer examination of well-established tissue-specific TFs (retrieved from the Human          
Cancer Protein Atlas[28] v15) showed that our approach captures 11 out of 12 TFs operating               
preferentially in specific tissues in primary tumors (Figure 2C): FOS in BLCA; ESR1 and              
FOXA1 in BRCA; CDX2 and HNF4A in COAD/READ; PAX5 in DLBC; WT1 in OV; AR in                
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PRAD; MITF in SKCM and HNF4A in STAD. Note that for ZEB1, a transcriptional repressor               
involved in the induction of epithelial-mesenchymal transition (EMT)[29], higher protein          
activities correspond to a downregulation of its targets. Importantly, these tendencies are            
maintained in the cancer cell lines with the exception of AR, for which we observe a drop in                  
activity in PRAD. This is in agreement with previous observations that most of the used               
prostate cell lines are derived from metastases and are not representative of primary             
PRAD[30]. These results show that our approach captures the expected activity patterns of             
known cancer-specific transcription factors.  
 
A recurrent question when working with cell lines as disease models is to quantify the extent                
to which they mirror the molecular traits observed in primary tumors. Correlation analysis             
revealed an overall significant agreement (FDR < 5%) in the TF profiles between cell lines               
and primary samples of the same tumor type (average pairwise Pearson correlation of 0.51              
and -0.04 within and between different tumor types respectively, Figure 2D), with the             
exception of STAD (p = 0.29, R = 0.093).  
 

TF activities dissect mutant-specific aberrations in cancer drivers  

Previous experimental studies demonstrated that different mutations in a given protein can            
cause a continuum of effects, ranging from neutrality to a significant functional impact[31,             
32]. We thus set-out to characterise the effect of different mutations found in well established               
cancer driver TFs.  
 
As a proof of concept, we focused on TP53 due to the high frequency of mutations and their                  
heterogeneous spectrum in cancer. We curated TP53 mutations at different levels according            
to: 1) specific mutation, 2) mutation hotspots 3) protein consequence 4) zygosity (only in cell               
lines), 5) affected domain, PTM or structural property and 6) previously proposed mutation             
stratifiers[33, 34] (Table S4A). Subsequently, for each of the defined groups, we compared             
predicted TP53 activity between mutated TP53 and wild type samples. To avoid confounding             
effects due to the use of samples from different tumor types, we regressed out the tissue of                 
origin of each sample from the TF activity profiles through linear modelling. Our results              
indicate that all TP53 mutation significantly affecting transcriptional activity have a negative            
impact compared to wild type samples (Figure 3A-B; Table S4B). Overall, nonsense            
mutations showed a stronger impact than missense mutations as well as homozygous            
mutations and depletions have a stronger effect size than heterozygous mutations (Figure            
3C). The mutations impacting most strongly the transcriptional activity of TP53 are the             
introduction of stop gain codon in position R213 and missense in positions A159 and V173.               
Perhaps most strikingly, comparing the three most frequent mutational hotspots R175, R248            
and R273, reveals R248 and R273 mutations are amongst the most functionally disruptive,             
while substitutions at R175 are predicted to have lower impact in both primary tumors and               
cell lines. Importantly, these changes in activity are conserved between primary tumors and             
cell lines (R2 = 0.522 p = 5.8×10 -8 , Figure 3D). In order to assess if our predictions match                   
experimental observations, we retrieved promoter-specific transcriptional measurements       
upon TP53 mutagenesis in yeast-based functional assays from the IARC-TP53 Mutation           
Database [32, 35]. Considering that variants observed in cancer samples are likely to be             
biased toward LoF mutations rather than neutral, our predictions on the cell lines still were in                
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good agreement with the experimental measurements (p = 0.00749) and a similar trend,             
although not significant, was observed in primary tumors too (p = 0.0836, Figure 3E).  
 
Motivated by these results, we set out to systematically investigate the effect of the whole               
spectrum of mutations affecting TFs. To distinguish mutant-specific effects we studied each            
individual mutation and protein residue separately. Importantly, to allow us to consider            
non-recurrent yet potentially functional driver mutations, we also grouped mutations that,           
although introducing different changes in different residues, could potentially affect protein           
function in a similar way. Specifically, we utilised existing prediction methods and            
experimental reports from protein databases to group mutations according to the affected            
structural regions, protein interactions, post-translational modification sites, and cancer         
mutational hotspots (detailed description Supplemental Methods section). After aggregating         
those mutation classes covering the same samples (to avoid redundant groups), we            
recovered a total of 1250 mutation groups from 122 TFs in primary tumors.  
 
We next evaluateed the impact of each group of mutations from our classification in the               
activity of the carrying TF through linear regression, pooling together samples from different             
tissue types. This identified a total of 9 TFs that, when mutated, exhibit a significant change                
in their activity profile (FDR<5%; Figure 3F, Table S4C). In general, we found that mutations               
in TFs with known oncogenic roles, such as NFE2L2, HIF1A and AHR were associated with               
increased regulatory activity, pointing to gain of function mutations. In contrast and as             
expected, mutations in the proposed tumor suppressors STAT2 and FOXA1 are associated            
with decreased regulatory activity. Also, truncating mutations in the transcriptional repressor           
REST resulted in increased regulon expression (Figure 3G). Analysing cell lines showed            
similar trends for the NFE2L2 missense mutation in D29 (p=0.009, FDR=0.0792) and REST             
truncating mutations (p=0.00394, FDR=0.0422). 
 
A more detailed examination of the specific mutations responsible for such associations            
revealed differences in changes of protein activity associated with groups of mutations. For             
example, missense mutations affecting the W24/D29 residues at the surface or at the             
KEAP1-interface (positions 77, 79, 80, 81, 82) of NFE2L2 are associated with an increase in               
NFE2L2 activity, with NFE2L2 W24R/C mutations being associated with the strongest increase           
in activity (Figure 3B). NFE2L2, also known as Nrf2, is a cytoprotective factor involved in               
response to redox stress and genotoxic agents whose function is negatively regulated by             
KEAP1 [36]. In cancer, NFE2L2 has been found to be recurrently mutated around the             
positions 24–34 and 75–82, which code the KEAP1-binding motifs DLG and ETGE            
respectively. Numerous studies have concluded that substitutions in DLG and ETGE motifs            
are positively selected as a mean to abolish KEAP1-mediated degradation of NFE2L2[37,            
38].  
 
Other examples of potential TF-activating alterations are found in HIF1A, a transcriptional            
regulator of the adaptive response to hypoxia. Our results suggest that samples carrying             
mutations at the interaction interface with its dimerisation partner ARNT-like protein           
(residues 42, 66, 78, 114, 245, 328, 338, 341 and 344) display increased HIF1A              
transcriptional activity (Figure 3G). ARNT is, together with HIF1A, another regulator of the             
adaptive response to hypoxia, where heterodimerisation of ARNT and HIF1A regulates           
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HIF1A DNA binding and transactivation under hypoxic conditions[39]. To the extent of our             
knowledge, activating mutations in HIF1A have not been described yet.  

Driver genes regulate different TF programs 

With the aim of studying how mutations in other cancer driver genes could impact the activity                
of TFs, we extended our analysis to cancer driver genes proposed by Vogelstein et al [40]               
and IntoGen platform[41]. Systematic comparisons of TF activities across mutant and wild            
type patient samples (considering each of 173 cancer driver genes, in turn) yielded a total               
number of 2,695 driver mutation groups/TF interactions (involving 146 cancer driver genes)            
associated with a change in activity of at least one TF in primary tumors (FDR < 5%, Figure                  
4A-D; Table S5A-B). The same analysis in the cell lines rendered a much lower number of                
associations, probably due to the lower number of samples, that involved interaction of 52              
driver mutation groups/TF with 21 driver genes. Importantly, 10 of the significant mutation             
groups/TF associations are shared between primary tumors and cell lines with concordant            
effect (Fisher’s exact test (FET), odd ratio = 4.53 p < 2.8×10 -4, Figure 4A) including RB1 and                
TP53 truncating mutations associated with increased activities in ATF1; KRAS mutations           
with increasing JUND activity; PIK3CA mutations with EGR1 activity; SMARCA4 mutations           
with a decrease in GATA2 activity; and EP300 mutations upregulating the activity of SMAD4              
and PBX1. Some of these associations represent already proposed mechanisms of TF            
regulation. For example, JUND is a well known target of the ERK-MAPK pathway and its               
transactivation function increases upon ERK-MAPK activation [42–44]; loss of function         
analyses demonstrated SMARCA4 (also known as BRG1) knockout samples are defective           
in GATA2 activation [45]; and SMAD4 transcriptional activation to be EP300-dependent[46].  
 
Focusing on primary tumors, the TFs predicted to be activated by a larger variety of driver                
genes are E2F protein members and FOXM1, key regulators of cell cycle phase transitions              
(Figure 4C). TP53 was the gene influencing a larger proportion of TFs (Figure 4D).              
Interestingly, we observed opposite patterns of effects in E2F1/4 and FOXM1 between the             
oncogenes CDH1 (E-cadherin), PTEN, PIK3CA, MAP3K1 and EGFR and the rest of driver             
genes including TP53, RB1, ATM, EP300, SMARCA4 or CREBBP, among others,           
suggesting that mutations in these genes tune the transcriptional machinery through different            
mechanisms (Figure 4E). The validity of this approach is supported by large effects size              
associated with RB1 suppression of E2F activity, perhaps the best described inhibitor of TF              
function [47], as well as the association of both ATM and TP53 in downregulating E2F and               
FOXM1 activity, which has recently been suggested [48–50]. 
 
In order to assess whether the detected associations represent plausible driver-TF           
regulatory events, we utilised the OmniPath network[51] to analyse their distance in            
protein-protein signalling interactions. For this purpose, we considered directed interactions          
and quantified the distance between every driver-TF pair in terms of shortest paths (i.e.              
minimum number of intermediate proteins between the driver and the TF). Enrichment            
analysis confirmed that significant hits tend to involve driver-TF pairs that are closer in the               
signalling network[51] than non-significant hits (Figure 4F). Next, we investigated whether           
the predicted effect of the drivers on TF activities agrees with their suggested role in cancer.                
We classified the TFs into 3 groups: (i) up-regulated in cancer, if the TF displays significant                
greater activity in tumor than in normal samples or is a known oncogene [40, 41]; (ii)               
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down-regulated in cancer, if the TF function is repressed in tumor samples or is a tumor                
suppressor; and (iii) neutral, if it does not fit in any of the previous categories. Enrichment                
analysis revealed that positive driver-TF interactions (i.e. those representing potential TF           
activating events) tend to involve cancer upregulated TFs, in contrast, negative interactions            
are more prone to involve cancer down-regulated TFs (Figure 4G). Taken together, our             
results suggest that the identified associations point to likely potential mechanisms of            
driver-mediated transcriptional dysregulation in cancer.  
 

TF activity and drug sensitivity interactions in 943 cancer cell lines 

We next set out to investigate the potential of the defined TF activities as markers of                
therapeutic response. Towards this end, we examined drug response data from the 265             
compounds screened in GDSC across 943 cancer cell lines[14]. Viability reduction in            
response to drug treatment was expressed in terms of IC50 (drug concentration needed to              
achieve the half-maximal viability reduction). To identify TFs whose activity could be used as              
marker of drug sensitivity we made use of a linear regression approach. Pancancer and              
cancer-specific analyses were run in parallel, with potentially confounding factors such as            
the tissue of origin of the samples (in the pancancer analysis only), microsatellite instability              
(MI) or cell lines growth media included as covariates in our linear models[14].  
 
The pancancer analysis identified 1,550 significant TF-drug associations (p < 0.001, FDR <             
5%), with 226 out of 265 drugs (85%) and 112 out of the 127 TFs (88%) implicated in at                   
least one interaction (Table S6A). The majority of drugs were associated with multiple TFs,              
which, considering the relatively low overlap in the regulons (Figure S1), may correspond to              
cross-correlation and functional cooperation in transcriptional regulators rather than target          
redundancy. We observed a large number of TF-drug associations involving relevant           
oncogenic TFs such as MYC, PAX5, GATA3, FOXA1, MYCN and CTCF (Figure 5A; Table              
S6B-C). Overall, TFs showed a tendency to interact with cytotoxic drugs (FET p < 1.77×10 -8,               
odd ratio =1.6) and compounds targeting cytoskeleton, DNA replication, ERK-MAPK          
signalling, JNK-p38 signalling and metabolism (FET p < 0.001, Figure 5B; Table S6D). 
 
Remarkably, the strongest detected association involved TP53 and Nutlin-3a (regression          
coefficient (coeff) = -0.59, p = 1.79×10 -30, Figure 5C). Nutlin-3a is a MDM2-inhibitor that              
blocks MDM2-mediated TP53 degradation and enables TP53 to activate the apoptotic           
program. In agreement with previous studies based on mutation data, our results indicate             
that samples with lower TP53 activities show lower sensitivity to MDM2 inhibition [13, 14, 52].              
Another strong interaction was ZEB1 upregulation, a marker of EMT, associated with            
resistance to EGFR inhibitor Afatinib (coeff=-0.54, p=5.32×10 -15) and Gefitinib (coeff=-0.23,          
p=4.1×10 -6). This is in agreement with a recent study in NSCLC that describes the              
mechanisms through which ZEB1 mediates acquired resistance to EGFR-inhibitors[53].  
 
Reassuringly, our analyses also identified a number of groups of TFs showing simultaneous             
sensitivity interactions to drugs targeting common processes. For example, sensitivity to           
cytotoxic compounds was associated with TFs classically upregulated in actively proliferating           
cells (Figure 5D). In particular, sensitivity to 4 out of 5 tubulin inhibitors is associated with                
high MYC activity followed by ELK1, HSF1 and YBX1. Also, sensitivity to Etoposide, a              
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topoisomerase II inhibitor, and Gemcitabine, an inhibitor of DNA synthesis, are associated            
with FOXM1 and E2F1/4 activities, key markers of DNA replication and cell cycle             
progression. Sensitivity to the two tested topoisomerase I inhibitors, in contrast, was            
specifically associated with CTCF and WT1 activity. Moreover, MYC and MYCN showed            
specific sensitivity to compounds blocking transcription elongation including CDK9 [54] and          
RNA polymerase I inhibitors. The role of MYC in determining general sensitivity to cytotoxic              
agents has been controversial, with contradictory results reported in the literature. In            
agreement with previous studies[55–57], our results suggest that MYC-increased activity          
only renders cells sensitive to a subset of the tested agents, including tubulin,             
topoisomerases II and DNA/RNA synthesis inhibitors, but does not result in a general             
sensitization to cytotoxic drugs.  
 
Focusing on targeted compounds, we noticed sensitivity associations between TFs and           
drugs targeting their upstream regulatory pathways. For example, sensitivity to drugs           
targeting the ERK-MAPK pathway (Figure 5G) was associated with increased activities in            
several MEK targeted TFs including SPI1, JUN, JUND and STAT3 [42, 58, 59], whereas             
vulnerability to the two tested RSK-inhibitors correlates with ELK1 activity, another well            
known downstream MAPK target[58, 60]. To investigate to which extent TF activity predicts             
sensitivity to direct intervention of their upstream regulators, we extracted from OmniPath            
signalling network the proteins directly regulated by the targets of the compounds.            
Enrichment analysis confirmed that significant hits were more likely to involve TFs directly             
interacting with the drug targets (FET p = 0.0032, odd-ratio = 1.31), suggesting that              
predicted TF activities may be indeed indicative of upstream pathway activation and            
therefore useful markers of sensitivity to drugs targeting their components.  
 
As shown, some of the investigated TFs are recurrently mutated in cancer and have already               
been proposed as genomic markers of sensitivity for some of the studied drugs. To validate               
that TF activities are, in fact, able to recapitulate drug associations with driver mutations, we               
compared it with the list of pharmacogenomic interactions (FDR < 25% and p < 0.001) we                
have previously identified for these cell lines[14]. Our approach identified 13 out of the 21               
significant pharmacogenomic interactions involving a TF in our panel (FET p = 4.33×10 -4,             
odd-ratio = 23.34), including TP53 mutations interacting with response to Nutlin-3a and            
Bleomycin; MYC with Vismodegib and PAX5 with Bleomycin.  
 
Overall, the use of alternative reverse-engineered regulons[8] to estimate TF activities           
rendered fewer associations compared to CTFR on the overlapping samples: 550 (FDR <             
5%, Figure S9A-B). Using an FDR threshold of 5% to define significant TF-drug interactions,              
these could not reproduce any of the pharmacogenomic interactions (Figure 5H), nor using a              
relaxed FDR threshold of 10%. Particularly, the nominal p-value for the TP53-Nutlin3a            
association was 0.43. Also, focusing on targeted drugs, significant hits were not enriched in              
TFs interacting with the corresponding drug targets (FET p = 0.99, odd-ratio=0.45).  
 
Cancer-specific analysis revealed a lower number of associations compared to the           
pancancer analysis, probably due to reduced sample size (Figure 5G; Table S6E). Still, we              
recovered a total amount of 114 TF-drug associations (p < 0.001, FDR < 10%) including               
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known pharmacogenomic interactions such as the TP53-Nutlin3a interaction in OV and           
Leukemia [52], or MYC-Temozolomide in OV[61].  
 
Importantly, our analysis identified associations for drugs with no genomic markers reported            
in the cancer type under consideration (Figure 5H). Among the top hits we found that TF                
activity of NFKB1 (a member of NF-kappa-B complex) associated with sensitivity to ITK             
inhibitor BMS-509744 in Lymphoma models (coeff = 0.67, p = 7.67×10 -8). ITK is a tyrosine               
kinase involved T-cell receptor (TCR) signalling pathway, whose activation triggers          
NF-kappa-B activity[62]. In Myeloma, resistance to Sorafenib, an inhibitor of several tyrosine            
protein kinases, was associated with the activity of IRF1, a proposed tumor suppressor in              
Acute Myeloid Leukemia [63] (coeff = 0.8, p = 5.98×10 -7). In STAD, sensitivity to             
PHA-793887, a pan-CDK inhibitor, was associated with YY1, recently proposed to contribute            
to gastric oncogenesis[64] (coeff = -1.04, p = 1.65×10 -6). Finally, we found sensitivity to the               
LCK inhibitor in Leukemia models to associate PBX1 activity (coeff = -0.66, p = 7.22×10 -7).               
Aberrant upregulation of PBX1 targets has recently been reported as oncogenic factor in             
B-cell acute lymphoblastic leukemia (B-ALL)[65]. 
 

TF activities enhance the predictive ability of genomic markers  

We showed before that the strongest TF-drug association detected involved the well known             
interaction between TP53 and Nutlin-3a. According to previous studies, samples with TP53            
mutations are resistant to Nutlin-3a [13, 14, 52], while our results suggest that samples with              
higher TP53 activities are more sensitive. We reasoned that protein activities may            
complement mutation-based markers and further improve the stratification of sensitive and           
nonsensitive cell lines. To test this hypothesis, we first confirmed that, in fact, TP53 activity               
was able to further identify sensitive cell lines among the wild -type samples (Figure 6A, p =                
3.3×10 -16, Likelihood Ratio test (LR)) in the pancancer context. This observation was            
reproduced in OV (LR p = 0.002) and a similar trend was observed in LAML (LR p = 0.1).  
 
Motivated by this finding we ran a systematic analysis to search for TFs able to refine known                 
pharmacogenomic interactions. Overall, we observed that 86 out of 158 (54.4%) tested            
strong effect pharmacogenomic interactions identified in Iorio et al., 2016 [14] are improved            
by at least one TF (FDR < 5%, LR test; Table S7). Again, we observed groups of TFs                  
interacting with the same drug/pharmacogenomic marker. Significant hits are strongly          
enriched for TFs improving pharmacogenomic interactions involving targeted compounds         
(FET p=1.36×10 -33), particularly compounds targeting Receptor Tyrosine Kinases (RTKs),         
ERK-MAPK and PI3K pathways (FET p < 0.001).  
 
The second strongest hit after TP53-Nutlin3a involved the interaction between BRAF           
mutational status and the FDA approved BRAF inhibitor Dabrafenib. Specifically, in mutant            
BRAF samples, resistance to Dabrafenib interacts with ATF2 and MITF regulons (Figure 6B,             
p = 2.34×10 -13 and p = 6.98×10 -10), this last one a marker of skin cells. Resistance in BRAF                  
mutants to Dabrafenib was still observable in SKCM samples with higher expression of             
ATF2 targets (p = 0.0013). The importance of ATF2 in melanoma is supported by several               
lines of evidence; ATF2 is required for melanoma tumor development[66]; nuclear ATF2            
(transcriptionally active) is associated with poor prognosis, metastasis and resistance to           
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genotoxic stress; mitochondrial ATF2 (transcriptionally inactive) is associated with increased          
apoptosis[67, 68]. Moreover, PKCε, the kinase mediating ATF2 transcriptional activity, is           
among the top 10 kinases associated with BRAF-inhibition resistance, which supports the            
relationship between ATF2 and Dabrafenib resistance [69]. Finally, this observation is also           
supported by gene-level essentiality scores from Achilles project, where we found a            
pancancer tendency between the predicted activity for ATF2 and its essentiality in BRAFV600E             
mutant cells (R = -0.55, p = 0.062, Pearson correlation; Figure S10A) but not in BRAFwt (R =                  
0.078, p = 0.38, Pearson correlation; Figure S10B). 
 
Interestingly, the most significant improvements in predictions were observed between drugs           
targeting ERK-MAPK signalling (FET p=5.36×10 -8) and the driver genes BRAF, KRAS or            
HRAS. For example, in BRAF wild type samples, sensitivity to MEK inhibitors improved             
including JUND in the model, among others (p = 4.56×10 -11 and p = 4.71×10 -11, RDEA119               
and Trametinib respectively). Our previous analysis already suggested JUND regulon to be            
predictive of MEK-inhibition sensitivity alone. Here we show how JUND also improves            
response prediction to MEK inhibitor AZD6244 within HRAS mutant pancancer samples (p =             
1.9×10 -6) and to Trametinib in within KRAS mutated LUAD samples (p = 1.4×10 -3, Figure              
6C). Several studies have already proposed JUND as a downstream substrate of the             
ERK-MAPK signalling pathway[58, 70]. Taken together, our results suggest that JUND           
regulon may be used as a sensor of ERK-MAPK pathway activity and vulnerability to              
MEK-inhibition. 
 
Finally, other potential interactions affecting well established pharmacogenomic markers are:          
the interaction of JUND with sensitivity to cell cycle CDK4/CDK6 inhibitors in samples with              
RB1 mutations (p=1.9×10 -6), which in turn is known to regulate cyclins[71, 72]; sensitivity to              
AKT inhibitor[73, 74] GSK690693 interaction with several TFs in OV PIK3CA mutated            
samples, where the strongest hit involves CREB1 (p=2.2×10 -6), the key downstream effector            
of the PI3K/Akt/CREB signalling pathway[75]; and sensitivity interaction between ERBB2          
inhibitors Lapatinib and CP724714 with activity of ELF1 in HER2+ BRCA samples            
(p=1.1×10 -5, p=2.1×10 -5), a candidate regulator of ERBB2 expression [76].  
 

Discussion 

TFs activities derived from gene expression data have attracted much attention in cancer             
research during the last few years. Recent studies have applied DNA-binding networks            
derived from ENCODE ChIP-Seq data to compare TF activity profiles across different            
cancers and evaluate their potential as prognostic markers[11, 12]. Alternative approaches           
have estimated protein activities using tumor-specific inferred gene networks and applied           
them to characterise the impact of somatic alterations[8, 9], proposing new hypotheses on             
how specific driver mutations may alter transcriptional regulators. Although based on           
different definitions of TF regulons, the common outcome is that the estimation of             
transcriptional activities from mRNA levels of TF targets can reveal novel mechanisms            
involved in tumor development. However, the potential use of TF activity as markers to guide               
personalised treatments, alone or in combination with established genomic markers, has not            
yet been explored.  
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Here, we applied an unsupervised analysis pipeline to derive signatures of TF activity from              
new and existing RNA-seq data in 1,010 cancer cell lines and 9,250 primary tumors. Our               
approach circumvents the need to turn to prior classification of samples into subtypes, of              
particular benefit when working with heterogeneous group of cancer patients, and avoids the             
use of a reference unperturbed control for systematic comparisons, which is not always             
available, specifically for cancer cell lines. These TF signatures enabled us to (i) functionally              
characterise different mutations impacting driver TFs; (ii) link genomic aberrations in drivers with             
TF dysregulation; (iii) suggest new mechanisms for response to specific compounds in cancer             
models and (iv) propose new markers of drug response, alone or in combination with genomic               
markers. To our knowledge, the results obtained provide the first systematic exploration of             
interactions between TF activities and drug response in cancer. Although we expect some             
interactions to reflect the cooperative behaviour between TFs controlling common processes           
rather than causal associations, we found that these recapitulated known pharmacogenomic           
relationships and were enriched for TF-drug pairs where the targeted genes were close             
upstream in the signalling network to the associated TF. Thus, we envision that the identified               
associations provide reliable evidence to refine existing hypotheses or formulate new ones            
to understand therapeutic outcomes. Finally, our study shows that predictions on therapeutic            
response can be improved if, in addition to the mutational status of a genomic marker, the                
regulatory activity of the involved protein is also considered. This can be achieved directly,              
when the gene marker codes for a TF as exemplified by TP53 -Nutlin3a response, or               
indirectly, when the coded protein regulates a TF as the case of JUND in MEK inhibitors.  

The critical factor in the quantification of TF activities is the definition of the targets putatively                
regulated. Here, we chose to use a curated compendium of regulatory networks derived             
from different TF-DNA binding evidences, such as in vivo ChIP-X experiments, in silico             
TFBS predictions and literature-based collections of regulatory interactions, that we called           
consensus TF regulons (CTFRs). The major limitations of our approach are (i) the             
incomplete knowledge of the targets belonging to each TF regulon, (ii) the assumption that a               
TF either induces or represses its targets (but TFs may act as both activators or repressors                
of gene expression) and (iii) the contextual-dependencies of the sources of TF regulons[77].             
In the light of these considerations, approaches inferring condition-specific regulatory          
networks from transcriptional interactions have become very popular in the last decade [78].            
The underlying principle of most methods is that TF circuits can be inferred through              
correlating mRNA levels of the TFs with all other genes[79, 80]. However, this assumes that               
the mRNA expression level of a gene is a good indicator of the activity of the corresponding                 
protein, which applies in some cases but may fail for TFs whose activity depends on               
post-transcriptional, post-translational regulation, modifications (phosphorylation, acetylation      
etc.) or indeed their stoichiometric assembly in a range heteromeric complexes[81].           
Moreover, an additional important phenomenon disrupting this assumption, also supported          
by the findings presented herein, is the pervasiveness of cancer related mutations in TFs              
that change the protein function. Pertinent examples are LoF TP53 missense mutants, which             
while abundantly present at mRNA and protein level, are predominantly unable to directly             
regulate the expression of its canonical targets. Furthermore, these methods are susceptible            
to be confounded by indirect associations or co-expression of other TFs[82]. Finally, the             
inference of such condition-specific networks require a prior classification of samples, which            
may not be trivial for heterogeneous cancer cell line panels.  
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Nonetheless, our TF predictions based on CTFRs agree with independent essentiality           
screenings and genomic data and mimic changes in transactivation potential observed in            
mutagenesis studies. Importantly, CTFRs are able to reproduce known pharmacogenomic          
interactions while inferred regulons fail to do so. However, it is worth mentioning that our               
strategy to retrieve CTFRs may favour well studied TF, whose targets have been thoroughly              
characterised, thus resulting in biased performances. Further refinement of the approaches           
to define TF regulons and approximate their activity in cancer should enable to find further               
pharmacogenomic interactions and thereby novel markers and therapeutic opportunities.  

 

Conclusion  

A major challenge in cancer research is the stratification of patients for therapeutic             
intervention. Although, to date, the majority of the strategies focus on the identification of              
somatic genomic aberrations as predictive response factors for anti-cancer therapies, there           
is still a plethora of cancer subtype therapies for which known driver aberrations alone have               
failed to show any predictive ability. Here we investigated the basal activity of TFs in 1,010                
cancer cell lines and 9,250 primary tumors derived as a proxy of the expression of their high                 
confidence target genes. To the best of our knowledge, this study represents the largest              
functional evaluation of basal TF activities integrating cancer genomics and drug response            
data to date. Our results demonstrate that TF activity profiles derived from curated TF-DNA              
binding data can be used to characterise genomic alterations and drug response in cancer              
patients, proposing these as promising complementary markers of therapeutic response.          
The proposed approach may have strong implications in the refinement of personalised            
treatment methodologies. We envision that with the increase in the coverage and quality of              
the CTFRs, the proposed strategy will become instrumental to interpret transcriptional           
dysregulation in cancer and elucidate its clinical implications. 

 

Methods 

Cell lines and primary tumors data 

RNA-seq data: RNAseq data for 448 cell lines were sequenced in-house           
(EGAS00001000828). RNA libraries were made with the Stranded mRNA library prep kit            
from KAPA Biosystems according to the KAPA manual using the Agilent Bravo platform. For              
the rest of cancer cell lines, fastq files were downloaded from CCLE[16] (PRJNA169425)             
and Klijn et al [17](EGAS00001000610). The iRAP pipeline [83] was used to filter low quality              
reads, alignment and raw counts quantification of the three cancer cell lines RNA-seq             
datasets. Annotation and genome reference was based on Ensembl release 79. For TCGA             
samples, raw counts derived from an alternative processing pipeline were directly           
downloaded from the Gene Expression Omnibus at the accession GSE62944 [19]. Raw           
counts from cell lines and patients where processed independently but using a common             
pipeline, to maintain consistency, as recommended by limma protocol prior to a voom             
transformation [84]. Briefly, 1) samples which proportion of genes with 0 counts[85] exceed            
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40% were discarded; 2) lowly expressed genes, defined as those with an average CPM              
lower than 1, were discarded; 3) data was normalised using TMM approach described in              
edgeR package; 4) a limma-voom transformation was applied to the data and fitted log2              
counts per million with associated precision weights were extracted. Finally, for cell lines,             
data was batch corrected using ComBat from sva R package [86] to account for the possible               
bias effects introduced by different platforms in the experimental protocols used to generate             
the RNA-seq data (GDSC, CCLE and Klijn et al), keeping the tissue of origin as a covariate. 

WES data: For cancer cell lines, we used the list of genomic variants assembled from the                
COSMIC database available through the GDSC1000 [14, 87, 88]. For TCGA primary tumors,            
we downloaded WES data from the cBioportal [89]. All genomic coordinates of variants refer             
to human genome assembly GRCh37. To maintain consistency in the annotations between            
both datasets, genomic coordinates of WES variants were re-annotated with ANNOVAR           
version 2.4 [90] and mapped to ensembl gene coordinates under the genome build version             
hg19. The final datasets contained a total of 608608 and 982200 WES variants for cell lines                
and primary tumors, respectively. 

CNA data: For cancer cell lines, we downloaded PICNIC[91] processed data from the             
GDSC1000 [14, 87, 92]. For TCGA primary tumors, CNA GISTIC[93] scores were           
downloaded from the cBioportal [89]. A gene was considered to be homozygously depleted if             
the maximum copy number of any genomic segment containing coding sequence of the             
gene from PICNIC was 0, in the case of the cell lines, or the GISTIC score was equal to -2,                    
for the primary tumors.  

Drug response data: Effects on cell viability for 265 compounds in the cancer cell lines were                
downloaded from the GDSC1000 data portal [14, 87, 94]. Dose-response was defined as the             
natural logarithm of the half-maximal inhibitory µM concentrations (IC50). 

Methylation data : For the cell lines, information on the methylation status of the promoter              
regions of coding genes was downloaded from the GDSC1000 portal [14, 87, 95].            
Specifically, the downloaded data represents binary events referring to low and high            
methylation status of CpG islands derived from per gene averaged beta values in gene              
promoters. 

Clinical data: For cell lines, annotation on cancer types (GDSC.description_1 and           
GDSC.description_2 ), TCGA identifier, microsatellite instability status, growth properties and         
media was downloaded from the GDSC1000 portal [14, 87]. For primary tumors, information            
on TCGA cancer type identifier and clinical variables was downloaded from cBioportal [89].  

Gene essentiality data: We downloaded ATARiS phenotype values (version v2.4.3), reflecting           
the relative effects of gene suppression across 216 cell lines, from the Achilles portal [21, 96].               
A gene was defined to be essential in a sample if the ATARiS value was 2 standard                 
deviations away from the mean value of the same gene across the whole population of cell                
lines. Additionally, genes deviating 3 standard deviations away from the mean were defined             
as highly essential.  
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Table S1 summarises the number of samples covered by each data type and the overlap               
with respect to the expression data. 

 

TF regulons data 

We built two types of TF regulatory networks. The first type, called Consensus TF Regulons               
(CTFR), was derived by aggregating TF-target regulatory interactions from different publicly           
available sources of TF-binding evidences: TFBS predictions (FANTOM[97], JASPAR[98]         
and TRANSFAC via MSigDB[99]), ChIP-X data (ChEA[100], HTRI[101]), literature         
text-mining (TRRUST[102]) and manually curated interactions (KEGG[103] and        
ORegAnno [104]). A TF-target interaction was included in the final regulon if it was defined in               
at least two of the mentioned resources. A TF regulon was only used in the analysis if it                  
contained at least 3 targets with measured expression data. TF-target interactions in this             
type of regulon were unsigned and weighted equally. 

The second set of TF regulons was derived from inferred gene networks[80] downloaded             
through aracne.networks R package in Bioconductor. Here, reverse engineered networks          
were built on a cancer-specific way from 24 TCGA tumor datasets as described in [8].              
Cancer-specific TF-target relationships were weighted and signed, where weights were          
derived by ARACNe through a mutual information approach and signs were derived from the              
spearman correlation coefficient between the TF and the mRNA levels of the corresponding             
target gene.  

In both network types, a protein was defined to be a TF if it was classified as such in the                    
census proposed by Vaquerizas and colleagues[20] or contains the keyword “transcription           
factor” in the Uniprot database [105]. Unlikely TFs, as defined by Vaquerizas and colleagues,             
were discarded out from TF census. CTFR regulons are available in the Table S2.  

 

Scoring basal activity of TF 

The input of the method is a matrix of normalised expression values for N samples and M                 
genes. The first step consists in the gene-wise normalisation of the expression distribution             
by using a kernel estimation of the cumulative density function (kcdf)[106]. Therefore, these             
gene expression estimates are relative to the population under study. Next, under the             
assumption that TFs function by modulating the transcription of their target genes in a              
coordinated way, the level of activity of a TF in a sample was approximated as a function of                  
the collective mRNA levels of the TF’s target genes using the aREA algorithm from the               
VIPER R package . Positive scores indicate relatively greater basal activity of the TF in the               
sample compared to the background population, whereas negative scores indicate lower           
basal activity or repression.  

Normal-tumoral comparison of TF activities 

Differential TF activities between normal and tumoral TCGA samples were computed using            
the limma R package. Specifically, the matrix of normalised TF activities per sample was              
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used to fit a linear model for each TF (lmFit) and the empirical Bayes (eBayes) test was used                  
to obtain the corresponding moderated t-statistics together with the nominal and adjusted            
p-values[84]. An independent test was run for each cancer type. 

 

Primary tumor-cell line comparison of TF activities 

In order to summarise single sample-level into cancer type-level activities, we used VIPER to              
compute activity enrichment scores per TFs and cancer types. Next, pearson correlation was             
used to compare the vector of activities from the cell lines with the vector of activities from                 
the primary tumors. For comparison purpose, we used the corresponding TCGA label            
mapping in the cell lines (available at GDSC data portal). 

 

Statistical models of TF activity association with drug response  

We used a linear model (no interaction terms) per drug to correlate response with TF               
activities. Here, for each drug-TF pair, a vector of IC50 values per sample was modeled as a                 
function of the dependent variables[14] defining tissue type (only for pan-cancer analyses),            
microsatellite instability status, the screening medium factors and the estimated activity of            
the TF. These factors were shown to influence the response to several compounds and are               
added into the model to account the possible confounding effect. The impact of the TF on                
the drug response, that is the relative difference in the mean IC50 according the variation in                
the TF activity, was defined by the magnitude of the regression coefficient estimated by              
solving a multiple linear least squares regression. The type-II analysis-of-variance (ANOVA)           
from the car R package was used to calculate a F-tests and obtain the significance of the                 
regressors. Finally, for each cancer type, p-values were adjusted for multiple testing            
correction using Benjamini Hochberg method.  

In order to include as many cell lines as possible, tissue factors in the pan-cancer models                
were defined by the GDSC.description_2 due to the presence of a significant amount of cell               
lines without a matching TCGA type. For cancer specific analyses, TCGA labels were used              
for consistency with GDSC1000 study on pharmacogenomic markers[14]. Moreover, to          
cover a broader spectrum of tumor types in the cancer-specific study, we also run              
independent analyses in Ewing's sarcoma, leukemia, lymphoma, osteosarcoma and         
rhabdomyosarcoma samples as defined in the GDSC.description_1. 

 

Statistical contribution of TF activities in improving known pharmacogenomic         
markers 

Pharmacogenomic associations were extracted from the GDSC1000 portal [14, 87]. Only          
statistically significant large-effect interactions (p < 0.001, FDR < 20% and Glass ∆s > 1)               
were considered. Genomic markers occurring in less than 3 cell lines in our final population               
were discarded.  
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To evaluate the extent to which TF activities can improve the predictive power of known               
genomic markers alone on drug-response, we compared linear regression models with and            
without the TF activity as a dependent variable as an interaction term with the genomic               
marker. Models were compared using a log likelihood ratio test. Resulting p-values were             
adjusted for multiple testing correction. A 5% FDR threshold was used to define models with               
TF activities to fit significantly better than the corresponding models without the TF predictor. 

 

Functional annotation of driver mutations and classification  

We classified WES variants in driver genes by estimating the biological implications of each              
alteration on the protein. Consequences of short deletions, insertions, and nonsense           
mutations were classified as protein truncating. In contrast, consequences of missense           
mutations can be broader. To estimate their possible consequences we applied a series of              
mapping strategies and publically available tools accounting for the location of the mutation             
within the protein structure, regulatory sites, cancer mutational hotspots, the impact in            
activity, protein stability and their affinity to associate, recognise or be recognised by other              
molecules. See a detailed description in the Supplementary Methods section. 

Vogelstein et al [40] and IntoGen [41] census were used to define genes that are cancer              
drivers. Moreover, we added in the analysis potentially new driver genes identified by             
eDriver[107] and ActivDriver[108] and the TFs under study.  

 

Statistical models of drivers association on TF activities 

Similarly, we used ANOVA (no interaction terms) per TF to correlate protein activities with              
the mutational status/class of driver genes. Here, for each TF and each group of driver               
mutations, a vector of TF activities was modeled as a function of the dependent variables               
defining tissue type (only for pan-cancer analyses), microsatellite instability status, the           
screening medium factors and the status of the driver (wild type or mutated). Only genomic               
markers occurring in at least 3 cell lines in the studied population were considered. The               
effect of the mutations on the measured TF activities with respect to the wild type was                
defined by Cohen’s d effect size estimation. A type-II ANOVA from the car R package was                
used to obtain the significance of the regressors. Finally, p-values were adjusted for multiple              
testing correction by FDR method on a cancer type basis.  

 

List of abbreviations 

ACC. Adrenocortical carcinoma 
ALL. Acute myeloid leukemia 
BLCA. Bladder carcinoma 
BRCA. Breast carcinoma 
CCLE. Cancer Cell Lines Encyclopedia 
CESC. Cervical squamous carcinoma 

17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2017. ; https://doi.org/10.1101/129478doi: bioRxiv preprint 

https://paperpile.com/c/6AMK0U/1klqz
https://paperpile.com/c/6AMK0U/kkO23
https://paperpile.com/c/6AMK0U/CKgMi
https://paperpile.com/c/6AMK0U/vFqDR
https://doi.org/10.1101/129478
http://creativecommons.org/licenses/by-nc-nd/4.0/


ChIP. Chromatin immunoprecipitation  
ChIP-X. Chromatin immunoprecipitation coupled with high-throughput technique 
CNA. Copy number alteration 
COREAD. (COAD/READ) Colon adenocarcinoma/Rectal adenocarcinoma 
CTFR. Consensus transcription factor regulon 
DLBC. Difuse B cell lymphoma 
EMT. Epithelial-mesenchymal transition 
FDR. False discovery rate 
FET. Fisher’s  exact test 
GBM. Glioblastoma multiforme 
GDSC. Genomics of Drug Sensitivity in Cancer 
HNSC. Head and neck squamous cell carcinoma 
KICH. Kidney chromophome 
KIRC. Kidney renal clear cell carcinoma 
KIRP. Kidney renal papillary carcinoma 
LAML. Acute myeloid leukemia 
LGG. Lower grade glioma 
LIHC. Liver hepatocarcinoma 
LUAD. Lung adenocarcinoma 
LUSC. Lung squamous cell carcinoma 
MB. Medulloblastoma 
MM. Myeloma 
NSCLC. Non-Small cell lung carcinoma 
OV. Serous ovarian adenocarcinoma 
PRAD. Prostate adenocarcinoma 
SKCM. Skin carcinoma 
STAD. Stomach adenocarcinoma 
TCGA. The Cancer Genome Atlas 
TF. Transcription factor 
TFBS. Transcription factor binding site 
THCA. Thyroid carcinoma 
UCEC. Uterine corpus endometrioid carcinoma 
WES. Whole exome sequencing 
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Figure legends

 

Figure 1 . Analysis overview. A) Estimation of transcription factor (TF) activities in individual cancer 
samples. B) Functional evaluation of cancer mutations effect on TF activities. C) TF-based modelling 
of pharmacologic sensitivity, either individually or in combination with pharmacogenomic markers.  
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Figure 2 . TF activities overview across primary tumors and cancer cell lines. A) Heatmap of the 
differential TF activity (log fold change) between normal and tumoral samples across 14 tumor types. 
Red and blue indicate up- and downregulation in tumors, respectively. Only TFs with a adj. p-value < 
0.05 in more than half of the analysed tumors are plotted. TF-pathway associations at the top are 
extracted from PathwayCommons. B) Tumor type similarity. Hierarchical clustering of pearson 
correlation coefficients obtained from tumor type-level TF activities for 23 primary tumors. C) Activity 
distributions for tissue-specific TFs. Each point represents the activity of a given TF in a given sample 
in both primary tumors and cancer cell lines. D) Comparison of TF activities between primary tumors 
and cell lines for 18 common tumor types. Each value in the heatmap represents the pearson 
correlation coefficients between tumor type-level TF activities. Asterisks indicate significant 
correlations (p < 0.05). 
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Figure 3 . Functional  characterisation of mutant TF on transcriptional activities. A and B) Effect 
on TF activity of different TP53 variants in cell lines and primary tumors, respectively. Y-axis indicates 
the effect size obtained from comparing TP53 activity between mutant and wild type samples. 
Negative values indicate lower TF activities in mutant samples. C) Boxplot comparing TF activities 
between different TP53 variants. D) Comparison of the effect size of each TP53 mutation group 
between primary tumors and cell lines. E) Comparison of the predicted TF activities between 
transcriptionally active and inactive TP53 mutants, extracted from the IARC TP53 database [35]. F) 
Systematic  characterisation of mutant TFs in cancer samples. Each bar represents the number of 
mutant classes significantly affecting the activity of the mutated TF. Red and blue indicate positive 
and negative effects, respectively. G) Boxplots comparing TF activities across different variants of 
NFE2L2, HIF1A, FOXA1 and AHR, respectively. 
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Figure 4 . Functional  characterisation of driver mutations on TF activities. A) Comparison 
between the TF-driver associations from primary tumors and cell lines. The Venn diagram represents 
total and overlapping TF-mutant significant associations. Shared driver-TF pairs are indicated in the 
table. B) Volcano plot with the effect size (x) and adjusted p-value of all tested pancancer 
associations. C) Number of significant associations per TF in primary tumors and cell lines. D) 
Number of significant associations per driver gene in primary tumors and cell lines. E) Heatmap of the 
driver-TF associations. F) Log odds ratio of finding a significant interaction by network distance 
(number of directed edges between the driver and the corresponding TF). G) Enrichment in positive 
driver-TF associations to involve oncogenic TFs and vice-versa. Colors indicate the sign of the 
association: red and blue correspond to significantly higher or lower TF activities in mutants compared 
to wild-type, respectively. 
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Figure 5 . Modelling of the effect of TF activities on drug sensitivity. A) Frequency of TFs in 
significant pancancer TF-drug associations. B) Drug types overrepresented among significant 
pancancer associations. C) Volcano plot with the effect size (x) and adjusted p-value of all tested 
pancancer TF-drug associations. Red and blue indicate positive (resistance) and negative (sensitivity) 
effects, respectively. D and E) Heatmaps of significant associations with cytotoxic drugs (E) and with 
drugs targeting ERK-MAPK pathway. F) Number of significant pancancer associations (y) after 
applying different FDR cut offs (x) using consensus (green) and inferred (blue) regulons. Light lines 
represent all tested TF-drug associations. Dark lines represent tests involving TF-drug pairs 
previously defined as pharmacogenomic markers (PhGm). G) Volcano plot with the effect size (x) and 
adjusted p-value of all tested cancer-specific TF-drug associations. H) Examples of cancer-specific 
TF-drug associations. Red and blue indicate positive (resistance) and negative (sensitivity) effects, 
respectively. 
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Figure 6 . Modelling of the combined effect on drug sensitivity of known pharmacogenomic 
markers and TF activities. A) Top TFs whose activities enhance pancancer pharmacogenomic 
interaction between TP53 mutations and Nutlin-3a. B) Top TFs whose activities enhance pancancer 
pharmacogenomic interaction between BRAF mutations and Dabrafenib. C) Top TF whose activity 
enhances pharmacogenomic interaction between KRAS mutations and Trametinib in LUAD. First 
boxplot represents the IC50 (y) of an individual cell line in mutant (blue) and WT (red) samples. The 
second scatterplot represents the relationship between the IC50 (y) and the predicted TF activity (x). 
The third scatterplot represents the relationship between the IC50 (y) and the predicted TF activity (x) 
in mutant (blue) and WT (red) samples. 
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Additional files 

Additional file 1: Supplemental results, materials and Figures S1 to S10. 
 
Additional file 2: Table S1. Summary of number of samples per dataset used in this study. 
 
Additional file 3: Table S2. TF-target interactions in the CTFs. 
 
Additional file 4: Table S3. TF activities using CTFRs. Sample-level activities in (A) primary tumors 
and (B) cell lines. Summaries of cancer-level activities in (C) primary tumors and (D) cell lines. 
 
Additional file 5: Table S4. Functional  characterisation of TF mutations. (A) Manual classification of 
TP53 mutations. (B-C) Full list of ANOVA pan-cancer interactions between TP53 mutation classes 
and TP53 activity in primary tumors and cell lines, respectively. (D-E) Full list of ANOVA pan-cancer 
interactions between TF mutation classes and their corresponding activity in primary tumors and cell 
lines, respectively. 
 
Additional file 6: Table S5. Functional  characterisation of driver mutations. (A) Full list of ANOVA 
pan-cancer interactions between mutation classes in driver genes and TF activities in primary tumors 
and (B) cell lines, respectively.  
 
Additional file 7: Table S6. TF-drug association analysis. (A) Full list of pan-cancer interactions 
between TF activities and drug response. (B) Frequency of each TF in the significant associations. (C) 
Frequency of each drug in the significant associations. (D) Enrichment of drug classes among the 
significant hits. (E) Full list of cancer-specific interactions between TF activities and drug response. 
 
Additional file 8: Table S7. Refinement of pharmacogenomic interactions analysis. Full list of 
pan-cancer interactions between TF and string effet pharmacogenomic interactions identified in Iorio 
et al 2016. 
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