RT Journal Article SR Electronic T1 Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions JF bioRxiv FD Cold Spring Harbor Laboratory SP 051185 DO 10.1101/051185 A1 Colin W. Brown A1 Viswanadham Sridhara A1 Daniel R. Boutz A1 Maria D. Person A1 Edward M. Marcotte A1 Jeffrey E. Barrick A1 Claus O. Wilke YR 2016 UL http://biorxiv.org/content/early/2016/04/30/051185.abstract AB Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. To this end, we utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for a number of PTMs, including N-terminal Nα acetylation, C-terminal glutamylation, asparagine deamidation, and oxidation of tryptophan and methionine. Furthermore, we identify a possible relationship between N-terminal Nα acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM.