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ABSTRACT 1 

The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-2 

penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been 3 

modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We 4 

describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited 5 

segments important for mapping regulatory risk. We apply this new Shared Genomic Segment 6 

(SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome 7 

sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of 8 

undetermined significance – a precursor to MM) cases and 964 controls from a jointly-called 9 

collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 10 

1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted 11 

deleterious variants in USP45 (p.Gln691*, p.Gln621Glu), a gene known to influence DNA repair 12 

through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two 13 

Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly, p.Met890Val), a key gene in 14 

the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and 15 

genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel 16 

strategy to use large HRPs for risk-variant discovery more generally in complex traits. 17 

 18 

AUTHOR SUMMARY 19 

Although family-based studies demonstrate inherited variants play a role in many 20 

common and complex diseases, finding the genes responsible remains a challenge. High-risk 21 

pedigrees, or families with more disease than expected by chance, have been helpful in the 22 

discovery of variants responsible for less complex diseases, but have not reached their potential 23 

in complex diseases. Here, we describe a method to utilize high-risk pedigrees to discover risk-24 
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genes in complex diseases. Our method is appropriate for complex diseases because it allows 1 

for genetic-heterogeneity, or multiple causes of disease, within a pedigree. This method allows 2 

us to identify shared segments that likely harbor disease-causing variants in a family. We apply 3 

our method in Multiple Myeloma, a heritable and complex cancer of plasma cells. We identified 4 

two genes USP45 and ARID1A that fall within shared segments with compelling statistical 5 

evidence. Exome sequencing of these genes revealed likely-damaging variants inherited in 6 

Myeloma high-risk families, suggesting these genes likely play a role in development of 7 

Myeloma. Our Myeloma findings demonstrate our high-risk pedigree method can identify 8 

genetic regions of interest in large high-risk pedigrees that are also relevant to smaller nuclear 9 

families and overall disease risk. In sum, we offer a strategy, applicable across phenotypes, to 10 

revitalize high-risk pedigrees in the discovery of the genetic basis of common and complex 11 

disease.    12 

 13 

INTRODUCTION 14 

Rare risk variants have been suggested as a source of missing heritability in the majority 15 

of complex traits [1–3]. High-risk pedigrees (HRPs) are a mainstay for identifying rare, highly 16 

penetrant, Mendelian-like causal variants [4–11].  However, while successful for relatively 17 

simple traits, genetic heterogeneity remains a major obstacle that reduces the effectiveness of 18 

HRPs for gene mapping in complex traits [12,13]. Also challenging is mapping regulatory 19 

variants, likely to be important for complex traits, necessitating interrogation outside the well-20 

annotated coding regions of the genome [14,15]. Localizing chromosomal regions to target the 21 

search for rare risk variants will be instrumental in mapping them. 22 

Here we develop a HRP strategy based on our previous Shared Genomic Segment 23 

(SGS) approach [16] that focuses on pedigrees sufficiently large to singularly identify 24 
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segregating chromosomal segments of statistical merit. The method addresses genetic 1 

heterogeneity by optimizing over all possible subsets of studied cases in a HRP. Key to the 2 

utility of the method is the derivation of significance thresholds for interpretation. These 3 

thresholds address the genome-wide search and the multiple testing, inherent from the 4 

optimization, through use of distribution fitting and the Theory of Large Deviations. 5 

We apply this novel method to 11 MM HRPs, and use exome sequencing from a 6 

collaborative resource of 55 multiplex MM or MM/MGUS pedigrees to perform subsequent 7 

targeted searches at the variant level. MM is a complex cancer of the plasma cells with 30,330 8 

new cases annually (incidence 6.5/100,000 per year) [17]. Despite survival dramatically 9 

increasing from 25.8% in 1980 to 48.5% in 2012, MM remains a cancer with one of the lowest 5-10 

year survival rates in adult hematological malignancies [17]. MM is preceded by a condition 11 

referred to as monoclonal gammopathy of undetermined significance (MGUS). Evidence for the 12 

familial clustering of MM is consistently replicated [18–21], as is its clustering with MGUS [22–13 

25]. Genetic pedigree studies in MM are scarce as it remains a challenge to acquire samples in 14 

pedigrees due to rarity and low survival rates. The Utah MM HRPs are one of only a few 15 

pedigree resources worldwide and contains unparalleled multi-generational high-risk pedigrees. 16 

Thus far, no segregating risk variants have been identified for MM.  17 

 18 

RESULTS 19 

Pedigree analysis strategy 20 

We developed a gene mapping strategy, based on the SGS method [16,26], that 21 

accounts for intra-familial heterogeneity and multiple testing. The basic SGS method identifies 22 

all genomic segments shared identical-by-state (sharing without regard to inheritance) between 23 

a defined set of cases using a dense genome-wide map of common single nucleotide 24 
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polymorphisms (SNPs), either from a genotyping platform or extracted from sequence data. If 1 

the length of a shared segment is significantly longer than by chance, inherited sharing is 2 

implied; theoretically, chance inherited sharing in distant relatives is extremely improbable. 3 

Nominal chance occurrence (nominal p-value) for shared segments is assessed empirically 4 

using gene-drop simulations to create a null distribution, as follows. Null genotype 5 

configurations are generated by assigning haplotypes to pedigree founders according to a 6 

publicly available linkage disequilibrium (LD) map, followed by segregation of these through the 7 

pedigree structure to the case set via simulated Mendelian inheritance according to a genetic 8 

(recombination) map. Gene-drops are performed independent of disease status and the 9 

resulting genotype data in the case set are representative of chance sharing. This basic method 10 

was shown to have excellent power in homogeneous pedigrees [16].  11 

In our new strategy, we iterate over all non-trivial combinations of the cases (subsets) in 12 

each pedigree to address heterogeneity in a “brute-force” fashion. For each subset, shared 13 

segments at every position throughout the genome are identified and nominal p-values 14 

assigned. Across subsets, an optimization procedure is performed at every marker across the 15 

genome to identify the segment with the most significant sharing evidence. All shared segments 16 

selected by the optimization procedure, and their respective p-values, comprise the final 17 

optimized SGS results.  18 

To perform significance testing and identify segments that are unexpected by chance 19 

(hypothesized to harbor risk loci), we derive significance thresholds to account for the genome-20 

wide optimization. Acknowledging that the vast majority of observed sharing across a genome is 21 

under the null (true risk loci are a very small minority of the genome), we use the observed 22 

optimized results (𝑌 = −𝑙𝑜𝑔'( 𝑝 , where 𝑝 is the empirical p-value) to model the distribution for 23 

optimized SGS results. We note that this approach may be slightly conservative because 24 

signals for true risk loci are also included. We identified the gamma distribution as adequate to 25 
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 6 

represent the distribution (Fig. 1). Based on the fitted distribution, 𝑌~Γ(𝑘, 𝜎), where 𝑘 and 𝜎 are 1 

the shape and rate parameters, we apply the Theory of Large Deviations; previously applied to 2 

successfully model genome-wide fluctuations in linkage analysis [27]. The significance 3 

threshold, 𝑇, accounts for multiple testing of optimized segments across the genome, and is 4 

found by solving Eq. 1:  5 

𝜇 𝑋 = [𝐶 + 2𝐺𝑋]𝛼(𝑋)    (1) 6 

where 𝑇 = 10=>? @, 𝑋 = 2𝑌 𝜎 ~𝜒@B@ , 𝜇(𝑋) is the genome-wide false positive rate required, 𝐶 is 7 

the number of chromosomes, 𝛼(𝑋) is nominal probability of exceeding 𝑋, and 𝐺 is the genome 8 

length in Morgans. A criterion of 𝜇 𝑋 = 0.05 is typically used to define the genome-wide 9 

significant threshold (false positive rate of 0.05 per genome), and 𝜇 𝑋 = 1 to define the 10 

genome-wide suggestive threshold (false positive rate of 1 per genome).  11 

In general, we found that the fitted distributions produced stable significance thresholds 12 

after 100,000-300,000 simulations (Table 1). Typically, threshold determination requires 1,000-13 

3,000 CPU hours per pedigree, increasing with the number of subsets and separating meioses 14 

between pedigree cases. For example, in pedigree UT-571744, 300k simulations genome-wide 15 

(2,513,408 segments) took 1,275 CPU hours on tangent nodes featuring Intel Xeon E5-2650 16 

processors. Once significance thresholds are established, subset/segment combinations of 17 

potential interest are identified and additional simulations are restricted to those combinations to 18 

gain the required p-value resolution. For these subsequent targeted simulations, we use a 19 

marginalized LD map specific for the segment of interest, dramatically reducing the analysis 20 

time. For example, in pedigree UT-571744, 600M simulations on one segment took 325 CPU 21 

hours on tangent nodes featuring Intel Xeon E5-2650 processors. See S1 Fig. for an overview 22 

of the strategy pipeline.  23 
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Table 1. Genome-wide Significance Thresholds. Fitted distributions are stable enough 

for threshold determination after 100,000 to 300,000 simulations. 

Pedigree 100k 200k 300k 1M 

260 6.36x10-6 6.35x10-6 6.28x10-6 6.25x10-6 

576834 3.50x10-6 3.53x10-6 3.53x10-6 3.51x10-6 

571744 3.80x10-6 3.83x10-6 3.75x10-6 3.80x10-6 

34955 5.67x10-6 5.60x10-6 5.61x10-6 5.61x10-6 

 1 

Application to Utah, MM HRPs 2 

We applied our new pedigree analysis strategy to 11 Utah MM HRPs using high-density 3 

OMNI Express SNP array genotype data. Each pedigree was selected to contain excess MM (4-4 

37 MM total per pedigree), had 2-4 sampled MM cases with genotype data, and 8-23 meioses 5 

per pedigree between the sampled cases. After quality control, a consistent set of 678,447 6 

SNPs were used for all SGS analyses. The total number of shared segments for each pedigree 7 

across all subsets ranged from 638,525 to 6,765,500 (larger pedigrees with more subsets 8 

producing larger numbers of segments). After optimization, 𝑌 = −𝑙𝑜𝑔'( 𝑝  for 6,697 to 10,369 9 

segments were fit to gamma distributions for each pedigree, and used to determine genome-10 

wide significant and suggestive thresholds (Eq. 1). The genome-wide significant thresholds 11 

ranged from 6.2×10-5 to 7.8×10-7 and genome-wide suggestive from 8.2×10-4 to 2.1×10-5 (S1 12 

Table). 13 

A genome-wide significant, 1.8 Mb shared segment (p = 3.3x10-6) was observed in 14 

pedigree UT-571744. All three genotyped MM cases, separated by 20 meioses, share the 15 

segment (Fig. 2a and Table 2). The segment is located at chromosome 6q16 (98.49-100.24 Mb; 16 

hg19) and includes 9 genes: POU3F2, FBXL4, FAXC, COQ3, PNISR, USP45, TSTD3, CCNC, 17 

and PRDM13 (Figure 2b). 18 
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 8 

Table 2. Significant or overlapping SGSs and segregating SNVs. 

Family Cases Me Position Len p Gene Conseq Impact AAF 

UT 
571744 3 20 6:98,489,655—

100,243,996 1.8 3.3x10-6‡     

PET-Nice 
0909 3(2) 03 6:99,891,443   USP45 p.Gln691* SG None 

Mayo 
458 2(1) 2 6:99,893,787   USP45 p.Gln621Glu MS None 

UT 
576834 3 12 1:24,389,214—

33,298,821 8.9 3.0x10-4     

UT 
260 3 16 1:26,224,634—

27,384,988 1.2 2.1x10-4     

UT 
576834 3 12 1:27,023,162^   ARID1A p.Ser090Gly MS 0.0002 

Cornell 
MM12 2 4 1:27,089,712`   ARID1A p.Met890Val MS 0.0001 

Legend: Cases – total MM and MGUS cases (number of MGUS); Me – meioses; Position – build HG19, 
^rs752026201, `rs140664170; Len – length in mega-bases; p – SGS p-value, (significant and suggestive genome-
wide thresholds were 3.8x10-6 and 8.5x10-5 for UT 571744, 3.5x10-6 and 4.6x10-5 for UT-576834, and 6.2x10-6 and 
1.2x10-4 for UT 260), ‡genome-wide significant; Conseq – exome-variant consequence; SG – stop gain variant, MS – 
missense variant; AAF – alternate allele frequency based on the non-TCGA, non-Finnish, European gnomAD 
individuals. 
 1 

We also identified two HRPs, UT-576834 and UT-260, with overlapping shared 2 

segments at 1p36.11 (Fig. 3). A 8.9 Mb (24.39-33.30 Mb, p = 3.0×10-4) segment was observed 3 

in 3 of the 4 genotyped MM cases in UT-576834, shared across 12 meioses (Fig. 3b and Table 4 

2). A nested 1.2 Mb shared segment (26.22-27.38 Mb; p = 2.1×10-4) segregated to 3 MM cases 5 

separated by 16 meioses in UT-260 (Fig. 3a and Table 2). The overlapping segment contains 6 

30 genes (Fig. 3d). 7 

 8 

Exome follow-up of shared segments in HRPs 9 

Whole-exome sequencing (WES) data was interrogated, targeted to the identified SGS 10 

region, to identify potential risk variants in the pedigree sharers in the HRP and in a broader set 11 

of 44 pedigrees. WES data was available for: 28 cases from the 11 extended Utah HRPs; and 12 
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126 exomes from 44 densely clustered MM/MGUS families from Mayo Clinic Rochester, Weill 1 

Cornell, Memorial Sloan Kettering Cancer Center, International Agency for Research on 2 

Cancer, and INSERM France (S2 Table). Prioritization was used to identify variants that were: 3 

in the target segment; rare (alternate allele frequency, AAF<0.001 in the non-Finnish, European, 4 

gnomAD individuals), potentially deleterious (variant impact predicted to be high or moderate); 5 

and observed recurrently in the appropriate segment sharers (if observed in the segment 6 

discovery pedigree). 7 

At 6q16, no rare, potentially deleterious coding risk variants were shared by the 3 UT-8 

571744 MM cases in the 1.8 Mb genome-wide significant segment, indicating non-coding 9 

regulatory variants may be responsible for MM risk in this pedigree. However, two, rare coding 10 

and potentially deleterious single nucleotide variants (SNVs) were identified in two MM/MGUS 11 

families (Fig. 2c-e and Table 2). Both SNVs are in the hydrolase domain of USP45: a stop gain 12 

(p.Gln691*) shared by 3 sibling cases (1 MM and 2 MGUS) in an INSERM family (PET-Nice 13 

0909) and a missense SNV (p.Gln621Glu) shared by 2 siblings (1 MM and 1 MGUS) but not 14 

their 2 screened unaffected siblings in Mayo family 485. Coverage of these positions in ExAC 15 

sequence data is high (> 99% of the 60,706 ExAC samples had at least 10x read coverage) and 16 

neither variant was observed. Collating the SGS evidence in UT 571744 (genome-wide rate of 17 

µ=0.0423) with the sequence findings, correcting for 11 SGS pedigrees, the 45 pedigrees 18 

interrogated for sequence variants, and the 9 genes in the SGS region, we estimate the rate of 19 

observing all these findings at the 6q16 region by chance is low (π=0.01, see Methods) and 20 

study-wide significant.  21 

Pedigree exomes in the 1.2 Mb segment at 1p36.11 revealed two, rare and potentially 22 

deleterious SNVs. The first in discovery pedigree UT-576834: a missense SNV (rs752026201, 23 

p.Ser90Gly, AAF = 0.0002 in gnomAD) in ARID1A (Fig. 3e) shared by 3 of the 4 Utah MM 24 

cases, concordant with the segment sharing pattern. A second rare, missense SNV in ARID1A 25 
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(rs140664170, p.Met890Val, AAF = 0.0001 in gnomAD) was found to be carried by a pair of MM 1 

cousins in Weill-Cornell family 12 (Fig. 3c and e, and Table 2). Based on the ExAC data, 2 

ARID1A is extremely intolerant to missense variants and loss of function (LoF) SNVs [28].  3 

 4 

Pathway follow-up of candidate genes 5 

Our SGS findings and pedigree WES identify USP45 and ARID1A as candidate genes 6 

for inherited MM risk. We further investigated shared segments and WES for evidence 7 

supporting the complexes USP45 and ARID1A are involved in. Here we further expanded our 8 

WES to: 186 MM/MGUS cases (early onset MM/MGUS or familial MGUS) from our collaborative 9 

group, 733 sporadic MM cases from dbGaP [29], and 964 controls [30]. 10 

USP45 is an essential DNA repair regulator, de-ubiquitylating ERCC1 to allow for DNA 11 

translocation of the ERCC1-ERCC4 endonuclease [31,32]. This endonuclease is a part of the 12 

global genome nucleotide-excision repair (GG-NER) incision complex, a 22 protein complex 13 

essential to removing lesions from DNA and cancer prevention [33–36] (S3 Table). We 14 

reviewed SGS results in the Utah HRPs at the location of these 22 genes and identified a 15 

genome-wide suggestive segment in pedigree UT-34955 (S2 Fig.). This HRP identified a 0.8 Mb 16 

segment at 19q13 (45.71-46.51 Mb; hg19), containing 31 genes including ERCC1 and ERCC2 17 

(S2 Fig. and S4 Table). The segment is shared by 3 MM cases separated by 16 meioses (p = 18 

6.6×10-5). No rare, coding variants were identified from the WES in the 3 MM cases in UT-19 

34955, nor in the remaining 44 pedigrees/families. We interrogated the 23 GG-NER genes in 20 

our 919 MM/MGUS exomes. This identified a ClinVar-annotated pathogenic, missense SNV in 21 

ERCC4 (p.Arg799Trp) in one early-onset MM case and one sporadic MM case, and a stop-gain 22 

SNV in ERCC3 (p.Arg574Ter), in the same domain as a ClinVar-annotated pathogenic variant, 23 

in a second early-onset MM case (S4 Table). Further, burden testing in all MM cases vs controls 24 
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was significant in 2 of the 23 GG-NER genes: GTF2H1 and DDB1 after correcting for multiple 1 

testing (S3 Table). The occurrence of two significantly burdened genes (at 𝛼=0.0022) from 23 2 

genes is unexpected (p=0.0011, Binomial(23,0.0022)). 3 

 ARID1A is a member of the SWI/SNF chromatin remodeling complex, a 15 gene 4 

complex involved in DNA transcription regulation [37] (see S5 Table). Members of this complex 5 

are mutated in >20% of malignancies [38–40], but are extremely intolerant to LoF and missense 6 

variation [41] (S5 Table). We reviewed SGS results in the Utah HRPs at the location of these 15 7 

genes and identified a marginal, genome-wide suggestive segment in pedigree UT-549917 8 

shared by 4 MM cases across 21 meioses (p = 2.17×10-5, S3 Fig. and S6 Table). This 1.5 Mb 9 

segment at chr3p21.1-p21.2 (52.01-53.56 Mb; hg19) contains 32 genes including PBRM1 from 10 

the SWI/SNF complex. No coding variants were identified in this gene in UT-549917, nor in the 11 

remaining 44 pedigrees/families. Burden testing was significant for 7 of the 15 genes in the 12 

complex after correcting for multiple testing: ARID1A, ARID1B, SMARCA4, ACTL6A, 13 

SMARCD3, SMARCC2, and SMARCE1 (S5 Table). The occurrence of seven significantly 14 

burdened genes (at 𝛼=0.0033) from 15 genes is unexpected by chance (p=2.7×10-14, 15 

Binomial(15,0.0033)). 16 

 17 

DISCUSSION 18 

We developed a novel strategy to identify segregating chromosomal segments shared 19 

by subsets of cases in HRPs. It focuses on extended HRPs that are singularly powerful to 20 

identify significant genetic segregation. Our strategy allows for genetic heterogeneity within such 21 

pedigrees and provides formal significance thresholds for valid interpretation. Previously, 22 

extended HRP have not delivered on their potential in complex traits because in common, 23 

complex traits, HRPs are likely enriched for multiple susceptibility variants and may capture both 24 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/137000doi: bioRxiv preprint 

https://doi.org/10.1101/137000


 12 

familial and sporadic cases in their branches. Our optimization strategy over subsets is 1 

attractive because it allows for heterogeneity without prior knowledge of genetic similarities or 2 

deep phenotyping. This new statistic also identifies the sharers and clearly delimits the shared 3 

region, making follow-up interrogation straight-forward. This is a distinct advantage over 4 

standard linkage analysis and previous pairwise SGS methods where neither sharers or the 5 

region are defined [42].  6 

Application of the method to extended MM pedigrees demonstrated the utility of this new 7 

method and illustrated that the segments identified were used successfully to narrow the search 8 

for risk variants in smaller pedigrees, allowing for an overall strategy that can utilize both large 9 

pedigrees and smaller families together for discovery (Table 2, Fig. 2 and Fig. 3). Post-hoc, 10 

additional value can be gained from demographic and/or clinical data on the sharing subsets 11 

shedding light on other shared characteristics that may aid future mapping. Also, we note that in 12 

the absence of any significant findings, genome-wide SGS results can be used as genomic 13 

annotations of segregation evidence for more heuristic approaches.  14 

 While we identified several rare, potentially deleterious coding variants of interest, 15 

several of the SGS discovery pedigrees had no coding variants that satisfied prioritization 16 

criteria. We believe this will be characteristic of complex traits and that regulatory variants will 17 

also play a substantial role. Mutations with strong causal likelihood found in other disease 18 

cohorts may focus the search for regulatory variation to particular genes within a shared 19 

segment, as with USP45 in MM. In the absence of such compelling evidence, a return to 20 

pedigree segregation methods will provide identification of statistically compelling regions which 21 

can concentrate efforts to identify and characterize regulatory risk variants. Future work will 22 

include targeted sequencing of the promising MM SGS identified to investigate non-coding 23 

variants that may play a role in MM risk in these families. Our proposed method is a new 24 
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analytic tool with the potential to reinvigorate the use of extended HRPs in the identification of 1 

risk variants that contribute to common, complex disease. 2 

Multiple myeloma is a malignancy of the plasma cells that has been shown to be familial 3 

[43]. Consistent with a role for genetics, case-control studies have been successful in identifying 4 

association signals for 17 low-risk variants [44–48]. However, despite consistent evidence for 5 

familial clustering, our study is the first to explore high-risk MM pedigrees. Using the unique 6 

genealogical database available in Utah, we identified and studied extended MM HRPs. We 7 

identified a genome-wide significant segment containing USP45, an important regulator of DNA 8 

repair (Fig. 2 and Table 2), and a genome-wide suggestive segment harboring other genes in 9 

the GG-NER incision complex (ERCC1 and ERCC2). Exome sequencing in a collaborative 10 

resource of high-risk families and early-onset cases revealed four rare, potentially deleterious 11 

coding variants; two novel variants in USP45 segregating in two pedigrees and two variants in 12 

early-onset cases in ERCC3 and ERCC4, the latter annotated as pathogenic in ClinVar. Burden 13 

testing including sporadic MM, and comparing to controls, identified significant enrichment for 14 

variants in MM cases in 2 of the 23 GG-NER genes in the protein endonuclease regulation 15 

complex.  16 

In particular, the functional literature supports USP45 as a candidate cancer risk gene. 17 

USP45 has been shown to deubiquitylate ERCC1, a catalytic subunit of the ERCC1-ERCC4 18 

DNA repair endonuclease (ERCC4 also known as XPF) [31]. This endonuclease is a critical 19 

regulator of DNA repair processes [34]. The complex repairs recombination, double strand 20 

break, and inter-strand crosslink by cutting DNA overhangs around a lesion, degrades 3’ G-rich 21 

overhangs in telomere maintenance, and plays a role in cancer prevention and in tumor 22 

resistance to chemotherapy [31,34]. Mouse models have shown USP45 knockout cells have 23 

higher levels of ubiquitylated ERCC1 and that cells are hypersensitive to UV radiation and DNA 24 

inter-strand cross-links, repair of UV-induced DNA damage, and ERCC1 translocation to DNA 25 
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damage is impaired [31]. Hence, the deubiquitylase activity of USP45 is important for 1 

maintaining the DNA repair ability of ERCC1-ERCC4. In total, these observations implicate the 2 

GG-NER incision complex and specifically the interaction of USP45 and the disruption of the 3 

ERCC1-ERCC4 role in DNA repair as a mechanism of potential importance in MM risk.  4 

Our strategy also identified shared segments overlapping at chr1p36.11 in two Utah 5 

pedigrees containing ARID1A (Fig. 3 and Table 2) and a genome-wide suggestive segment in a 6 

third pedigree harboring another gene in the SWI/SNF complex (PBRM1). For the SWI/SNF 7 

complex, exome sequencing revealed two rare, potentially deleterious variants in ARID1A 8 

segregating in two pedigrees. Burden testing provided further evidence for enrichment of 9 

variants in ARID1A specifically, and in 7 of the 15 genes in the complex. As a component of the 10 

SWI/SNF chromatin remodeling complex, ARID1A facilities gene activation by assisting 11 

transcription machinery gain access to gene targets [49]. Based on the patterns of mutations in 12 

tumor cells, ARID1A likely functions as a tumor-suppressor [50]. Members of the SWI/SNF 13 

chromatin remodeling complexes are mutated in 20% of malignancies [38], but are extremely 14 

intolerant to LoF and missense variation [41] (S5 Table). Blockage of chromatin remodeling may 15 

sustain cancer development [39]. Aberrant chromatin remodeling contributes to the 16 

pathogenesis of ovarian clear-cell carcinoma [50]. It has previously been shown that ARID1A is 17 

intolerant to variation (LoF and missense mutations) [28], consistent with its prominent somatic 18 

role in multiple tumors [38,50,51], including hematological malignancies [52–54]. These 19 

observations implicate the SWI/SNF chromatin remodeling complex, and specifically ARID1A in 20 

MM risk.  21 

This study has limitations. First, the method is applicable only to extended HRPs that are 22 

singularly effective for identifying segregating segments (15 meioses between cases is optimal 23 

[16]). The method is not directly applicable to the many smaller family-based resources that 24 

have been gathered in the complex trait field and may therefore result in findings from single 25 
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large pedigrees that are private and difficult to replicate. However, as illustrated in our example, 1 

in a collaborative setting containing both extended HRPs and smaller families, the approach can 2 

be mutually beneficial. Second, our observation of two borderline genome-wide suggestive 3 

overlapping segments at 1p36 led to our identification of ARID1A as a potential candidate risk 4 

gene and illustrates the potential for discoveries using overlapping subthreshold evidence. 5 

However, it raises analytical questions of how to systematically identify such segments. This 6 

segment would have been ignored based on strict individual-pedigree thresholds and highlights 7 

an important area for further methodological development. Third, as in all family-based genetic 8 

studies our method is susceptible to inaccurate pedigree structures and poorly matched control 9 

populations. However, relationship and ethnicity checks are standard protocol and mitigate the 10 

possibility of error. Finally, this study is observational and cannot describe causation. We have 11 

identified two complexes, several genes and specific variants as compelling candidates involved 12 

in MM risk, but further functional studies will be required to determine and characterize the 13 

mechanisms involved in risk. 14 

In conclusion, we have developed a strategy for gene mapping in complex traits that 15 

accounts for heterogeneity within HRPs and formally corrects for multiple testing to allow for 16 

statistically rigorous discovery. We applied this strategy to MM, a complex cancer of plasma 17 

cells, and identified multiple shared segments containing genes in nucleotide excision repair 18 

and SWI/SNF chromatin remodeling. Exome follow-up supported these segments in both the 19 

Utah large HRPs and smaller families from other sites. Our study offers a novel technique for 20 

HRP gene mapping and demonstrates its utility to narrow the search for risk-variants in complex 21 

traits.   22 
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METHODS 1 

SGS Analysis in Utah, Myeloma HRPs 2 

HRPs and genotyping. All participants were studied with informed consent under protocols 3 

approved by the University of Utah IRB. Using the statewide Utah Cancer Registry (UCR), all 4 

living individuals with MM in Utah were invited to participate and peripheral blood was collected 5 

for DNA extraction. Participants were linked in the Utah Population Database (UPDB), a unique 6 

resource that integrates UCR records with a 5M person genealogy. HRPs were defined as 7 

pedigrees containing statistical excess of MM (p<0.05), based on sex and cohort-specific rates 8 

in Utah. Eleven of the HRPs identified in the UPDB contained 3-4 MM cases with DNA (total 9 

MM cases per pedigree ranged from 4 to 37) with 8-23 meioses between studied MM cases. 10 

DNA from the 28 cases was genotyped on the Illumina Omni Express high-density SNP array. 11 

 12 

Quality control. Only bi-allelic SNPs were considered. Genotypes and individual call-rates 13 

were used to ensure high quality data. PLINK was used to remove SNPs with < 95% call rate 14 

across individuals [55]. The final SNP set contained 678,447 single nucleotide variants. After 15 

SNP removal for low call rates, individuals were removed based on < 90% call rate across the 16 

genome, or if they failed the PLINK sex check. One MM case was removed. The QC’ed SNP 17 

data were transformed to match strand orientation of the 1000Genomes. PLINK relationship 18 

estimates were assessed against pedigree structure from the UPDB to identify any potential 19 

issues with pedigree structure. None were found. 20 

 21 

Probability of sharing a segment. SGS analysis identifies contiguous SNPs that are 22 

shared identical-by-state (IBS) by cases in a HRP and assigns an empirical probability of 23 

chance ancestral sharing [26]. First, a set of cases in a HRP are defined and all segments of 24 
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contiguous SNPs shared IBS are identified. All shared segments > 20 SNPs are considered. 1 

Lengths shorter than 20 are commonly shared between unrelated individuals. Second, 2 

population-based data (here we used CEU and GBR data from the 1000Genomes Project [56]) 3 

are used to estimate a graphical model for linkage disequilibrium (LD) [57], providing a 4 

probability distribution of chromosome-wide haplotypes in the population. Third, pairs of 5 

haplotypes are randomly assigned to pedigree founders according to the haplotype distribution. 6 

Founders are individuals whose parents are not specified in the pedigree. For chromosome-7 

wide haplotype simulations the full chromosome LD model is used. Fourth, Mendelian 8 

segregation and recombination are simulated to generate genotypes for all pedigree members. 9 

The Rutgers genetic map [58] is used for a genetic map for recombination, with interpolation 10 

based on physical base pair position for SNPs not represented. Steps two through four create 11 

one simulated data set, a random sample from the null hypothesis. This process is repeated 12 

hundreds of thousands to millions of times for each subset.  13 

Each shared segment in the real data (step one) is compared to the simulated segments 14 

at the precise genomic location. The number of times the null segment equals or encompasses 15 

the observed segment is counted and divided by the total number of simulations to generate the 16 

empirical nominal p-value for the observed shared segment. The simulations continue until a p-17 

value has been estimated to a required resolution, or until it surpasses a defined significance 18 

threshold. To facilitate this in an efficient manner, we follow-up specific segments using 19 

marginal distributions from the LD model, established using standard graphical modeling 20 

methods [59]. The marginalized LD model encompassing only the region of interest, but 21 

capturing relevant LD to accurately simulate genotypes from this region alone. This reduction in 22 

markers vastly increases the speed in which simulations are generated. The graphical model 23 

estimation, marginalization, and simulation processes are computationally efficient requiring 24 

time and storage that is linear with the number of SNPs being considered. 25 
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Heterogeneity optimization. We systematically perform SGS analysis on each subset of 1 

cases in a HRP. If required, the number of subsets can be limited by meioses or subset size. 2 

This may be necessary for common traits with large full sets. A lower limit of 10 meioses is a 3 

good rule of thumb for reducing the computational burden of subset assessment. At each 4 

marker position across the genome, the optimized segment is the one minimizing the p-value 5 

across all subsets considered. All segments selected by the optimization procedure, and their 6 

respective p-values, comprise the final optimized SGS results. 7 

 8 

Significance threshold determination. A transformation, 𝑌 = −𝑙𝑜𝑔'( 𝑝  is performed to 9 

the optimized genome-wide SGS p-value vector. The results are fit to a gamma distribution 10 

using the MLE method. 𝑌~Γ(𝑘, 𝜎) (𝑘 shape, 𝜎 rate parameterization). The Theory of Large 11 

Deviations has previously been used in pedigree studies to model extreme values in a genome-12 

wide genetic setting [27], and it has been shown that for a statistic following a Gaussian 13 

distribution, the number of segments where the statistic exceeds a threshold 𝑊 has mean: 14 

𝜇 𝑊 = [𝐶 + 2𝜌𝐺𝑊@]𝛼(𝑊)   (2), 15 

where 𝛼 𝑊  is the pointwise significance level of exceeding 𝑊, 𝐶 is the number of 16 

chromosomes considered, 𝜌 reflects the recombination rate (𝜌 = 1 for general pedigrees), and 17 

𝐺 is genetic length in Morgans. Lander & Kruglyak demonstrated that the same equation 18 

extends a statistic following the chi-squared distribution: 19 

𝜇 𝑋 = [𝐶 + 2𝜌𝐺𝑋]𝛼(𝑋)   (3), 20 

based on the distributional relationship between the chi-squared and Normal distributions 𝑊@ =21 

𝑋. Here, we use the distributional relationship between the gamma and chi-square distributions, 22 

our estimated 𝑘 and 𝜎 gamma parameters, where 𝑇 = 10=>? @, 𝑋 = 2𝑌 𝜎 ~𝜒@B@ , and the genetic 23 

length of the genome (matched to that used in the gene-drop) to utilize Eq. 3 and derive 𝜇 𝑋  24 
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thresholds. Solving for 𝜇 𝑋 = 0.05 and 𝜇 𝑋 = 1 produced significance and suggestive 1 

thresholds, respectively. These thresholds are remarkably stable after a few hundred thousand 2 

simulations. For pedigrees with very large numbers of meioses (>50) between the full case-set 3 

a larger number of simulations may be required.  4 

 5 

Software availability. The SGS program is available for download at 6 

https://gitlab.com/camplab/sgs and https://gitlab.com/camplab/jps. The main architecture is 7 

written in Java. Probability assessments can be multi-threaded, but the largest parallelization 8 

gains are achieved by running independent analyses across chromosomes.   9 

 10 

Targeted sequencing  11 

Participants. WES data were interrogated in the regions defined by the shared segments of 12 

interest. WES data was available on 964 controls [30] and 1,063 MM or MGUS cases including: 13 

28 MM from the 11 Utah HRPs; 70 MM and 46 MGUS from 44 densely clustered families (each 14 

containing at least 2 MM or at least 1 MM and 1 MGUS); 186 genetically-enriched MM/MGUS 15 

(148 MM and 38 MGUS) including early-onset and MGUS clustering in families; and 733 16 

sporadic MM cases from dbGaP [29]. Of the 44 densely MM/MGUS high-risk families, 25 were 17 

ascertained by INSERM, France (36 MM, 38 MGUS), 9 by Mayo Clinic, Minnesota (10 MM, 8 18 

MGUS, 10 unaffected family members), 6 by Memorial Sloan Kettering Cancer Center, New 19 

York (14 MM), 3 by International Agency for Research on Cancer, France (8 MM), and 1 by 20 

Weill Cornell, New York (2 MM). Most of the families had both MM and MGUS cases (32 21 

families total) and 12 families only had MM cases sequenced. Six families had at least one 22 

unaffected relative sequenced. (See S2 Table.) All individuals in the Utah HRPs and the all but 23 

three of the densely clustered families were of non-Finish European descent. 24 
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Joint calling analysis. To perform joint calling of all of the exome sequences, we utilized the 1 

calling pipeline developed at the Icahn School of Medicine at Mt. Sinai, based on GATK Best 2 

Practices [60]. Briefly, fastq files were aligned to genome build 37 using bwa version 0.7.8, 3 

indels were realigned using GATK, duplicates were removed using Picard MarkDuplicates, and 4 

base quality scores were recalibrated using GATK.  HaplotypeCaller was then used to generate 5 

individual GVCF files for each individual, and GenotypeGVCFs was used to generate the final 6 

joint calling. The jointly-called VCF was annotated with SNPEff and loaded into a GEMINI 7 

(GEnome MINIng) database for ease of querying [61]. Additional functional annotations 8 

available in the GEMINI suite include CADD, ANNOVAR, conservation, location, and if the 9 

variant was listed in OMIM.  10 

 11 

Variant prioritization. A GEMINI query was developed to identify variants which were: high 12 

or medium impact; AAF < 0.001 in the non-Finnish, European, gnomAD individuals; and within 13 

the shared segments of interest. Genes harboring segregating variants in at least two high-risk 14 

pedigrees (the discovery pedigree and/or the 44 high-risk pedigrees from collaborating sites) 15 

were considered candidate susceptibility genes. These criteria were selected to maintain 16 

findings that were unlikely by chance after accounting for both the SGS and sequencing stages 17 

of the study. From ExAC exomes, the number of medium/high impact variants with AAF<0.001 18 

per person per gene is 0.0016 [28]. The probability of identifying segregating variants in at least 19 

two pedigrees in the same gene can be approximated with a probability from a Binomial(45, 20 

0.0016), which equals 0.0024. To account for the multiple genes in the SGS region, a second 21 

probability from Binomial(G, 0.0024) can be used to estimate the probability of observing two 22 

segregating variants by chance in G genes. With a threshold of AAF<0.001, the probability of 23 
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observing at least one gene that harbors 2 variants that segregate in high-risk pedigrees (ø) 1 

remains unexpected by chance (<0.05) for up to a reasonable large number of genes (G=20). 2 

 3 

Joint Assessment of SGS and Sequencing. We assessed the overall rate of expectation for 4 

the joint experiments of the SGS and pedigree sequencing findings as π = 11 × µ × ø, where µ 5 

is the fully corrected genome-wide rate for the SGS region identified, and ø is the fully corrected 6 

probability of the sequencing findings based on the number of genes in the SGS region, as 7 

described above. 8 

 9 

Burden testing. Burden testing was performed on jointly called and processed WES from 10 

1,063 MM/MGUS cases and 964 unaffected controls for the 23 genes in the GG-NER incision 11 

complex (including USP45) and 15 genes in the SWI/SNF chromatin remodeling complex. The 12 

GEMINI software [61] was used to perform a c-alpha test [62] with 1000 permutations. Only 13 

variants with AAF < 0.05 and high or moderate predicted impact were included in the analysis. 14 

 15 
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FIGURES 1 

Fig. 1. Adequacy of the gamma distribution. The gamma distribution provides an adequate fit 2 

for multiple types of pedigrees. For example, HRP 549917 has 𝑘 = 4.4 and 𝜎 = 3.6 with good 3 

visual density (a) and CDF (b) fit, with 𝜆 = 0.9. (Goodness of fit was estimated with 𝜆, the 4 

median of empirical chi-squared distribution divided by the median of the expected chi-squared 5 

distribution.) HRP 34955 has 𝑘 = 2.8 and 𝜎 = 2.9 with good visual density (c) and CDF (d) fit, 6 

with 𝜆 = 1.0. 7 

 8 

Fig. 2. Significant SGS, pedigrees, and segregating SNVs. In pedigrees, MM cases are fully 9 

shaded and MGUS cases are half shaded. Numbers indicate multiple individuals. a) Utah 10 

pedigree, 571744, sharing the genome-wide significant SGS. The pedigree is trimmed to allow 11 

for viewing (37 MM confirmed cases are known in this pedigree, 3 were ascertained and 12 

genotyped). + indicates the genotyped MM cases that are SGS carriers, - indicates genotyped 13 

and non-carriers, no carrier status indicates not genotyped. Note – the genealogy extends 14 

beyond SEER cancer registry data. MGUS are unknown in this pedigree. b) Genomic region of 15 

significant SGS. c) INSERM pedigree carrying the stop gain SNV marked by “c” in box e. 1 MM 16 

and 2 MGUSs carry the SNV. d) Mayo Clinic pedigree carrying the missense SNV marked by 17 

“d” in box e. 1 MM and 1 MGUS carry the SNV, but not 2 unaffected siblings. e) Risk candidate 18 

gene, USP45, has 2 segregating SNVs in the ubiquitin C-terminal hydrolase 2 (UCH) domain. 19 

 20 

Fig. 3. SGS with multiple lines of evidence. a/b) Utah pedigrees carrying the overlapping 21 

SGSs on chr1p36.11-p35.1. + indicates the genotyped MM cases that are SGS carriers, - 22 

indicates genotyped and non-carriers, no carrier status indicates not genotyped. c) Weill Cornell 23 

pedigree with a segregating, missense SNV in ARID1A indicated by “c” in e. d) Genomic region 24 
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of overlapping SGS. Dark black genes fall in both regions. e) 2 rare and segregating, missense 1 

SNVs were observed in whole-exome sequencing. SNV “b” is carried by the cases indicated 2 

with + in box b. SNV “c” in carried by the cases in box c. 3 

 4 

SUPPORTING INFORMATION 5 

S1 Fig. SGS analysis workflow. Overview of the strategy pipeline. Genotypes can be 6 

generated from a high-density SNP array, or by extracting SNVs from whole-genome 7 

sequencing. CEU and GBR genotypes (unrelated individuals only) from the 1000Genomes 8 

Project are generally used as population controls. Dotted boxes represent steps done per-9 

pedigree. Dash-dot boxes represent steps done on all subsets of cases within a pedigree. 10 

Dashed box contains step repeated for each simulation. Abbreviations: SNP – single nucleotide 11 

polymorphism; SGS – shared genomic segment; LD – linkage disequilibrium; PED – pedigree 12 

file (contains relationships and genotypes). 13 

 14 

S2 Fig. Genome-wide suggestive segment contains ERCC1. a) Utah pedigree carrying 15 

the genome-wide suggestive SGS at chr19q13.32. + indicates the genotyped MM cases that 16 

are SGS carriers, - indicates genotyped and non-carriers, no carrier status indicates not 17 

genotyped. b) Genomic region captured by the SGS. ERCC1 and ERCC2 are contained. 18 

 19 

S3 Fig. Shared segment containing PBRM1. a) Pedigree Utah 549917 carries a genome-20 

wide suggestive SGS at chr3p21.2-p21.1. + indicates the genotyped MM cases that are SGS 21 

carriers, - indicates genotyped and non-carriers, no carrier status indicates not genotyped. b) 22 

Genome region captured by the SGS including PBRM1, a component of the SWI/SNF 23 

chromatin remodeling complex.  24 
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S1 Table. Genome-wide thresholds and segments. 1 

 2 

S2 Table. Whole-exome sequenced families. Total MM, MGUS, and controls in each 3 

pedigree and from each site. 4 

 5 

S3 Table. GG-NER Incision Complex genes. Burden testing results (based on 1063 6 

MM/MGUS cases and 964 unaffected controls), SGS and prioritized SNV results, and tolerance 7 

to missense and loss of function variants (based on ExAC population data). 8 

 9 

S4 Table. Evidence for endonuclease regulation of DNA repair. 10 

 11 

S5 Table. SWI/SNF Complex genes. Burden testing results (based on 1063 MM/MGUS 12 

cases and 964 unaffected controls), SGS and prioritized SNV results, and tolerance to 13 

missense and loss of function variants (based on ExAC population data). 14 

 15 

S6 Table. Evidence for SWI/SNF chromatin remodeling. 16 
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