TY - JOUR T1 - Genome-culture coevolution promotes rapid divergence in the killer whale JF - bioRxiv DO - 10.1101/040295 SP - 040295 AU - Andrew D. Foote AU - Nagarjun Vijay AU - María C. Ávila-Arcos AU - Robin W. Baird AU - John W. Durban AU - Matteo Fumagalli AU - Richard A. Gibbs AU - M. Bradley Hanson AU - Thorfinn S. Korneliussen AU - Michael D. Martin AU - Kelly. M. Robertson AU - Vitor C. Sousa AU - Filipe. G. Vieira AU - Tomáš Vinař AU - Paul Wade AU - Kim C. Worley AU - Laurent Excoffier AU - Phillip. A. Morin AU - M. Thomas. P. Gilbert AU - Jochen. B.W. Wolf Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/02/22/040295.abstract N2 - The interaction between ecology, culture and genome evolution remains poorly understood. Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and postzygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step toward an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level. ER -