TY - JOUR T1 - Fusing tree-ring and forest inventory data to infer influences on tree growth JF - bioRxiv DO - 10.1101/097535 SP - 097535 AU - Margaret E. K. Evans AU - Donald A. Falk AU - Alexis Arizpe AU - Tyson L. Swetnam AU - Flurin Babst AU - Kent E. Holsinger Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/12/30/097535.abstract N2 - Better understanding and prediction of tree growth is important because of the many ecosystem services provided by forests and the uncertainty surrounding how forests will respond to anthropogenic climate change. With the ultimate goal of improving models of forest dynamics, here we construct a statistical model that combines complementary data sources – tree-ring and forest inventory data. A Bayesian hierarchical model is used to gain inference on the effects of many factors on tree growth – individual tree size, climate, biophysical conditions, stand-level competitive environment, tree-level canopy status, and forest management treatments – using both diameter at breast height (DBH) and tree-ring data. The model consists of two multiple regression models, one each for the two data sources, linked via a constant of proportionality between coefficients that are found in parallel in the two regressions. The model was applied to a dataset developed at a single, well-studied site in the Jemez Mountains of north-central New Mexico, U. S. A. Inferences from the model included positive effects of seasonal precipitation, wetness index, and height ratio, and negative effects of seasonal temperature, southerly aspect and radiation, and plot basal area. Climatic effects inferred by the model compared well to results from a dendroclimatic analysis. Combining the two data sources did not lead to higher predictive accuracy (using the leave-one-out information criterion, LOOIC), either when there was a large number of increment cores (129) or under a reduced data scenario of 15 increment cores. However, there was a clear advantage, in terms of parameter estimates, to the use of both data sources under the reduced data scenario: DBH remeasurement data for ~500 trees substantially reduced uncertainty about non-climate fixed effects on radial increments. We discuss the kinds of research questions that might be addressed when the high-resolution information on climate effects contained in tree rings are combined with the rich metadata on tree- and stand-level conditions found in forest inventories, including carbon accounting and projection of tree growth and forest dynamics under future climate scenarios. ER -