RT Journal Article SR Electronic T1 Evolution of genetic variance during adaptive radiation JF bioRxiv FD Cold Spring Harbor Laboratory SP 097642 DO 10.1101/097642 A1 Greg M. Walter A1 J. David Aguirre A1 Mark W. Blows A1 Daniel Ortiz-Barrientos YR 2017 UL http://biorxiv.org/content/early/2017/01/02/097642.abstract AB Genetic correlations between traits can bias adaptation away from optimal phenotypes and constrain the rate of evolution. If genetic correlations between traits limit adaptation to contrasting environments, rapid adaptive divergence across a heterogeneous landscape may be difficult. However, if genetic variance can evolve and align with the direction of natural selection, then abundant allelic variation can promote rapid divergence during adaptive radiation. Here, we explored adaptive divergence among ecotypes of an Australian native wildflower by quantifying divergence in multivariate phenotypes of populations that occupy four contrasting environments. We investigated differences in multivariate genetic variance underlying morphological traits and examined the alignment between divergence in phenotype and divergence in genetic variance. We found that divergence in mean multivariate phenotype has occurred along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits, and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with most of the divergence in phenotype among ecotypes associated with a change in trait combinations that had substantial levels of genetic variance in each ecotype. Overall, our results suggest that divergent natural selection acting on high levels of standing genetic variation might fuel ecotypic differentiation during the early stages of adaptive radiation.