RT Journal Article SR Electronic T1 Functional Bias and Demographic History Obscure Patterns of Selection among Single-Copy Genes in a Fungal Species Complex JF bioRxiv FD Cold Spring Harbor Laboratory SP 107326 DO 10.1101/107326 A1 Santiago Sánchez-Ramírez A1 Jean-Marc Moncalvo YR 2017 UL http://biorxiv.org/content/early/2017/02/09/107326.abstract AB Many different evolutionary processes may be responsible for explaining natural variation within genomes, some of which include natural selection at the molecular level and changes in population size. Fungi are highly adaptable organisms, and their relatively small genomes and short generation times make them pliable for evolutionary genomic studies. However, adaptation in wild populations has been relatively less documented compared to experimental or clinical studies. Here, we analyzed DNA sequences from 502 putative single-copy orthologous genes in 63 samples that represent seven recently diverged North American Amanita (jacksonii-complex) lineages. For each gene and each species, we measured the genealogical sorting index (gsi) and infinite-site-based summary statistics, such as , and DTaj in coding and intron regions. MKT-based approaches and likelihood-ratio-test Kn/Ks models were used to measure natural selection in all coding sequences. Multi-locus (Extended) Bayesian Skyline Plots (eBSP) were used to model intraspecific demographic changes through time based on unlinked, putative neutral regions (introns). Most genes show evidence of long-term purifying selection, likely reflecting a functional bias implicit in single-copy genes. We find that two species have strongly negatively skewed Tajima’s D, while three other have a positive skew, corresponding well with patterns of demographic expansion and contraction. Standard MKT analyses resulted in a high incidence of near-zero α with a tendency towards negative values. In contrast, α estimates based on the distribution of fitness effects (DFE), which accounts for demographic effects and slightly deleterious mutations, suggest a higher proportion of sites fixed by positive selection. The difference was more notorious in species with expansion signatures or with historically low population sizes, evidencing the concealing effects of specific demographic histories. Finally, we attempt to mitigate Gene Ontology term overrepresentation, highlighting the potential adaptive or ecological roles of some genes under positive selection.