TY - JOUR T1 - Linking gene expression to unilateral pollen-pistil reproductive barriers JF - bioRxiv DO - 10.1101/080663 SP - 080663 AU - Amanda K. Broz AU - Rafael F. Guerrero AU - April M. Randle AU - You Soon Baek AU - Matthew W. Hahn AU - Patricia A. Bedinger Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/10/13/080663.abstract N2 - Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we used a transcriptomic approach to identify genes in both pollen and pistil tissues that may be probable key players in UI. We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid Alkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species signaling are likely key in UI pollen-pistil interactions between both populations and species. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations of the same species. ER -